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ABSTRACT

Bluetooth has emerged as a viable COTS alternative for
military applications involving low power wireless networks,
including wireless sensor networks and personal area net-
works for the foot soldier. However, the reachability of
Bluetooth networks is limited by the weak error control cod-
ing used by the predefined packets. In this paper, we propose
a method for improving the performance of Bluetooth by
using custom error control coding in general, and turbo
codes in particular. An important aspect of the proposed
technique is that it is compliant with the Bluetooth standard,
and therefore requires no hardware modifications. More
specifically, the AUX1 user-defined packet is used to trans-
port rate compatible punctured turbo codes (RCPT). The
result, as shown by a combination of analytical/simulation
results, is a dramatic increase in throughput and decrease in
latency at low signal to noise ratios.

INTRODUCTION

In Bluetooth, data is transmitted using one of seven packet
types that differ only in length and method of payload error
control [1]. Six of the packets use automatic repeat request
(ARQ) to retransmit erroneous packets, and three of these
packets (DM1, DM3, and DM5) also use a (15,10) Ham-
ming code for forward error correction (FEC). Previously
[2], we analyzed the throughput performance of these six
packet types. At high signal-to-noise ratio (SNR) the best
throughput is achieved by using long uncoded packets, while
at low SNR the best throughput is achieved using shorter
packets that are protected by the Hamming code. However,
the Hamming code is not particularly powerful and thus cus-
tom error control techniques that utilize more powerful codes
are desirable in harsh environments.

Custom codes enable a Bluetooth connection to be main-
tained when the SNR is so low that a conventional connec-
tion would break. Furthermore, even at SNRs that are high
enough to maintain a minimal rate connection, custom codes

can simultaneously increase the throughput and decrease the
average latency and latency jitter. Custom coding can be
achieved in Bluetooth by using AUX1 packets, for which
ARQ is disabled and thus the data is delivered to the ap-
plication even if it is incorrect [1]. By using AUX1 packets,
additional coding and decoding can be implemented off-chip,
either in a DSP coprocessor or in middleware running on the
host computer itself. The coded bits are transmitted in the
payload of one or more AUX1 packets, and at the receiver,
the AUX1 payload is delivered to the coprocessor or host
computer for FEC decoding. Since ARQ is no longer han-
dled by the Bluetooth device, it now must be implemented by
the application layer rather than in the baseband controller.

In this paper, we explore the use of turbo codes for custom
error control in Bluetooth. Turbo codes are among the most
powerful FEC codes available, performing within 0.5 dB
of the Shannon capacity limit in additive white Gaussian
noise (AWGN) channels [3]. Presumably, there should be
a significant benefit from using AUX1 packets to transport
turbo codes over a Bluetooth data link. However, in order
to achieve the full coding gain, soft-decision decoding is
required and the code words must be fairly long. These two
requirements pose a set of technical hurdles that must be
overcome in order to transport turbo codes using commercial
Bluetooth equipment. In order to compensate for the hard
bit decisions delivered from the Bluetooth transceiver to the
decoding agent, we recommend using the received signal
strength indicator (RSSI) which provides enough additional
information to allow “pseudo-soft-decision” decoding to
be performed. To compensate for the short length of the
AUX1 packet, we suggest using a rate compatible turbo
code (RCPT) [4]. With RCPT, a long turbo code is broken
up into short packets, and by using an appropriate ARQ
protocol, only those packets that are necessary to reliably
decode the data are (re)transmitted. In the remainder of
the paper, we more fully describe the proposed approach
for transporting turbo codes over Bluetooth. In addition, a
combination of analysis and simulation is used to illustrate
the potential gains of the proposed system.
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RCPT-BASED ERROR CONTROL

A. Code Description

With RCPT codes, a low rate mother turbo code is trans-
formed into a family of higher rate codes by puncturing the
parity bits. The rate compatability criterion guarantees that
the codewords of any particular rate code are embedded in all
codes of lower rate. The source begins by sending the high-
est rate code. If errors remain after decoding, the destina-
tion stores the received information in a buffer and requests
a retransmission. Rather than retransmitting the entire high
rate code word again, the source will only transmit a subset
of the punctured parity bits that, together with the infor-
mation stored in the buffer, constitute the code word of the
next lower rate code. This process, known as incremental
redundancy, is used to continually lower the code rate until
it reaches the rate of the mother code. If, after sending the
lowest rate code word, there are remaining errors, then the
entire mother code is sent repeatedly until either the word is
correctly received or the system times out.

The proposed error control technique uses a mother rate
r = 1/3 turbo code. Data is encoded in parallel by a pair
of recursive systematic convolutional (RSC) encoders, each
with memory eight and octal feedback generator (13) and
feedforward generator (15). The data is broken into frames
of 909 data bits, which are passed through a 16 bit cyclic
redundancy check (CRC) encoder. A 3 bit tail is used to
terminate the trellis of the upper RSC encoder and is ap-
pended to the 925 bit CRC code word. The resulting 928
bit sequence is encoded first by the upper encoder. Next,
the sequence of data, CRC, and tail are interleaved by a 928
bit S-random interleaver with S=19 [5] and encoded by the
lower encoder (a separate tail is not computed for the lower
encoder). The overall output of the turbo encoder consists
of 2784 code bits. Since the payload of an AUX1 packet con-
tains a 1 byte payload header and 29 bytes of payload data
[1], the entire turbo code word can be transmitted in the
payload of 12 AUX1 packets.

Rather than transmitting the entire turbo code word at
once, we use an incremental redundancy approach. A family
of nine rate compatible turbo codes is created from the
mother code by using the puncturing patterns shown in
Table I, where a 0 indicates a punctured bit. The period of
the puncturing pattern is eight, and the parity bits of both
the upper and lower encoder are punctured using the same
pattern (the systematic data is never punctured). These
sequences were designed with the goal of protecting the
end of the parity sequences (since there will be an integer
number of puncturing periods in the turbo code word, this
indicates a bias towards placing the ones near the end of the
pattern).

Table 1: Puncturing patterns defining the RCPT code.

code puncturing

rate pattern

1 00000000

4/5 00000010

2/3 00000011

4/7 00000111

1/2 10000111

4/9 10100111

2/5 10101111

4/11 11101111

1/3 11111111

B. Protocol Description

At first, the source transmits only the 928 bits of data,
CRC, and upper tail in the payload of four consecutive
AUX1 packets. The destination stores the received data
in a buffer, checks the CRC, and immediately requests a
retransmission in the payload of a return AUX1 packet if
the CRC check fails. If the source does not receive a positive
acknowledgment (ACK) before its next transmit slot, then
it will transmit a single AUX1 packet that contains only
those parity bits required to drop down to the next lower
code rate. At the destination, the packet of incremental
redundancy is combined with the previously received infor-
mation such that the net effect is as if a single code word
of the current rate code had been transmitted. The code
rate is continually lowered until either an ACK is received
or all 12 packets constituting the full rate 1/3 turbo code
have been transmitted. If the CRC still fails after the rate
1/3 code is transmitted, then it is likely that the channel
is extremely poor. Since it is unlikely that codes of rate
higher than 1/3 will succeed, the system will simply retrans-
mit the 12 AUX1 packets that comprise the rate 1/3 code
until either an ACK is received or a system timer is exceeded.

C. Decoder Modification

Because hard bit decisions are passed from the Bluetooth
device to the decoding agent, the decoding process used is
inherently based on hard-decisions. However, it is desir-
able to have soft information available at the decoder since
soft-decision decoding has the potential to outperform hard-
decision decoding [6]. In Bluetooth, a modest amount of
soft-information can be delivered to the decoding agent by
using the received signal strength indicator (RSSI), which is
an indication of the average SNR of any particular packet.
While not a true bit-by-bit soft-decision metric, the RSSI is
still a useful quantity when the average signal strength re-
mains constant for the duration of the packet, as is the case
for the quasi-static fading channels that characterize Blue-
tooth [2].

2



We wish to consider two decoder implementations, one that
can operate without knowledge of the channel SNR, and an-
other that exploits knowledge of the frame-by-frame SNR
(which is obtained by reading the RSSI) for improved per-
formance. The first decoder type can be implemented using
the max-log-MAP algorithm [7], which does not require es-
timates of the channel SNR in an AWGN channel. In this
case, the received data {0, 1} is converted into polar form
{−1,+1} and fed into a standard max-log-MAP decoder.
Note that because the demodulator performs hard bit deci-
sions, the channel is actually modeled as a binary symmetric
channel (BSC) and thus performance of the turbo code will
be degraded relative to a true AWGN channel.

Performance can be improved by using the log-MAP algo-
rithm [7]. However, this algorithm requires knowledge of the
symbol-by-symbol SNR of the received packet. Since it is
generally assumed that the SNR remains constant for the
duration of any one AUX1 packet, the RSSI can be used to
derive the SNR for all of the symbols in the packet. The
bits at the input of the log-MAP decoder must be in log-
likelihood form, which for a BSC is

Λ(si) = ln
P [si = +1]

P [si = −1] (1)

= ŝi ln

µ
1− ²(γ)
²(γ)

¶
, (2)

where si is the transmitted symbol, ŝi = {−1,+1} is the
hard decision output of the demodulator, γ is the SNR of the
channel, and ² is the error probability of the demodulator,
which is an implementation-dependent parameter.

A lower bound on ² for noncoherent detection can be found
by considering the performance of noncoherently detected
nonorthogonal full response FSK, whose performance can be
found using the following set of equations [6]
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where h is the modulation index, which for Bluetooth satis-
fies 0.28 ≤ h ≤ 0.35. This is a lower bound on error probabil-
ity because it does not account for the additional losses due
to the intersymbol interference (ISI) induced by the use of
partial response GFSK signaling (Bluetooth uses Gaussian
pulse shaping with BT = 0.5). However, an exact analy-
sis requires knowledge of the receiver implementation and
must take into account both predetection and postdetection
filtering [8] and goes beyond the scope of this paper.

If the decoder has knowledge of the function ²(γ), which
can be estimated using the above analytical expressions,
by simulation, or by measurement, and the SNR γ which
can be derived from the RSSI, then the reliability |Λ(si)|
can be computed. The reliability is multiplied by the polar
hard bit decision {−1,+1} to form the LLR, which is then
passed into the standard log-MAP algorithm. Since the only
soft-information available to the decoder is the average SNR
over each entire AUX1 frame, performance will again be
degraded relative to a true soft-decision decoder. However,
in a fading environment, where the SNR may vary from
one AUX1 packet to the next, the reliability is used by
the decoder to place more confidence on the strong packets
and less emphasis on the weak packets. This is especially
important when dealing with long custom codes such as the
proposed turbo code, since they will span multiple AUX1
packets.

PERFORMANCE ANALYSIS

The quality of service (QoS) can be measured using four pa-
rameters, each of which is a function of the SNR: Through-
put, residual frame error rate (FER), average latency, and
latency jitter. Each of these parameters can be found given
the probability Pr(ri, γ) that a frame must be retransmitted,
which is a function of the SNR γ and, for the RCPT case,
a function of the code rate ri. A frame is retransmitted if
any of the following occurs: (1) The destination fails to syn-
chronize with the 72 bit access code of the forward packet,
(2) The destination fails to decode the 18 bit packet header
which is protected by a triple redundancy code, (3) The des-
tination fails to properly decode the payload, (4) The source
fails to synchronize with the access code of the return packet,
and (5) The source fails to decode the header of the return
packet. The probability of each of these events for the six
asynchronous Bluetooth packets that use ARQ is derived in
[2] and not reproduced here.

In AWGN, the SNR remains constant and thus the proba-
bility of retransmission is the same from packet to packet
for any particular type of payload code. It is convenient to
define a geometric random variable N which enumerates the
number of times a packet must be retransmitted. Since a
packet will be accepted on the nth trial only if it failed on
all (n − 1) previous transmissions yet succeeded in the nth
trial, the pmf of N is

pN [n] = (1− Pr(rn, γ))
n−1Y
i=1

Pr(ri, γ), (4)

where ri is the rate of the payload code for the ith trans-
mission. For the DMx packet, ri = 2/3 ∀i since all packets
are retransmitted using the same (15,10) Hamming code. For
AUX1 packets carrying the proposed turbo code, ri will vary
in accordance to the protocol described in the previous sec-
tion. Specifically, r1 = r2 = r3 = 0 since no information has
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been conveyed until the fourth code word has been transmit-
ted. Then ri = 4/i for 4 ≤ i ≤ 12 in accordance with table I.
Finally, ri = 1/3 when i > 12 and gcd(i, 12) = 12, otherwise
if i > 12 then ri = 0.

If a packet must be transmitted N times, the associated la-
tency is τ = (DN)(625 × 10−6), where D is the number of
occupied slots per transmission including the return packet.
For the DM1 and uncoded AUX1 packet types D = 2, for
the DM3 packet D = 4, and for the DM5 packet D = 6. The
average latency τ̄ is found by taking the expected value of τ
with respect to N , i.e. τ̄ = EN {τ}. Likewise, the latency
jitter στ is found by computing the standard deviation of τ ,
i.e. στ =

p
EN {τ2}− τ̄2.

The throughput in bits per second is R = K/τ , where K
is the number of data bits in the packet. For the proposed
turbo coded AUX1 packet K = 909, for the DM1 packet
K = 136, for the DM3 packet K = 968, and for the DM5
packet K = 1792. The average throughput is then found
by taking the expected value of R with respect to N , i.e.
Ravg = EN {R}.

The residual frame error rate Pf is the probability that after
a finite number Nmax of retransmissions the frame is still
in error. As Nmax → ∞, Pf = 1 if minri Pr(ri, γ) = 1,
otherwise Pf = 0. The residual frame error rate is related to
the pmf of N by

Pf = 1−
NmaxX
n=1

PN [n] (5)

A combination of analysis and Monte Carlo simulation was
used to generate numerical values that compare the QoS of
the proposed error control technique with the QoS of the
DMx packets. Whenever possible, analytical results were
used. However, simulation was used to generate the probabil-
ity that a turbo coded payload was not successfully decoded.
The turbo code simulation ran until 100 code word errors
occured for each value code rate and of γ = Es/No consid-
ered (Es is the energy per transmitted code symbol and No
is the one-sided noise spectral density). A maximum of ten
iterations of log-MAP (perfect RSSI case) or max-log-MAP
(no RSSI case) decoding was used to decode the turbo code,
although the decoder halted early once the CRC indicated
that there were no residual errors. The error probability of
the channel was determined using (3) with h = 0.32 and thus
the impact of the ISI due to Gaussian pulse shaping was ne-
glected (the ISI will cause all curves to move over to the right
by an equal amount and thus does not affect the comparison
of packet types presented here). The threshold for packet
synchronization was set to T = 60, i.e. 60 of the 72 bits in
the access code must match in order to achieve synchroniza-
tion [2]. The maximum retransmit time was set to 60 msec,
which limits the maximum number of packet transmissions
before a residual frame error is declared.
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Figure 1: Comparison of the average throughput of turbo
coded AUX1 packets (denoted TC4) and standard Blue-
tooth DMx packets in AWGN assuming noncoherent detec-
tion, modulation index h=0.32, no ISI, and synchronization
threshold T = 60.

The QoS of the proposed turbo code based error control
scheme is compared against that of the standard Bluetooth
DMx packets in Fig. 1-4. In particular, Fig. 1 shows
the average throughput in kbps, Fig. 2 shows the average
latency in msec, Fig. 3 shows the latency jitter in msec, and
Fig. 4 shows the residual frame error rate. At Es/No = 6.9
dB, the turbo coded system can achieve a throughput of 85
kbps with an average latency of 11 msec and residual FER
of less than 10−3 (this residual FER is acceptable since the
application will know when decoded turbo code words are
erroneous and thus can take more drastic countermeasures).
At this SNR, the throughput of all three DMx frames is
zero and thus communications at any rate is impossible. It
is not until Es/No = 9.6 dB that the DM1 packet can offer
the same throughput and Es/N=8.2 dB that it can offer the
same average latency. Thus, the gain due to using the turbo
coded AUX1 packets at an average throughput of 85 kbps is
2.7 dB, while the gain for an average latency of 11 msec is 1.3
dB. Positive gains can be found for all average throughputs
less than 138 kbps and average latencies greater than 8.2
msec. Thus use of the proposed turbo code technique has
benefits in terms of the ability to maintain a link at very low
SNR as well as a coding gain in terms of throughput and
average latency. It should be noted that the latency jitter is
similar in all cases. While performance suffers slightly by
ignoring the RSSI and using the max-log-MAP algorithm,
this loss is only about 0.2 dB, and thus the error control
strategy is still effective even without the use of the RSSI.
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Figure 2: Average latency in AWGN.
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Figure 3: Latency jitter in AWGN.

4 5 6 7 8 9 10
10-4

10-3

10-2

10-1

100

Es/No in dB

R
es

id
ua

l F
ER TC4 no RSSITC4 w/ RSSI

DM1        

DM3        DM5       

Figure 4: Residual frame error rate in AWGN with maximum
retransmission time of 60 msec.

CONCLUSION

The proposed turbo code based error control strategy im-
proves the QoS at low data rates. In particular, a coding
gain of approximately 2.7 and 1.3 dB were observed at low
SNR with respect to throughput and average latency, re-
spectively. While decoding using the RSSI offers the best
performance, neglecting the RSSI only introduces a 0.2 dB
penalty in AWGN channels. The proposed strategy requires
no modifications to the Bluetooth standard or device, and
can be implemented off-chip and entirely in software.

While this paper only presents results for a particular length
turbo code, we also considered shorter and longer turbo
codes. In general, longer turbo codes perform better than
shorter ones. Thus, we found that performance was worse for
turbo codes that were shorter than the one presented here.
However, longer turbo codes will require more packets, and
thus the probability that one of the packets will either not be
synchronized or its packet header will be incorrect increases
as the length of the code increases. We found that turbo
codes that were longer than the one considered in this paper
actually perform worse when applied to Bluetooth. This is
because the increase in interleaver gain due is less than the
loss due to the increased probability that one of the headers
or synchronization words fails.
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