Analysis and Optimization of a Frequency-Hopping Ad Hoc Network in Rayleigh Fading

S. Talarico¹ M. C. Valenti¹ D. Torrieri²

¹West Virginia University Morgantown, WV

²U.S. Army Research Laboratory Adelphi, MD

May 30, 2012

- 1 Frequency-Hopping Ad Hoc Networks
- Outage Probability
- 3 Transmission Capacity
- 4 Modulation Constraints
- **5** Optimization Results

1 Frequency-Hopping Ad Hoc Networks

- 2 Outage Probability
- 3 Transmission Capacity
- 4 Modulation Constraints
- 5 Optimization Results

Ad Hoc Networks

- Mobile transmitters are randomly placed in 2-D space.
- A reference receiver is located at the origin.
- X_i represents the i^{th} transmitter and its location.
 - X_0 is location of the reference transmitter.
 - M interfering transmitters, $\{X_1, ..., X_M\}$.
 - $|X_i|$ is distance from i^{th} transmitter to the reference receiver.
- Spatial models
 - Interferers placed independently and uniformly over the network area.
 - M can be fixed (BPP) or variable (PPP).

Matthew C. Valenti

Analysis and Optimization of FHAH Network in Rayleigh Fading

May 30, 2012 4 / 31

Frequency Hopping

• To manage interference, *frequency hopping* (FH) is used:

- Each mobile transmits with *duty factor d*.
 - Likelihood of a transmission is $d \leq 1$.
- Each transmitting mobile randomly picks from among L frequencies.
 - Probability of a *collision* is p = d/L = 1/L', where L' = L/d.

SINR

The performance at the reference receiver is characterized by the *signal-to-interference and noise ratio* (SINR), given by:

$$\gamma = \frac{g_0 \Omega_0}{\Gamma^{-1} + \sum_{i=1}^M I_i g_i \Omega_i}$$
(1)

where:

- Γ is the SNR at unit distance.
- g_i is the power gain due to Rayleigh fading (an exponential variable).
- *I_i* is a Bernoulli variable that indicates a collision.

•
$$P[I_i = 1] = p = 1/L'.$$

• $\Omega_i = \frac{P_i}{P_0} ||X_i||^{-\alpha}$ is the normalized receiver power from transmitter *i*.

- P_i is the power of transmitter i, assumed to be constant for all i.
- $\bullet \ \alpha$ is the path loss.
- $||X_0|| = 1$ to normalize distance.

Frequency-Hopping Ad Hoc Networks

Outage Probability

- 3 Transmission Capacity
- 4 Modulation Constraints
- 5 Optimization Results

- An *outage* occurs when the SINR is below a threshold β .
 - $\bullet~\beta$ depends on the choice of modulation and coding.
- The outage probability is

$$\epsilon = P[\gamma \le \beta]. \tag{2}$$

• Substituting (1) into (2) and rearranging yields

$$\epsilon = P \Big[\underbrace{\beta^{-1} g_0 \Omega_0 - \sum_{i=1}^M I_i g_i \Omega_i}_{\mathbf{Z}} \le \Gamma^{-1} \Big].$$

• The outage probability is related to the cdf of Z,

$$\epsilon = P\left[\mathsf{Z} \le \Gamma^{-1}\right] = F_{\mathsf{Z}}(\Gamma^{-1}).$$

Matthew C. Valenti

Analysis and Optimization of FHAH Network in Rayleigh Fading

Outage Probability Derivation

The cdf conditioned on the network geometry, $\boldsymbol{\Omega}$: $\epsilon_{\Omega} = P\left[\gamma \leq \beta | \boldsymbol{\Omega} \right] = F_{\mathsf{Z}}(\Gamma^{-1} | \boldsymbol{\Omega})$

9 / 31

Outage Probability Derivation

The cdf conditioned on the network geometry, $\boldsymbol{\Omega}$: $\epsilon_{\Omega} = P \left[\gamma \leq \beta | \boldsymbol{\Omega} \right] = F_{\mathsf{Z}}(\Gamma^{-1} | \boldsymbol{\Omega})$

The cdf conditioned on the number of interferers, M: $\epsilon_M = \mathbb{E} [\epsilon_{\Omega}] =$ $F_{Z_M}(\Gamma^{-1}) = \int f_{\Omega}(\boldsymbol{\omega}) F_{Z}(\Gamma^{-1} | \boldsymbol{\omega}) d\boldsymbol{\omega}$

 $f_{oldsymbol{\Omega}}(oldsymbol{\omega}) = \prod_{i=1}^M f_{\Omega_i}(\omega_i)$ is the pdf of $oldsymbol{\Omega}$

Outage Probability Derivation

Conditional Outage Probability

• The outage probability conditioned on the network geometry:

$$F_{\mathsf{Z}}(z|\mathbf{\Omega}) = 1 - e^{-\beta\Omega_0^{-1}z} \prod_{i=1}^M \left[\frac{(1-p_i)\beta\Omega_0^{-1} + \Omega_i^{-1}}{\beta\Omega_0^{-1} + \Omega_i^{-1}} \right]$$
(3)

Example:

- M = 50 interferers.
- Annular network.
- $r_{ex} = 0.25$ inner radius.
- $r_{net} = 2$ outer radius.

•
$$L' = 200.$$

 Analytical curves are solid, while • represents simulated values.

Analysis and Optimization of FHAH Network in Rayleigh Fading

Average Outage Probability for a BPP: Results

- In a binomial point process (BPP), a fixed number of interferers are independently placed according to a uniform distribution.
- The cdf with a BPP network is:

$$F_{\mathsf{Z}_{M}}(z) = \int f_{\mathbf{\Omega}}(\boldsymbol{\omega}) F_{\mathsf{Z}}(z|\boldsymbol{\omega}) d\boldsymbol{\omega}$$
(4)

where

$$f_{\Omega_i}(\omega) = \frac{2\omega^{\frac{2-\alpha}{\alpha}}}{\alpha \left(r_{net}^2 - r_{ex}^2\right)} \quad \text{ for } r_{ex}^{\alpha} \le \omega \le r_{net}^{\alpha}.$$

Substituting (3) into (4), the cdf of Z_M is

$$F_{\mathsf{Z}_{M}}(z) = 1 - e^{-\beta\Omega_{0}^{-1}z} \left[\frac{\Psi(r_{net}^{\alpha}) - \Psi(r_{ex}^{\alpha})}{r_{net}^{2} - r_{ex}^{2}} \right]^{M}$$
(5)

where

•
$$\Psi(x) = x^{\frac{2}{\alpha}} \left[1 - p + \frac{2p}{\alpha+2} \cdot \frac{x^{\frac{2+\alpha}{\alpha}}}{\beta\Omega_0^{-1}} \cdot {}_2F_1\left(\left[1, \frac{\alpha+2}{\alpha}\right]; \frac{2\alpha+2}{\alpha}, -\frac{x}{\beta\Omega_0^{-1}}\right) \right].$$

Matthew C. Valenti

Analysis and Optimization of FHAH Network in Rayleigh Fading

Average Outage Probability for a BPP: Example

Figure: Outage probability ϵ_M as a function of M for five values of L' when the location of the nodes is drawn from a BPP. Analytical curves are solid, while \bullet represents simulated values.

Matthew C. Valenti

Average Outage Probability for a PPP: Results

- In a Poisson point process (PPP), the number of interferers M is a Poisson variable.
- The cdf with a PPP network is:

$$F_{Z}(z) = \sum_{m=0}^{\infty} p_{M}(m) F_{Z_{m}}(z) = \sum_{m=0}^{\infty} \frac{(\lambda A)^{m}}{m!} e^{-\lambda A} F_{Z_{m}}(z)$$
 (6)

where

- λ is the density of the interferers per unit area;
- $A = \pi (r_{net}^2 r_{ex}^2)$ is the area of the network;

substituting (5) into (6), the average outage probability is:

$$F_{\mathsf{Z}}(z) = 1 - e^{-\beta\Omega_0^{-1}z} e^{-\pi\lambda \cdot \left\{ r_{net}^2 - r_{ex}^2 - \left[\Psi(r_{net}^\alpha) - \Psi(r_{ex}^\alpha) \right] \right\}}$$
(7)

• When $r_{net} \rightarrow \infty$, $r_{ex} = 0$, and p = L' = 1:

$$F_{\mathsf{Z}}(z) = 1 - e^{-\beta_0 z} e^{\frac{-2\pi\lambda}{\alpha}\beta_0^{\frac{2}{\alpha}} \Gamma\left(\frac{2}{\alpha}\right) \Gamma\left(1 - \frac{2}{\alpha}\right)}$$

• The same expression is obtained in literature by Baccelli et al. [4].

May 30, 2012 13 / 31

Average Outage Probability for a PPP: Examples

- 1 Frequency-Hopping Ad Hoc Networks
- 2 Outage Probability
- 3 Transmission Capacity
 - 4 Modulation Constraints
- 5 Optimization Results

Transmission Capacity: Definition

- The transmission capacity is the spatial spectral efficiency.
- If there are λ mobiles per unit area, then the number of successful transmissions per unit area is

$$\tau = \lambda(1-\epsilon)$$

• If the outage probability ϵ is constrained to not exceed $\zeta,$ then the transmission capacity is

$$\tau_c(\zeta) = \epsilon^{-1}(\zeta)(1-\zeta) \tag{8}$$

where $\epsilon^{-1}(\zeta)$ is the maximum mobile density such that $\epsilon \leq \zeta$.

Transmission Capacity: Results

• For the BPP case, $\epsilon^{-1}(\zeta)$ is found be solving $\epsilon = F_{\mathsf{Z}_M}(\Gamma^{-1}) = \zeta$ for $\lambda = M/A$ and then substituting into (8):

$$\tau_{c}(\zeta) = \frac{(1-\zeta) \left[\log (1-\zeta) + \beta \Omega_{0}^{-1} \Gamma^{-1} \right]}{A \log \left\{ \left(r_{net}^{2} - r_{ex}^{2} \right)^{-1} \left[\Psi \left(r_{net}^{\alpha} \right) - \Psi \left(r_{ex}^{\alpha} \right) \right] \right\}}$$

• In the PPP case, $\epsilon^{-1}(\zeta)$ is found be solving $\epsilon = F_{\mathsf{Z}}(\Gamma^{-1}) = \zeta$ for λ and then substituting into (8):

$$\tau_{c}(\zeta) = \frac{(1-\zeta) \left[\log (1-\zeta)^{-1} - \beta \Omega_{0}^{-1} \Gamma^{-1} \right]}{\pi \left\{ r_{net}^{2} - r_{ex}^{2} - \left[\Psi \left(r_{net}^{\alpha} \right) - \Psi \left(r_{ex}^{\alpha} \right) \right] \right\}}.$$

• Asymptotically for a PPP, with $r_{ex} = 0$ and p = 1, as $r_{net} \rightarrow \infty$:

$$\tau_c(\zeta) = \frac{(1-\zeta) \left[\log \left(1-\zeta\right)^{-1} - \beta \Omega_0^{-1} \Gamma^{-1} \right]}{\pi \beta_0^{\frac{2}{\alpha}} \frac{2\pi}{\alpha} \csc\left(\frac{2\pi}{\alpha}\right)}$$

• The same expression is obtained in literature by Weber et al. [14].

Analysis and Optimization of FHAH Network in Rayleigh Fading

May 30, 2012 17 / 31

Transmission Capacity: Examples

Analysis and Optimization of FHAH Network in Rayleigh Fading

- 1 Frequency-Hopping Ad Hoc Networks
- 2 Outage Probability
- 3 Transmission Capacity
- 4 Modulation Constraints
- 5 Optimization Results

Accounting for Modulation

- Until now, we have picked the SINR threshold β arbitrarily.
- β depends on the choice of modulation.
 - For *ideal* (Gaussian-input) signaling

$$C(\gamma) = \log_2(1+\gamma)$$

 β is the value of γ for which $C(\gamma) = R$ (the code rate),

$$\beta = 2^R - 1$$

- For other modulations, the *modulation-constrained* capacity $C(\gamma)$ must be used, which can be found by measuring the mutual information between channel input and output.
- Additionally, the code rate R and the spectral-efficiency of the modulation η can be taken into account to give transmission capacity in units of bps/Hz/ m^2 .

Noncoherent Binary CPFSK

FH systems often use noncoherent continuous-phase frequency-shift keying, whose capacity & bandwidth depends on the modulation index h.

(a) channel capacity versus \mathcal{E}_S/N_0

(b) bandwidth versus modulation index

[9] S. Cheng, R. Iyer Sehshadri, M.C. Valenti, and D. Torrieri, "The capacity of noncoherent continuous-phase frequency shift keying", in *Proc. Conf. on Info. Sci. and Sys. (CISS)*, (Baltimore, MD), Mar. 2007.

Matthew C. Valenti

Analysis and Optimization of FHAH Network in Rayleigh Fading

May 30, 2012 21 / 31

Modulation-Constrained Transmission Capacity

• The *modulation-constrained* transmission capacity is

$$\tau' = \lambda (1 - \epsilon) \left(\frac{R\eta(h)}{L'} \right)$$

where

- R is the rate of the channel code.
- h is the modulation index.
- $\eta(h)$ the modulation's spectral efficiency (bps/Hz).

•
$$\epsilon = P[C(\gamma) \le R] = P[\gamma \le C^{-1}(R)].$$

- L' is the effective number of hopping channels.
- λ is the density of interferers.
- τ' has units of $bps/Hz/m^2$.

• For a given $\lambda,$ $\Gamma,$ and spatial model, there is a set of (L',R,h) that maximizes $\tau'.$

Influence of Parameters: BPP

Parameters:

•
$$r_{ex} = 0.25;$$

• $r_{net} = 2;$
• $\Gamma = 10 \text{ dB}.$
• $M = 50.$

Matthew C. Valenti

Analysis and Optimization of FHAH Network in Rayleigh Fading

Modulation Constraints

Influence of Parameters: PPP

Parameters:

•
$$r_{ex} = 0.25;$$

• $r_{net} = 2;$
• $\Gamma = 10 \text{ dB}.$
• $\alpha = 3.$

Matthew C. Valenti

Analysis and Optimization of FHAH Network in Rayleigh Fading

- 1 Frequency-Hopping Ad Hoc Networks
- 2 Outage Probability
- 3 Transmission Capacity
- 4 Modulation Constraints
- **5** Optimization Results

Optimization Objectives

- For a given network model $(r_{ex}, r_{net}, \alpha, \lambda)$ and channel SNR Γ , the values of (L', R, h) that maximize the modulation-constrained transmission capacity τ' are found.
- Optimization is through exhaustive search or a gradient-search strategy.
- Performed for both BPP and PPP spatial models.

Example of optimization for a BPP

r_{net}	r_{ex}	α	L'	R	h	$ au_{opt}^{\prime}$
2	0.25	3	32	0.62	0.59	0.01590
		3.5	30	0.62	0.59	0.01688
		4	28	0.62	0.59	0.01792
	0.5	3	30	0.61	0.59	0.01641
		3.5	29	0.61	0.59	0.01752
		4	26	0.59	0.59	0.01871
4	0.25	3	12	0.54	0.59	0.00983
		3.5	10	0.55	0.59	0.01187
		4	8	0.54	0.59	0.01395
	0.5	3	11	0.52	0.59	0.01024
		3.5	9	0.52	0.59	0.01252
		4	8	0.55	0.59	0.01484

Table: Results of the Optimization for an annular network area where the interferers are drawn from a BPP. The number of interferers is fixed to M = 50.

Example of optimization for a PPP

r_{net}	r_{ex}	α	L'	R	h	$ au'_{opt}$
2	0.25	3	8	0.62	0.59	0.01597
		3.5	7	0.62	0.59	0.01697
		4	7	0.62	0.59	0.01801
	0.5	3	7	0.61	0.59	0.01731
		3.5	7	0.61	0.59	0.01845
		4	6	0.59	0.59	0.01973
4	0.25	3	12	0.52	0.59	0.00977
		3.5	10	0.54	0.59	0.01180
		4	8	0.54	0.59	0.01387
	0.5	3	11	0.52	0.59	0.01030
		3.5	9	0.53	0.59	0.01258
		4	8	0.55	0.59	0.01491

Table: Results of the Optimization for an annular network area where the interferers are drawn from a PPP. The intensity λ per unit area is fixed to $\lambda = 1$.

- 1 Frequency-Hopping Ad Hoc Networks
- 2 Outage Probability
- 3 Transmission Capacity
- 4 Modulation Constraints
- 5 Optimization Results

Conclusions

- The performance of frequency-hopping ad hoc networks is a function of many parameters.
 - Number of hopping channels *L*.
 - Code rate R.
 - Modulation index h (if CPFSK modulation).
- These parameters can be jointly optimized.
 - Transmission capacity is the objective function of choice.
 - The modulation-constrained TC quantifies the tradeoffs involved.
- The approach is general enough to handle a wide variety of conditions
 - Can be extended to accommodate Nakagami fading and shadowing.
 - Any spatial model, including repulsion models.
 - Adjacent-channel interference due to spectral splatter.
 - Adaptive code rates (R not fixed for all users).
- Additional constraints can be imposed on the optimization.
 - Per-node outage constraint.
 - Fixed or minimum data rates per user.

Thank You