Closing the Gap to the Capacity of APSK: Constellation Shaping and Degree Distributions

Matthew C. Valenti, Xingyu Xiang

Lane Department of Computer Science and Electrical Engineering
West Virginia University

ICNC – Jan. 30, 2013
Outline

1. Introduction
2. Constellation Shaping
3. LDPC Code Optimization
4. Optimization Results
5. Conclusion
Outline

1. Introduction
2. Constellation Shaping
3. LDPC Code Optimization
4. Optimization Results
5. Conclusion
Features of Digital Video Broadcasting - Satellite - Second Generation:

- LDPC Coding with two lengths and several rates.
- Amplitude-phase shift keying (APSK) up to $M = 32$.
- Variable and adaptive coding to support interactive services.
APS K vs. Q AM for Nonlinear Channels

- Due to the use of TWTA, satellite channels are nonlinear.
- QAM constellations become highly distorted.

- APSK maintains distinct rings despite nonlinearity.
Contributions of This Paper

- Baseline system:
 - 32-APSK.
 - $R = 3$ bits/symbol.
 - AWGN channel.

- Performance improvements:
 1. BICM-ID decoder: 0.3 dB gain.
 2. Optimized LDPC code’s degree distribution: 0.3 dB gain.
 3. Constellation shaping: 0.5 dB gain.
 4. Both code optimization and constellation shaping: 0.9 dB gain.
1. Introduction
2. Constellation Shaping
3. LDPC Code Optimization
4. Optimization Results
5. Conclusion
The energy efficiency can be improved by transmitting lower-energy signals more frequently than higher-energy signals.

Figure: Uniform 32APSK vs. shaped 32APSK. Both constellations have the same energy.

Figure: The capacity of shaped 32APSK is about 0.3 dB better than uniform 32APSK.
Partition the constellation into two equal-sized sub-constellations.

Use a shaping bit to select between the two sub-constellations.

- The lower-energy sub-constellation is selected more frequently.
- Requires the shaping bit to be encoded so that it is not uniform.

The remaining bits select from among the $M/2$ symbols in the selected sub-constellation with equal probability.
Shaping Encoder

- Shaping encoder maps k_s bits to a n_s bit shaping codeword.
- Code is designed with the goal of having more zeros than ones.
- Example $(k_s = 3, n_s = 5)$ code:

<table>
<thead>
<tr>
<th>3 input data bits</th>
<th>5 output codeword bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0 0 0 0 1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 0 0 1 0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>0 0 1 0 0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>0 1 0 0 0</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 0 0 0 0</td>
</tr>
<tr>
<td>1 1 0</td>
<td>0 0 0 1 1</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1 0 1 0 0</td>
</tr>
</tbody>
</table>

- $p_0 = 31/40$ is the probability of 0.
- $p_1 = 9/40$ is the probability of 1.
Here, the \((5, 3)\) shaping code is used as an example.

- The \([P/S]\) block segments groups of 23 bits.
- Three bits delivered to the shaping encoder.
Here, the \((5, 3)\) shaping code is used as an example.

- The \(P/S\) block segments groups of 23 bits.
- Three bits delivered to the shaping encoder.
Here, the \((5, 3)\) shaping code is used as an example.

- The P/S block segments groups of 23 bits.
- Three bits delivered to the shaping encoder.
Outline

1. Introduction
2. Constellation Shaping
3. LDPC Code Optimization
4. Optimization Results
5. Conclusion
Key features of the DVB-S2 LDPC code:

- **Variable rate:** \(R_c = \frac{k_c}{n_c} = \{ \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{8}{9}, \frac{9}{10} \} \).
- **Two lengths:** \(n_c = 16, 200 \) (short) and \(n_c = 64, 800 \) (long).
- **Systematic encoding.**
- **Last** \(m_c = n_c - k_c \) columns of \(H \) are a *dual diagonal* submatrix, making it an *extended irregular repeat accumulate* (eIRA) code\(^1\).
- **Constant row weight; i.e., check regular.**
- **Variable column weight, with** \(D = 3 \) different values\(^2\).

\(^2\) Not including the last column, which has a weight of 1.
The *convergence threshold* is the SNR value in which the bit error rate of an LDPC-coded system starts dropping sharply.

- The value of the threshold depends on the *degree distribution*.

EXIT charts\(^3\)

- Predict the convergence threshold.
- Can be used to identify good candidate degree distributions.
- However, because it is just a prediction, the candidate codes still need to be simulated to determine which is best.

Figure: EXIT chart for the uniform system at $E_b/N_0 = 4.93$ dB.
EXIT Charts with Constellation Shaping

When shaping is used, the variable-node decoder (VND) accounts for the effects of shaping.

Figure: Model of decoder used for constructing EXIT charts.

Figure: EXIT chart for the shaped system at $E_b/N_0 = 4.53$ dB.
Outline

1 Introduction
2 Constellation Shaping
3 LDPC Code Optimization
4 Optimization Results
5 Conclusion
Optimization Results

Optimization Procedure

Common considerations:
- Spectral efficiency set to $R = 3$ bits/symbol.
- Systematic eIRA code structure.
- Row-weights from DVB-S2 maintained.
- Either $D = 3$ or $D = 4$ distinct column weights.

Optimization steps:
- Optimize LDPC code for uniform modulation.
- Shaping with off-the-shelf DVB-S2 code.
- Jointly optimize the LDPC code and the shaping.

<table>
<thead>
<tr>
<th>R_c</th>
<th>R_s</th>
<th>ξ_b/N_0 in dB (BER = 10^{-5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/5 (38880/64800)</td>
<td>1</td>
<td>standard: 5.42 optimized (D=4) 5.13</td>
</tr>
<tr>
<td>2/3 (43200/64800)</td>
<td>2/4</td>
<td>standard: 4.96</td>
</tr>
<tr>
<td>9/14 (41661/64806)</td>
<td>2/3</td>
<td>optimized (D=4) 4.51</td>
</tr>
</tbody>
</table>
BER Comparison

- BICM-ID Uniform
- Uniform with optimized 3/5 LDPC code (D=3)
- Uniform with optimized 3/5 LDPC code (D=4)
- DVB-S2 2/3 LDPC and (4,2) shaping code
- Optimized 9/14 LDPC with D=3 in shaping system
- Optimized 9/14 LDPC with D=4 in shaping system

Eb/N0 in dB vs. BER plot.
Outline

1 Introduction
2 Constellation Shaping
3 LDPC Code Optimization
4 Optimization Results
5 Conclusion
Conclusion

- Performance of LDPC-coded APSK can be improved by over 1 dB through the combination of:
 - BICM-ID instead of just BICM.
 - Constellation shaping.
 - Optimization of LDPC degree distributions.
- An extra 0.1 dB gain is achieved by using $D = 4$ distinct variable-node degrees, instead of just $D = 3$.
- Drawbacks:
 - Per-iteration complexity increase.
 - Slight increase in the PAPR.
- See journal version for more detail:
Thank You.