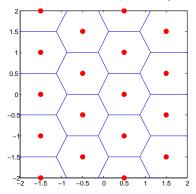
A New Analysis of the DS-CDMA Cellular Downlink Under Spatial Constraints

M. C. Valenti ¹ D. Torrieri ² **S. Talarico** ¹

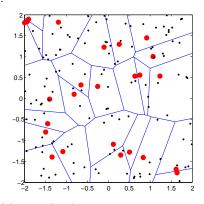
¹West Virginia University Morgantown, WV

²U.S. Army Research Laboratory Adelphi, MD


January 29, 2013

- Introduction
- Network Model
- Conditional Outage Probability
- Power and Rate allocation
- Performance Analysis
- 6 Conclusion

- Introduction
- 2 Network Mode
- 3 Conditional Outage Probability
- Power and Rate allocation
- Performance Analysis
- 6 Conclusion


Introduction

• A cellular network is currently modeled by:

Classic approach (regular grid):

 The analysis often focuses on the worst case-locations (cell edge).

Using stochastic geometry:

- Assumes infinite network;
- A random point process with no constraint on the minimum separation is used to deploy the base stations.

Actual Vs Simulated Base-Station Locations

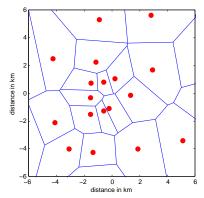


Figure: Actual base-station locations from a current cellular deployment in a small city with a hilly terrain.

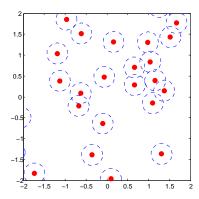


Figure: Simulated base-station locations when the minimum base-station separation is $r_{bs} = 0.25$.

Actual Vs Simulated Base-Station Locations

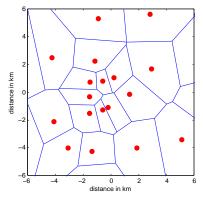


Figure: Actual base-station locations from a current cellular deployment in a small city with a hilly terrain.

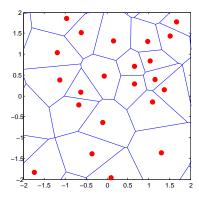


Figure: Simulated base-station locations when the minimum base-station separation is $r_{bs}=0.25$. Cell boundaries are indicated.

Actual Vs Simulated Base-Station Locations

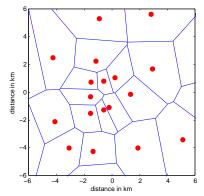


Figure: Actual base-station locations from a current cellular deployment in a small city with a hilly terrain.

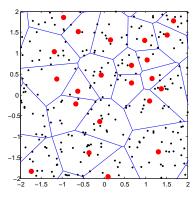


Figure: Simulated base-station locations when the minimum base-station separation is $r_{bs}=0.25$. Cell boundaries are indicated, and the average cell load is 16 mobiles.

- Introduction
- 2 Network Model
- Conditional Outage Probability
- Power and Rate allocation
- 6 Performance Analysis
- 6 Conclusion

Network model

- The Network comprises:
 - M cellular base stations $\{X_1,...,X_M\}$ with an exclusion zone of radius r_{bs} ;
 - K mobiles $\{Y_1,...,Y_K\}$ with an exclusion zone of radius r_m .
- Finite circular network arena with area $A_{net} = \pi r_{net}^2$.
- DS-CDMA is considered and intra-cell sequences are assumed to be synchronous.
- ullet The base stations transmit with a common power P_0 such that

$$\frac{1}{1 - f_p} \sum_{j: Y_j \in \mathcal{Y}_i} P_{i,j} = P_0 \tag{1}$$

- $P_{i,j}$ is the average transmitted power by base station X_i to mobile Y_j ;
- ullet f_p is the fraction of the base-station power reserved for pilot signals;
- \mathcal{Y}_i is the set of mobiles connected to the base station X_i .

Despread Instantaneous Power

The despread instantaneous power of X_i at mobile Y_j is

$$\rho_{i,j} \quad = \quad \begin{cases} P_{i,j}g_{i,j}10^{\xi_{i,j}/10}f\left(||X_i-Y_j||\right) & \text{from serving base station, if } \mathsf{g}(j)=i \\ \left(\frac{h}{G}\right)P_{i,j}g_{i,j}10^{\xi_{i,j}/10}f\left(||X_i-Y_j||\right) & \text{from interfering base stations, if } \mathsf{g}(j)\neq i \end{cases}$$

- g_{i,j} is the power gain due to Nakagami fading;
- $\xi_{i,j}$ is a shadowing factor and $\xi_{i,j} \sim N(0,\sigma_s^2)$;
- $f(\cdot)$ is a path-loss function:

$$f(d) = \left(\frac{d}{d_0}\right)^{-\alpha}$$

- α is the path loss exponent;
- $d > d_0$:
- ullet g(j) is a function that returns the index of the base station serving Y_i ;
- h is the chip factor;
- G is the common spreading factor.

SINR

The performance at the mobile is characterized by the signal-to-interference and noise ratio (SINR), given by:

$$\gamma_{j} = \frac{g_{\mathsf{g}(j),j}\Omega_{\mathsf{g}(j),j}}{\Gamma^{-1} + \frac{h}{G}\sum_{\substack{i=1\\i\neq \mathsf{g}(j)}}^{M} g_{i,j}\Omega_{i,j}}$$
(2)

- ullet Γ is the signal-to-noise ratio (SNR) at a mobile located at unit distance when fading and shadowing are absent;
- $\Omega_{i,j} = \frac{P_{i,j}}{P_0} 10^{\xi_{i,j}/10} ||X_i Y_j||^{-\alpha}$ is the normalized power of X_i at receiver Y_j before despreading.

- Introduction
- Network Mode
- Conditional Outage Probability
- 4 Power and Rate allocation
- Performance Analysis
- 6 Conclusion

Definition

- An *outage* occurs when the SINR is below a threshold β .
 - ullet depends on the choice of modulation and coding.
- ullet The outage probability for the mobile Y_j conditioned over the network is

$$\epsilon_j = P\left[\gamma_j \le \beta_j \middle| \mathbf{\Omega}_j\right].$$
 (3)

• Substituting (2) into (3), from [7]:

$$\epsilon_{j} = 1 - e^{-\frac{\beta_{0}}{\Gamma}} \sum_{n=0}^{m_{\mathsf{g}(j),j}-1} \left(\frac{\beta_{0}}{\Gamma}\right)^{n} \sum_{k=0}^{n} \frac{\Gamma^{k}}{(n-k)!} \sum_{\substack{\ell_{i} \geq 0 \\ \sum_{i=0}^{M} \ell_{i} = k}} \left(\prod_{\substack{i=1 \\ i \neq \mathsf{g}(j)}}^{M} G_{\ell_{i}}(\Psi_{i})\right) \tag{4}$$

where $\beta_0 = \beta m_{\mathsf{g}(j),j}/\Omega_0$,

$$G_{\ell}(\Psi_{i}) = \frac{\Gamma(\ell + m_{i,j})}{\ell!\Gamma(m_{i,j})} \left(\frac{\Omega_{i,j}}{m_{i,j}}\right)^{\ell} \left(\frac{\beta_{0}h\Omega_{i,j}}{Gm_{i,j}} + 1\right)^{-m_{i,j}-\ell}.$$
 (5)

Salvatore Talarico

^[7] D. Torrieri and M.C. Valenti, "The outage probability of a finite ad hoc network in Nakagami fading", IEEE Trans.

- Introduction
- Network Mode
- Conditional Outage Probability
- Power and Rate allocation
- Performance Analysis
- 6 Conclusion

Policies

- Rate control:
 - Base station X_i , i = g(j) transmits to mobile Y_i with power

$$P_{i,j} = \frac{P_0(1-f_p)}{K_i},$$

where $K_i = |\mathcal{Y}_i|$;

- The threshold β_j of mobile Y_j is selected such that the conditional outage probability of mobile Y_j satisfies the constraint $\epsilon_j = \hat{\epsilon}$.
- 2 Power control:
 - The threshold β_i is common for all the mobiles inside a cell;
 - All the mobiles have conditional outage probability equal to $\epsilon_j = \hat{\epsilon}$;
 - The power allocated by the serving base station to each user inside a cell is adapted such that the constraint on the outage is met.
- For both policies, a mobile in an overloaded cell is denied service, and its rate is set to $R_i=0$.

- Introduction
- Network Mode
- 3 Conditional Outage Probability
- 4 Power and Rate allocation
- Performance Analysis
- 6 Conclusion

Transmission Capacity

• Let $R_j = C(\beta_j)$ represent the relationship between R_j and β_j . For modern cellular systems, it is reasonable to use:

$$C(\beta_j) = \log_2(1+\beta_j)$$

The performance metric used is the transmission capacity, defined as

$$\tau = \lambda (1 - \hat{\epsilon}) E[R]$$

- $\lambda = K/A_{net}$ is the density of transmissions in the network;
- \bullet E[R] is computed using a Monte Carlo approach as follows:
 - Draw a realization of the network;
 - 2 Compute the path loss from each base station to each mobile;
 - Oetermine the set of mobiles associated with each base station;
 - 4 At each base station, apply the power allocation policy;
 - **5** By setting $\epsilon_j = \hat{\epsilon}$, invert (4) to determine β_j for each mobile in the cell;
 - **1** By applying the function $R_j = C(\beta_j)$, find the rate for the mobile;
 - Repeat this process for a large number of networks.

Example: Power Vs Rate Control

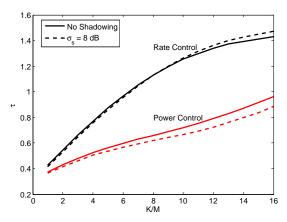


Figure: Transmission capacity as a function of K/M with rate control and power control.

- M = 50 base stations;
- Circular arena with $r_{net} = 2$;
- $r_{bs} = 0.25$;
- $r_m = 0.01$;
- \bullet $\alpha = 3$;
- \bullet $\Gamma = 10$ dB;
- h = 2/3;
- G = 16;
- $\hat{\epsilon} = 0.1$;
- $m_{i,j} = 3$ for i = g(j), while $m_{i,j} = 1$ for $i \neq g(j)$;
- $\sigma_s = 8 \text{ dB}.$

Example: Rate

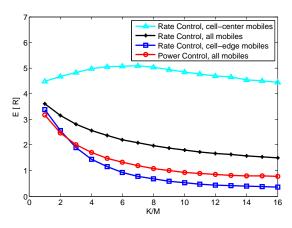


Figure: Average rate as a function of K/M in the presence of shadowing with rate control and power control.

- M = 50 base stations;
- Circular arena with $r_{net} = 2$;
- $r_{bs} = 0.25$;
- $r_m = 0.01$;
- \bullet $\alpha = 3$;
- $\Gamma = 10 \text{ dB}$;
- h = 2/3;
- G = 16;
- $\hat{\epsilon} = 0.1$;
- $m_{i,j} = 3$ for i = g(j), while $m_{i,j} = 1$ for $i \neq g(j)$;
- $\sigma_s = 8 \text{ dB}$.

Example: Fairness

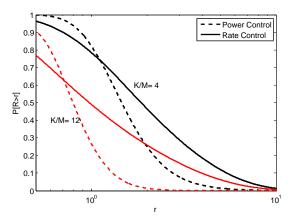


Figure: Cumulative cdf of R with either rate control or power control for a lightly loaded system (K/M=4) and a moderately-loaded system (K/M=12).

- M = 50 base stations;
- Circular arena with $r_{net} = 2$;
- $r_{bs} = 0.25$;
- $r_m = 0.01$;
- \bullet $\alpha = 3$;
- \bullet $\Gamma = 10$ dB;
- h = 2/3;
- G = 16;
- $\hat{\epsilon} = 0.1$;
- $m_{i,j} = 3$ for i = g(j), while $m_{i,j} = 1$ for $i \neq g(j)$;
- $\sigma_s = 8 \text{ dB}$.

Example: Minimum Distance between Base-Stations

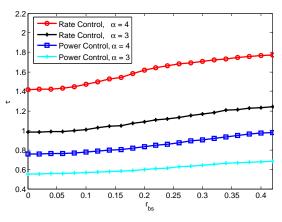


Figure: Transmission capacity for rate and power control as function of r_{bs} for K/M=8 in Mixed Fading and Shadowing ($\sigma_s=8$ dB).

- M = 50 base stations;
- Circular arena with $r_{net} = 2$;
- $r_m = 0.01$;
- $\Gamma = 10 \text{ dB}$;
- h = 2/3;
- G = 16;
- $\hat{\epsilon} = 0.1$;
- $m_{i,j} = 3$ for i = g(j), while $m_{i,j} = 1$ for $i \neq g(j)$:
- $\sigma_s = 8 \text{ dB}$.

- Introduction
- 2 Network Mode
- 3 Conditional Outage Probability
- Power and Rate allocation
- Performance Analysis
- 6 Conclusion

Conclusions

- The new approach for modeling and analyzing the DS-CDMA cellular downlink has the following benefits:
 - the model allows constraints to be placed on the distance between base stations, the geographic footprint of the network, and the number of base stations and mobiles;
 - a flexible channel model, accounting for path loss, shadowing, and Nakagamim fading with non-identical parameters, is considered.
- The results show that:
 - the rate control policy performs better than the power control policy in terms of transmission capacity, but a significant amount of users are provided with lower rate;
 - transmission capacity increases with r_{bs} , and this effect is more pronounced for the rate control policy and when the path loss exponent is higher.
- The approach is general enough and it can be extended:
 - to compare various access and resource allocation techniques;
 - to analyze reselection schemes;
 - to analyze the uplink and to model other types of access, such as orthogonal frequency-division multiple access (OFDMA);
 - to handle sectorized cells and coordinated multipoint strategies involving transmissions from multiple base stations.

Thank You

