An Iterative Noncoherent Relay Receiver for the Two-way Relay Channel

> Terry Ferrett ¹ Matthew Valenti ¹ Don Torrieri ²

¹West Virginia University

²U.S. Army Research Laboratory

June 12th, 2013

Outline

2 System Model

3 Relay Receiver

④ Simulation Study

5 Conclusion

- 2 System Model
- 3 Relay Receiver
- ④ Simulation Study
- 5 Conclusion

Physical-Layer Network Coding

- Two-way relay channel (TWRC)
 - Two source nodes exchange information through a relay node.
- Physical-layer network coding (PLNC)
 - Sources *deliberately* interfere by transmitting simultaneously to relay.

• Relay broadcasts network-coded information to sources.

• Each source subtracts its own information to reveal the information of the other source.

Coherent PLNC with BPSK

- With BPSK and equal-energy coherent channels, only three possible signals can be received.
- A regenerative relay receiver (decode-and-forward) needs to just determine if the same or different signals were transmitted.
- The relay forwards either a 0 or 1, depending on whether it thinks the same or different signals were received.

Noncoherent PLNC with BPSK

- In a noncoherent channel, the phases of each source-relay link are unknown and generally different.
- The two signals are recieved with an unknown phase offset.
- Creates a distorted constellation.
- Impossible to create decision regions if full receive CSI not available.
- Deviates from the spirit of PLNC.

Noncoherent PLNC with FSK

- FSK more amenable to noncoherent communications.
- Receiver senses energy at the two possible tones to determine if the same or different signals were transmitted.
- Noncoherent PLNC with *binary* FSK has been published[†].

[†][2] M. C. Valenti, D. Torrieri, and T. Ferrett, "Noncoherent physical-layer network coding with FSK modulation: Relay receiver design issues," *IEEE Trans. Commun.*, vol. 59, Sept. 2011.

Nonbinary FSK

- It is well known that the energy-efficiency of coded noncoherent FSK improves with increasing M (number of frequency tones).
- Can FSK-based noncoherent PLNC also benefit from increasing $M?_{_{8/26}}$

Source Transmission

- Each source generates a binary information sequence.
- Turbo code applied to sequence producing a channel codeword.
- Codeword interleaved and mapped to M-FSK symbols.

System Model

Channel Model

- Channel gains are i.i.d., zero-mean, complex Gaussian.
- Relay receives noisy sum of signals from sources.
- Symbols and frames assumed to be perfectly synchronized.

2 System Model

④ Simulation Study

5 Conclusion

Relay Receiver: Goals

• The relay receiver detects the network-coded combination of bits

 $\mathbf{u} = \mathbf{u}_1 \oplus \mathbf{u}_2$

• The relay demodulator forms soft bit metrics (LLRs) on

 $\mathbf{c} = \mathbf{c}_1 \oplus \mathbf{c}_2$

where ${\bf c}$ is a codeword from the codebook generating ${\bf c}_1$ and ${\bf c}_2,$ and

 $\mathbf{c} = f(\mathbf{u}_1 \oplus \mathbf{u}_2)$ $\mathbf{c} = f(\mathbf{u}_1) \oplus f(\mathbf{u}_2)$

and $f(\cdot)$ is the linear channel encoding function,

• The soft bit metrics on c are passed to the decoder which refines the metrics and feeds them back to the demodulator (BICM-ID processing).

Receiver Diagram

- Goal of relay receiver is to detect network-coded combination of source bits $\mathbf{u} = \mathbf{u}_1 \oplus \mathbf{u}_2$.
- Partial CSI (amplitudes known) and no CSI considered

Super-Symbol Mapping

- The demodulator first computes the probability of all possible combinations of received symbol for each channel observation
- This probability is denoted as P(q; I), where the super-symbol q is defined as

$$q = (q_1, q_2) \quad q_1, q_2 \in \mathcal{D} \quad q \in \mathcal{D} \times \mathcal{D}$$

where:

- q_1 and q_2 represent symbols transmitted by the two sources.
- $\bullet \ \mathcal{D}$ is the set of all possible symbols available at sources.
- The cardinality of $\mathcal{D}\times\mathcal{D}$ is $M^2,$ thus the receiver computes M^2 probabilities.

DNC Soft Mapper

 The DNC soft mapper (DNC-SOMAP) computes the LLR of the network coded bits mapped to each received super symbol.

$$z_{k} = \log \frac{\sum_{\substack{q:c_{k}=1 \\ j \neq k}} p(\mathbf{y}|q) \prod_{\substack{j=0 \\ j \neq k}}^{\mu-1} e^{c_{j}v_{j}}}{\sum_{\substack{q:c_{k}=0 \\ q:c_{k}=0}} p(\mathbf{y}|q) \prod_{\substack{j=0 \\ j \neq k}}^{\mu-1} e^{c_{j}v_{j}}}$$

where

- z_k LLR of k-th network-coded bit for the received super symbol.
- $c_{\{k,j\}}$ $\{k,j\}$ -th network-coded bit mapped to super symbol q.
- $\bullet~{\bf y}$ channel observation for the received super symbol.

•
$$\mu = \log_2(M)$$
.

• v_j - *j*-th extrinsic LLR fed back from decoder.

Relay Receiver

Super Symbol Probability Model

- ${\ensuremath{\, \rm o}}$ The model for $p({\ensuremath{\, \rm y}}|q)$ depends on the available CSI
- When the fading amplitudes are known at the relay,
 - Case 1: sources transmit different symbols

$$p(\mathbf{y}|q) = \exp\left\{-\frac{\alpha_1^2 + \alpha_2^2}{N_0}\right\} I_0\left(\frac{2|y_{q_1}|\alpha_1}{N_0}\right) I_0\left(\frac{2|y_{q_2}|\alpha_2}{N_0}\right)$$

where $|y_{q_1}|$ and $|y_{q_2}|$ are the channel observations for the FSK dimensions associated to symbols q_1 and q_2

• Case 2: sources transmit same symbols

$$p(\mathbf{y}|q) = \exp\left\{-\frac{\alpha^2}{N_0}\right\} I_0\left(\frac{2|y_{q_1}|\alpha}{N_0}\right)$$

where $\alpha = |{\bf h}_1 + {\bf h}_2|$ and is approximated as $\alpha = \sqrt{\alpha_1^2 + \alpha_2^2} \ ^1$

¹A discussion of this approximation is found in

M. C. Valenti, D. Torrieri, and T. Ferrett, Noncoherent physical-layer network coding with FSK modulation: Relay receiver design issues, IEEE Trans. Commun., vol. 59, Sept. 2011.

Relay Receiver

Super Symbol Probability Model

- When the fading amplitudes are not known at the relay,
 - Sources transmit different symbols

$$p(\mathbf{y}|q) = \left[\left(\frac{1}{\mathcal{E}_1 \mathcal{E}_2}\right) \left(\frac{1}{\mathcal{E}_1} + \frac{1}{N_o}\right) \left(\frac{1}{\mathcal{E}_2} + \frac{1}{N_0}\right) \right]^{-1} \\ \times \exp\left\{ \frac{|y_{q_1}|^2 \mathcal{E}_1}{N_0(N_0 + \mathcal{E}_1)} + \frac{|y_{q_2}|^2 \mathcal{E}_2}{N_0(N_0 + \mathcal{E}_2)} \right\}$$

Sources transmit same symbols

$$p(\mathbf{y}|q) = \left(\frac{1}{\mathcal{E}_1 + \mathcal{E}_2}\right) \left(\frac{1}{\mathcal{E}_1 + \mathcal{E}_2} + \frac{1}{N_0}\right)^{-1} \\ \times \exp\left\{\frac{|y_{q_1}|^2(\mathcal{E}_1 + \mathcal{E}_2)}{N_0^2 + N_0(\mathcal{E}_1 + \mathcal{E}_2)}\right\}$$

2 System Model

3 Relay Receiver

④ Simulation Study

5 Conclusion

Metrics and Parameters

- This section presents simulated error-rate and capacity performance for the relay receiver
- Error-rate performance is simulated as a function of
 - FSK modulation order $\{2, 4, 8\}$
 - Channel state information {Partial, None}
 - Decoding iterations $\{1, 2, 4, 30\}$
 - Decoder feedback {BICM, BICM-ID}
- The channel code is a UMTS Turbo code with rate R = 0.6
- There is a 1:1 ratio of inner decoder to outer BICM-ID iterations
- The sources transmit with equal energy
- Channel capacity is simulated as a function of channel state information and modulation order

Simulation Study

Error Rate vs Modulation order and Decoding Iterations

- Partial CSI for all cases
- Solid lines BICM, dashed lines BICM-ID
- For each modulation order, right-to-left, iterations are 1, 10, 30

Simulation Study

Error Rate vs Modulation Order and CSI

• Solid lines - BICM, dashed lines - BICM-ID

• Number of iterations is 30 for all cases

Binary Information Rate

- Solid lines CSI, Dashed lines no CSI
- Symbols denote E_b/N_0 required to reach error rate 10^{-4}
- All receivers perform 30 decoding iterations

2 System Model

- 3 Relay Receiver
- ④ Simulation Study

- This works presents a relay receiver capable of performing physical-layer network coding in the two-way relay channel using
 - noncoherent FSK modulation
 - iterative soft-decision channel decoding
 - CSI for computation of bit metrics
- Simulation results using the UMTS Turbo code, 4, and 8-ary modulation, and different levels of channel state information show error rate improvements between 0.4-0.9 dB over non-BICM-ID systems.
- Approximately 4 dB gain when going from M = 2 to M = 4.
- Approximately 2.5 dB gain when going from M = 4 to M = 8.

Thank you.