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Introduction

I One of the most important applications of wireless sensor net-
works (WSNs) is distributed estimation.

I When distributed sensors use an amplify-and-forward scheme
to process their local noisy observations, the study of the allo-
cation of transmit power to the sensors becomes important.

I Most optimal power-allocation schemes in the literature require
the feedback of the exact instantaneous channel state informa-
tion (CSI) from the FC to local sensors, which is not practical.

I We use limited feedback to alleviate this requirement.
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I Unknown random parameter θ with zero mean and unit power.
I Linear observation model: xi = hiθ + ni
. ni is i.i.d. additive observation noise with zero mean and

known variance σ2
o.

. Define observation SNR as βi
def
= |hi|2

σ2
o

.
I Linear amplify-and-forward local processing: zi = aixi
. Instantaneous transmit power of a sensor:

Pi = a2
i

(
|hi|2 + σ2

o

)
= a2

iσ
2
o (1 + βi)

I Orthogonal coherent fading channel: yi = gizi + wi
. wi is i.i.d. additive white Gaussian noise with zero mean and

known variance σ2
c .

. Define channel SNR as γi
def
= |gi|2

σ2
c

.
I The FC finds the best linear unbiased estimator (BLUE) of θ:
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I The variance of the BLUE estimator is
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. Define a
def
= [a1, a2, . . . , aK]

T and g
def
= [g1, g2, . . . , gK]

T .
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Problem Statement for Our Case Study

I Cui et al. [5] have derived optimal local amplification gains to minimize the BLUE-
estimator variance, given a cumulative transmission-power constraint PTotal:

ai =


√

1
γiσ2

o

(√
δi ρ(K1)− 1

)
, i ≤ K1

0, i > K1

ρ(n)
def
=
PTotal +

∑n
i=1

βi
δi∑n

i=1
βi√
δi

. Define δi
def
= βiγi

1+βi
and sort the sensors so that δ1 ≥ δ2 ≥ · · · ≥ δK.

. K1: Unique largest integer that
√
δK1

ρ(K1) > 1 and
√
δK1+1 ρ(K1 + 1) ≤ 1.

I The above optimal power-allocation scheme is based on the assumption that the
complete uplink CSI is available at local sensors, which is not practical in most
applications, especially in large-scale WSNs.

Proposed Solution: Limited Feedback of CSI

I An optimal codebook is designed offline by quantizing the space of the optimized
power-allocation vectors using the generalized Lloyd algorithm with modified dis-
tortion functions.

I For each channel realization, the FC:
. Finds the optimal power-allocation scheme using the perfect backward CSI.
. Feeds back the index of the closest codeword in the optimal codebook to the

optimal power-allocation vector.

Designing Optimal Codebook Using Lloyd Algorithm

I Define the conditional codeword distortion for any codeword a` ∈ C, when it is
used instead of aOPT:

DW (a`|g)
def
=

∣∣∣Var
(
θ̂
∣∣∣a`, g)− Var

(
θ̂
∣∣∣aOPT, g

)∣∣∣
I Define the average codebook distortion for C:

DB (C)
def
= Eg

[
min

`∈{1,2,...,2L}
DW (a`|g)

]
. L is the number of feedback bits broadcast by the FC.

I Nearest–Neighbor Condition
. Find |C| = 2L optimal Voronoi cells of the vector space to be quantized A,

given a fixed codebook C.
. Each point a ∈ A is assigned to partition ` represented by codeword a` ∈ C if

and only if its distance to codeword a`, with respect to the conditional codeword
distortion function, is less than its distance to any other codeword.

I Centroid Condition
. Find the optimal codebook, given a specific partitioning of the vector space to

be quantized A.
. The optimal codeword associated with each Voronoi cellA` ⊆ A is the centroid

of that cell with respect to the conditional codeword-distortion function:

a` = arg min
a∈A`

Eg∈G` [DW (a|g)]
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Details of Our Codebook-Design Process

Gs ←− A set of M length-K
vectors of channel-fading realizations.
As ←− The set of optimal local

power-allocation vectors associated
with the channel fading vectors in Gs.

j ←− j + 1

OldCost←− NewCost

Nearest-Neighbor Condition
Given codebook Cj−1,

optimally partition the set
As into 2L disjoint subsets
Aj−1` , ` = 1, 2, . . . , 2L.

` ←− 0

` ←− ` + 1

Centroid Condition
aj` ←− Find the optimal

codeword associated
with partition Aj−1` .

` ≤ 2L

Cj ←−
[
aj1 aj2 · · · aj2L

]T
NewCost ←− DB

(
Cj
)

OldCost−
NewCost ≤

ε

Return COPT ←− Cj

a0` ←− Randomly select 2L optimal
power-allocation vectors from

the set As (` = 1, 2, . . . , 2L).

C0←−
[
a01 a02 · · · a02L

]T
NewCost ←− DB

(
C0
)

j ←− 0

System Parameters in Numerical Simulations

Parameter Value

K 5 and 10

L 2, 3, and 4

σ2
θ 1

σ2
o 10 dBm

σ2
c -90 dBm

hi ∼ N (1, 0.09) and E
[
|hi|2

]
= 1.2

gi η0
(
di
d0

)−α
fi

d0 1

η0 -30 dB

α 2

di Uniform between 50 and 150

fi: i.i.d. Rayleigh fading with unit variance

M 5,000� 2L

ε 10−6

50,000 Monte-Carlo simulations

No

Yes

Yes

No

Numerical Results

For K = 5 sensors in the network.
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For K = 10 sensors in the network.
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