

A Framework for Secure Cloud-Empowered Mobile Biometrics

A. Bommagani¹, M. C. Valenti¹, and A. Ross²

¹West Virginia University, Morgantown, WV, USA

²Michigan State University, East Lansing, MI, USA

This research was funded by the Center for Identification Technology Research (CITeR), a National Science Foundation (NSF) Industry/University Cooperative Research Center (I/UCRC).

Oct. 7th, 2014

Outline

- 1. Introduction
- 2. Homomorphic LBP-based face recognition
- 3. A framework for secure cloud biometrics
- 4. System analysis
- 5. Conclusion

Outline

1. Introduction

- 2. Homomorphic LBP-based face recognition
- 3. A framework for secure cloud biometrics
- 4. System analysis
- 5. Conclusion

Introduction

- The cloud provides unbounded, cost-effective, and elastic computing resources.
- Biometrics can leverage the efficiency of the cloud.
- The cloud provides an opportunity to offload compute-intensive operations from the mobile device.
- Conversely, biometrics can help to make the cloud more secure.

Mobile + Cloud + Biometrics

Device Security

The Cloud leveraging Biometrics

- Biometric authentication for cloud clients.
 - e.g., Cloud Iris Verification System (CIVS), Kesava, 2010, Correlation keystroke verification, Xi et al., 2011.
- Securing cloud data storage with biometrics.
 - Biocryptographic systems
 - Using biometrics for key generation: Fuzzy extractor.
 - Using biometrics for key binding: Fuzzy vault, Fuzzy commitment,
 Bipartite token.
- Authentication as a service (AaaS)
 - Outsource system authentication to the cloud.
 - Confederates access to a single sign-on.

Security threats

- Biometric dilemma threat
 - Attacker compromises a less secure system to obtain biometric data.
 - Then uses the biometric data to gain access to a secure, high-value system.
- Doppleganger threat
 - Attacker presents a large amount of biometric data, in the hopes of achieving a match.
 - Exploits non-zero False Accept Rates (FAR)
 - Analogous to a dictionary attack.
- Trust Issues
 - Who is allowed to enroll the users?

Biometrics leveraging the Cloud

- Using the cloud to store biometric data.
 - The cloud is a cost effective and elastic way to store and share data.
 - Need to preserve privacy of biometric data while in the cloud, and during transfer to/from the cloud.
 - Potential to support access from different entities under different policies.
 - Laws may dictate where the data is stored.
 - Potential to share biometric data among research organizations.
- Using the cloud to perform biometric computations
 - Rapid analytics: e.g., identification through parallelization.
 - "Big data" biometrics using Hadoop, ZooKeeper, and Accumulo.
- Biometrics as a service
 - Allow access to different algorithms provided by different service providers and/ or developers.
 - Upload the algorithm, not the biometric.

Literature review

- A Hadoop-based prototype for using the cloud for biometric identification is proposed in [3], but it does not describe biometric database security.
- Fingerprint authentication and storage of cancelable biometrics in the cloud is proposed in [7]. However, in this work matching is performed locally.
- A privacy-preserving biometric identification scheme is proposed in [10]. However, it does not offer a solution to minimize the damage resulting from a compromised biometric database.
- Secure authentication of mobile cloud users using a fingerprint image (using a mobile device camera) is proposed in [12], but data security is not addressed in this work.

Outline

- 1. Introduction
- 2. Homomorphic LBP-based face recognition
- 3. A framework for secure cloud biometrics
- 4. System analysis
- 5. Conclusion

Motivation and Goals

- There is a need to know when and how to best leverage cloud computing for biometric applications.
- There is also a need to characterize the risks and benefits of using cloud computing for biometric systems.
- Goal: To demonstrate the ability to leverage CC services for mobile biometrics, while still maintaining the privacy of the underlying biometric database.
- Developed a proof of concept demo featuring:
 - Facial recognition based on the LBP algorithm.
 - Homomorphic templates to protect privacy of individual's biometrics.

Enrollment – Secure model generation

Local Binary Patterns (LBP)-based template generation

Template generation contd.,

Uniform LBP

- e.g. 01110000, 11001111 \rightarrow at most 2 bitwise transitions
- Each uniform pattern a separate label.
- All non uniform patterns have a single label.
- Total labels: P(P-1) + 3; P = # neighbors

Template generation contd.,

- Cancelable template generation: cancelable template for template, h is generated using,
 - an I x I orthonormal matrix, A.
 - (for additional security, an I x I secret permutation matrix, P and a length I blinding vector, b).

$$y = (AP)h + b = Qh + b$$

Face recognition

Cancelable template database (Model)

Transformed template matching

• For a transformed probe template, z = Qx+b, and a transformed gallery template y_i , Euclidean distance is

$$d_j^2 = \left\| z - y_j \right\|$$

- Distance between templates before and after transformation is preserved because of orthogonal nature of matrix Q.
- The closest image \hat{l}_j $j = \arg \min_{j} \{d_{j}\}$
- Identification
 - The subject corresponding to the closest template.
 - A ranked list of matches can be provided to the user.

Outline

- 1. Introduction
- 2. Homomorphic LBP-based face recognition
- 3. A framework for secure cloud biometrics
- 4. System analysis
- 5. Conclusion

Parallel biometric template generation

Parallel distance matching

System framework

Outline

- 1. Introduction
- 2. Homomorphic LBP-based face recognition
- 3. A framework for secure cloud biometrics
- 4. System analysis
- 5. Conclusion

System analysis

Identification system analysis -XM2VTS database and uniform

LBP algorithm

Cumulative match characteristic (CMC)

- --Best LBP parameters (P,R) are found through experimentation.
- --Use of cancelable templates does not noticeably degrade the matching performance

COMMUNICATIONS

Computational performance

Security assessment

- A single key is used to create the cancelable templates.
 - The key is kept secure by generating a hash value using bcrypt.
 - The key cannot be derived from the templates.
- Vulnerabilities if key is compromised
 - If the key is known, the native template could be derived.
 - However, original picture gallery is not compromised.
 - The key should be periodically changed to prevent its compromise.
- Steps to take if templates are compromised.
 - Just need to change the key and generate new templates.
- Matched images stored in user's cache.
 - Should be periodically cleared and/or encrypted.

Outline

- 1. Introduction
- 2. Homomorphic LBP-based face recognition
- 3. A framework for secure cloud biometrics
- 4. System analysis
- 5. Conclusion

Conclusion and Observations

- By leveraging cloud services, biometric operations can be parallelized to improve the system performance computationally.
- Secure storage of massive biometric data on the cloud is possible using biometric template protection techniques.
 - An approach for generating cancelable templates allows templates to be fully revocable with negligible loss on matching accuracy.
- Multiple mobile devices can be supported by interfacing through a mobile-friendly web application

Future work

- Address scalability issues.
- Formulate key-management and access policies.
- Reduce latency through improved implementation.
- Integrate improved identification algorithms.
- Extend to other modes and other applications.

Thank you for your attention.

Questions?

References

- [3] E.Kohlwey, A.Sussman, J.Trost, and A.Maurer, "Leveraging the cloud for big data biometrics: Meeting the performance requirements of the next generation biometric systems," in *Proc. IEEE World Congress on Services*, (Los Alamitos, CA, USA), pp. 597–601, Jul. 2011.
- [7] J. Yang, N. Xiong, A. V. Vasilakos, Z. Fang, D. Park, X. Xu, S. Yoon, S. Xie, and Y. Yang, "A fingerprint recognition scheme based on assembling invariant moments for cloud computing communications," *IEEE Systems Journal*, vol. 5, pp. 574–583, Dec. 2011.
- [10] J. Yuan and S. Yu, "Efficient privacy-preserving biometric identification in cloud computing," in *Proc. IEEE INFOCOM*, pp. 2652–2660, Apr. 2013.
- [12] I. A. Rassan and H. AlShaher, "Securing mobile cloud using finger print authentication," *International Journal of Network Security & Its Applications*, vol. 5, Nov. 2013.

