
Custom Coding, Adaptive Rate Control,
and Distributed Detection for Bluetooth

Matthew C. Valenti Max Robert

Lane Dept. of Comp. Sci. & Elect. Eng. Mobile and Portable Radio Research Group

West Virginia University Virginia Tech

Morgantown, WV 25506-6109 Blacksburg, VA 24061-0350

mvalenti@wvu.edu probert@vt.edu

Abstract— Three strategies for improving the performance of
point-to-point Bluetooth links are presented. All of the strategies
are implemented on the host computer, and therefore no modifi-
cation of the Bluetooth standard is necessary. The first strategy
is custom error control coding, which is achieved by transport-
ing BCH code words within AUX1 packets. The second concept
is adaptive rate control, which involves dynamically selecting the
packet type that offers the best throughput for the current chan-
nel SNR. Finally, a distributed detection technique is proposed,
whereby each packet is broadcast to a group of two or more re-
ceivers that are linked over a reliable backbone, and the packet is
accepted if it is received correctly at any receiver in the group.

I. INTRODUCTION

In Bluetooth, data is normally transported using one of six
predefined asynchronous connection-less (ACL) packets [1].
Error control is achieved through the use of an error detecting
cyclic redundancy check (CRC) code along with a simple stop-
and-wait automatic repeat request (ARQ) protocol. Further-
more, the three DMx packets use a (15,10) shortened Hamming
code for forward error correction (FEC) prior to error detection.
In addition to the time diversity provided by the error control
mechanism, frequency diversity is achieved by the use of slow
frequency hopping (FH). In particular, each piconet is tuned
to the same frequency for the entire duration of a packet, but
then changes to a different frequency each time a new packet is
transmitted or an erroneous packet is retransmitted. Since the
fading and interference in the new frequency channel is likely
to be significantly different than that of the previous one, the
use of FH with ARQ provides an effective method of diversity
at reasonably high signal to noise ratio (SNR) [2].

While the built-in error control mechanisms perform well
when the average SNR is high, the throughput at low average
SNR quickly falls to zero. The modest performance at low av-
erage SNR is a consequence of the poor error correction capa-
bility of Hamming codes, the inability of the system to auto-
matically adapt to meet changing channel conditions, and the
lack of available spatial diversity. However, these shortcom-
ings can be alleviated by performing custom error control on
the host computers, rather than using the standard error control
mechanism available on the Bluetooth devices.

This work was supported by the Office of Naval Research under grant
N00014-00-0655 and by the Bradley and AOL Wireless Home Networking
Technologies Fellowships.

In this paper, several custom error control strategies are pre-
sented that directly address the shortcomings of Bluetooth’s de-
fault error control mechanism. While these strategies differ
from the more straightforward methods implied by the Blue-
tooth standard, they are all performed on the host computers
and therefore do not require any modification to the Bluetooth
standard. The first strategy proposed in this paper is custom
FEC coding, which involves utilizing the user-defined ‘AUX1’
packet to transport codes that are more powerful than the Ham-
ming codes used by DMx packets. The second strategy is
adaptive rate control, which involves dynamically changing the
packet type (and, if custom coding is used, the rate of the FEC
code) to match the instantaneous SNR of the channel. Finally,
the third proposed strategy is distributed detection, which in-
volves broadcasting the packet to a group of two or more re-
ceivers that are linked over a reliable backbone.

The remainder of this paper is organized as follows: Section
II reviews and improves the analysis of the throughput of Blue-
tooth originally presented in [2]. Section III explains how to
implement custom coding in Bluetooth and presents the corre-
sponding analysis for BCH encoded packets. Section IV dis-
cusses bounds on the performance of adaptive rate control un-
der the assumption of perfect channel knowledge. Section V
describes strategies for implementing distributed detection and
summarizes the associated analysis. Finally, conclusions are
drawn in Section VI.

II. IMPROVED THROUGHPUT ANALYSIS

The simple stop-and-wait ARQ protocol used by Bluetooth
follows the state transition diagram shown in Fig. 1. In this fig-
ure, εp is the probability that the payload data is accepted, while
εh is the probability that only the packet header is accepted. In
order for the payload data to be accepted, three conditions must
be met: (1) The receiver must synchronize with the 72 bit ac-
cess code, (2) the 54 bit packet header must be correctly de-
coded, and (3) the payload data must be either entirely correct
(if an uncoded DHx packet) or correctly decoded (if a coded
DMx packet). In order for the packet header to be accepted,
only conditions (1) and (2) must be met. In [2], the probabili-
ties of conditions (1) and (2) are given by Equations (3) and (4),
respectively, while the probability of condition (3) is given for
DHx packets by Equation (5) and for DMx packets by Equation
(6).

So SoS1

S2

hpεε

hpεε

2
hε

21 hε−

pε−1

pε−1

()hp εε −1

()hp εε −1

Fig. 1. State diagram representation of Bluetooth ARQ scheme.

The system starts in state So by transmitting a new packet.
If at any time both the payload data of the forward packet and
the packet header of the return packet (which contains the ACK
flag) are accepted, then the system returns to state So and trans-
mits the next packet. If the forward payload data is not ac-
cepted, then the system moves to state S1 and the packet is
retransmitted. The system will remain in state S1 until the re-
ceiver accepts the payload data of the forward packet. If at any
time the receiver accepts the payload data of the forward packet
but the return packet header is not accepted, then the system
will move to state S2. While in state S2, the receiver will only
examine the header of the forward packet (since it has already
correctly decoded the payload data) and thus the system will
only move back to state So if the headers of both the forward
and return packets are accepted (it does not matter if the pay-
load data of the forward packet is correct).

The average number of transmissions can be found by ana-
lyzing Fig. 1. Each branch must be multiplied by the variable
T, which indicates the amount of time required to make a state
transition [3]. Next, Mason’s gain rule is used to obtain the
graph’s generating function:

G(T) =
εpεhT [1 − T (1 − εh)]

[1 − T (1 − εp)] [1 − T (1 − ε2h)]
(1)

Finally, the average number of state transitions required for the
system to move from state So back to state So is found by taking
the partial derivative of G(T) with respect to T and setting T =
1

N̄ =
∂

∂T
G(T)

∣∣∣∣
T=1

=
εp + ε2h − εpεh

εpε2h
(2)

The throughput can then be found from (2) by using:

R̄ =
K

τDN̄
(3)

where K is the number of payload data bits per packet, D is the
number of slots occupied by the forward packet and its corre-
sponding return packet (either 2,4, or 6), and τ = 625 × 10−6

is the duration of a slot (in seconds).
Note that the above analysis differs slightly from the simpler

analysis presented in [2], where N̄ = 1/(εf εh). This is because
the analysis in [2] did not separate states S1 and S2. In other

words, when the forward payload data was accepted but the
return packet header was not accepted, then the payload data
of the next packet would have to be accepted in order for the
system to return to state So. This is in contrast to the present
analysis, where the forward payload data is not re-examined
once it is received correctly.

III. CUSTOM CODING IN BLUETOOTH

The key to achieving custom FEC coding in Bluetooth is the
AUX1 packet, which is a seventh ACL packet that is often over-
looked. When the AUX1 packet is used, the Bluetooth device
does not encode the payload (for either forward error correction
or for error detection) and ARQ is turned off. At the destination,
the Bluetooth device simply passes the received bits up to the
host regardless of whether they are correct or not. Thus, while
the six standard ACL packets provide a reliable link with ran-
dom delay (which approaches infinity at low SNR), the AUX1
packet provides an unreliable bit pipe with deterministic delay
(one slot).

Therefore, custom coding can be achieved by encoding the
packet on the host itself. The packet must be first encoded by a
CRC code for error detection and then by any appropriate FEC
code. In a related paper, we considered using turbo codes [4]
but found that the lack of soft information and relatively small
packet sizes prevented the full potential of turbo codes from
being realized. In this paper, we suggest to simply use BCH
codes, which are more appropriate for a hard decision decoded
channel.

At the destination, the Bluetooth device passes the received
AUX1 packet up to the host. Because ARQ is turned off, the
host will receive a set of unreliable hard bit decisions which are
then passed through a FEC decoder. After FEC decoding, the
outer CRC code can be used to detect any remaining errors. If
the CRC check passes, then the packet will be accepted by the
host; otherwise a retransmission must be requested. Note that
since ARQ is turned off on the Bluetooth device, it must now
be implemented by the hosts (in the application layer).

The AUX1 payload consists of a 1 byte payload header and
29 bytes of payload data. Custom coding can be implemented
by transporting (in the payload data field) a (232,k) BCH code
obtained by shortening a (255,k+23) BCH code. The input to
the BCH encoder is a combination of the source data and a 2
byte CRC (we use the same CRC code used by the other ACL
packets for error detection) and thus the number of source data
bits per AUX1 packet is K=k-16.

The analysis is identical to that used for the other six packet
types, with the exception of how the probability of correctly
decoded payload data is computed (i.e. condition (3) given in
Section II). For BCH codes capable of correcting t errors, the
probability of a correctly decoded payload is

t∑
k=0

(
232
k

)
pk(1 − p)232−k (4)

This probability is multiplied by both the probability of syn-
chronization and the probability of a correct packet header to

5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

160

Es /No in dB

Th
ro

ug
hp

ut
 (k

bp
s)

DM5DM3

DM1

BCH
t=10

BCH
bound

Fig. 2. Average throughput of BCH encoded AUX1 packets in AWGN.

obtain εp, the probability that the payload data is accepted. Ta-
bles relating k to t can be readily found in the literature (see,
for instance, [5]).

Fig. 2 compares the throughput (in AWGN) of an AUX1
packet carrying a (232,156) BCH code (which has t = 10)
against the throughput of the three ACL packets protected by
Hamming codes (DM1, DM3, and DM5). These curves were
produced under the assumption that six errors could be tolerated
in the access code (i.e. T = 6 in Equation (2) of [2]). This par-
ticular custom error control code has a gain of about 1 dB over
the DMx packets at throughput below 100 kbps. In addition, the
throughput for all suitable BCH codes with 1 ≤ t ≤ 43 was cal-
culated. Rather than plotting all of these codes independently,
a single curve is presented in Fig. 2 which gives the maximum
throughput over all codes at each value of SNR. This curve can
be considered to be an upper bound on throughput when using
BCH codes. As indicated, an additional coding gain (about 0.5
dB) at low SNR (below 50 kbps) could be realized by switching
to a different BCH code with higher t.

IV. ADAPTIVE RATE CONTROL

As implied by Fig. 2, the value of t that maximizes through-
put, and likewise the optimal value of the code rate, depends on
the channel SNR. However, in a frequency hopping system such
as Bluetooth, the SNR is likely to change significantly from hop
to hop. Frequency hopping systems with a variable SNR are of-
ten modeled as quasi-static fading channels, whereby the SNR
is constant for the duration of a hop but changes from hop to
hop according to some statistical distribution. In quasi-static
Rayleigh fading, the envelope of the received signal varies from
hop to hop according to a Rayleigh distribution.

Thus, additional throughput gains in quasi-static fading chan-
nels can be achieved by adapting the rate of the BCH code to
match the prevailing channel conditions. The transmitter could
select the value of t based on the current channel SNR, always
sending the BCH code which maximizes throughput. From an
information theoretic perspective, this is equivalent to water-

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

Th
ro

ug
hp

ut
 (k

bp
s)

adaptive
BCH DH1

DM1

BCH
t=10

Es /No in dB

Fig. 3. Average throughput of adaptive BCH encoded AUX1 packets in quasi-
static Rayleigh fading.

filling. However, such a method would require that the trans-
mitter be able to accurately predict the SNR of the channel,
which could be a difficult task in practice. However, since Blue-
tooth only uses a finite number of channels (79 to be exact), the
same channel is revisited every 79τ = 49.375 msec. Given the
low mobility of typical Bluetooth applications, it may be pos-
sible to track each of the channels by using past knowledge of
the SNR of each channel to predict the future SNR. Of course,
any SNR prediction algorithm would need to take into account
the statistics of the interference, which could be quite unpre-
dictable.

Fig. 3 illustrates the potential benefits of using adaptive rate
control in a quasi-static Rayleigh fading channel under the as-
sumption that the channel SNR is perfectly known by the trans-
mitter. In order to provide a fair comparison, only packets that
are one slot long are considered. Four curves are shown corre-
sponding to (1) the DM1 packet, (2) the DH1 packet, (3) non-
adaptive BCH, that is an AUX1 packet transporting a t = 10
BCH code, and (4) adaptive BCH, that is an AUX1 code carry-
ing a BCH code whose value of t is chosen to match the SNR
of the current slot. While the nonadaptive t = 10 BCH code
provides a modest throughput gain at low average SNR (below
12 dB), for higher average SNR, the DH1 packet offers superior
throughput. This is because at higher average SNR, the channel
is likely to have a high instantaneous SNR, and thus the over-
head used by the BCH code is wasted.

The performance when using adaptive BCH coding is much
improved. In fact, the adaptive BCH coded system outperforms
all the other single slot systems for average SNR below 22
dB. The superior performance of the adaptive system is due to
the ability of the transmitter to automatically choose powerful
low rate codes for slots with low SNR and bandwidth efficient
high rate codes for slots with high SNR. While these gains are
promising, it should be noted that the maximum gain is only
about 1.5 dB, and the gain achieved in practice is likely to be
smaller when channel prediction is taken into account.

At high SNR, multi-slot packets provide higher throughput

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800
Th

ro
ug

hp
ut

 (k
bp

s) fully
adaptive DM5

DM3

DH5

Es /No in dB

Fig. 4. Average throughput in quasi-static Rayleigh fading of a fully adaptive
system that can select among all 6 ACL packets and any custom BCH coded
AUX1 packet.

than single-slot packets [2]. Thus, the system could be further
improved by allowing it to not only select variable-rate BCH-
encoded AUX1 packets when the SNR is low, but also to se-
lect multi-slot (DM3, DM5, or DH5) packets when the SNR is
high. In Fig. 4, the performance is shown for a “fully adaptive”
system that adapts the type of packet on a hop-by-hop basis in
order to maximize the throughput for the instantaneous SNR of
each hop. The packet could be a BCH-encoded AUX1 packet,
or it could be one of the six standard ACL packets (although
DM1, DH1, and DH3 are never selected because they never
have maximum throughput at any instantaneous SNR). As can
be seen, such a system provides throughput which is higher than
any one particular packet type, and a coding gain of about 1.5
dB is achieved over the conventional ACL packets at moderate
bit rates (200-700 kbps). Interestingly, very little of the gain
is due to using custom BCH codes, as similar (within 0.1 dB)
performance can be achieved by simply selecting among DM1,
DM3, DM5, and DH51. Thus, there appears to be some ben-
efit to adapting the packet type. It should be noted, however,
that while the Bluetooth standard does not necessarily prohibit
the adaptation of the packet type on a hop-by-hop basis, many
Bluetooth implementations require that the packet type be spec-
ified when the connection is established and cannot handle re-
quests to change the packet type. Thus, this approach might not
be applicable for all Bluetooth implementations.

V. DISTRIBUTED DETECTION

Bluetooth piconets typically contain two main categories of
devices. The first type of device, which we call “class A”, is a
device that is connected to a high capacity network and a con-
tinuous power source, as typified by a desktop computer with
a wired Internet connection and access to AC power from the
wall. The second type of device, which we call “class B”, is

1Throughput curves were also computed for a system that only used standard
ACL packets, but because the performance is within 0.1 dB of the curve marked
“fully adaptive”, it is not shown.

an untethered, low-power unit typical of a cell phone, PDA, or
wireless sensor. A key distinction between these two classes
is that power conservation is much more important for class B
devices than for class A devices.

Consider a case in which a class B device wishes to access
the Internet. In a conventional system, it connects to a single
class A device which serves as a bridge to the Internet. How-
ever, in some scenarios, there may be more than just one class
A device within the class B device’s range. In such a situation,
it makes sense to exploit the inherent macrodiversity by allow-
ing the class A device to simultaneously communicate with all
class B devices that are within range. By performing distributed
detection among the multiple class B devices, it is possible to
reduce the amount of energy required for the class B device to
transmit its data.

A simple example of how to implement distributed detection
is as follows. Let there be a single class B master device and a
pair of class A slaves. The master broadcasts a packet, which
is received by both slaves. Each slave must synchronize with
the access code, decode the packet header, decode the payload
data, and perform a CRC check. If the CRC check passes at
either slave, then the packet can be forwarded to the Internet.
Otherwise, the master will need to rebroadcast the packet.

Because there are now two destination radios, ARQ becomes
a bit tricky. The simplest implementation would have both
slaves send replies back to the master. The replies would be
transmitted during subsequent slave slots, and the master slot
between the two slave slots would go unused. Because of the
extra overhead involved in transmitting ACKs from two slaves,
this strategy would only improve overall throughput if the data
is broadcast by the master in the form of a long (DM5 or DH5)
packet. If the master transmits a 5-slot packet, then a total of
8 slots will be required for the forward Dx5 packet and pair of
replies (in contrast to 6 slots when only one slave must reply).

A retransmission is now only necessary if the packet is not
accepted by either slave, or if is accepted by one (or both) of the
slaves, but the packet header of the corresponding reply mes-
sage(s) is not accepted by the master. Thus, the probability of
an accepted packet is

ε = 1 − (1 − εp1εh1) (1 − εp2εh2) , (5)

where εpi is the probability that the payload data is accepted
at slave i and εhi is the probability that the packet header from
slave i is accepted by the master. If the payload data of re-
transmitted packets must be correctly decoded, then the average
number of retransmissions would be N̄ = 1/ε. Performance
could be improved by exploiting the reliable network that con-
nects them in such a way that only one ACK is needed. For
instance, the first slave could tell the second slave if it received
the data correctly, which in turn would only signal an ACK back
to the master if it also did not receive the data correctly.

Fig. 5 shows the performance of the proposed diversity de-
tection technique in quasi-static Rayleigh fading for the case
that there are two slaves receiving a transmission from a single
master. It is assumed that the receivers have the same average
SNR and that they communicate through the reliable backbone
in such a way that only one return packet is required. The di-
versity detection technique can use either DM5 or DH5 pack-

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800
Th

ro
ug

hp
ut

 (k
bp

s)

DH5 w
/ 2

rec
eiv

ers

DH5 w
/ 1

rec
eiv

er

DM5 w/ 2 receivers

DM5 w/ 1 receiver

Es /No in dB

Fig. 5. Average throughput in quasi-static Rayleigh fading of a diversity re-
ception system using two slaves.

ets, and throughput results are compared for each of these two
packet types with the performance achieved in a conventional
(single receiver) system. As can be seen from the figure, gains
of up to 8 dB (at 700 kbps) can be realized by using this system.
It should be noted that unlike the adaptive coding technique
proposed in the previous section, this gain is achieved without

requiring a prediction of the channel SNR.

VI. CONCLUSION

Several techniques were proposed for improving the through-
put of a Bluetooth data link. Custom coding is the simplest
of the techniques, and offers improved performance in AWGN
at low SNR. Adaptive rate control provides throughput gains
in quasi-static fading, but requires accurate predictions of the
channel SNR and might not be supported by some Bluetooth
implementations. Diversity reception also provides gains in
quasi-static fading, but does so without requiring SNR predic-
tion. However, diversity reception requires two or more slaves
within range of the master and connected through a reliable
backbone, and also requires slight modifications to the ARQ
process.

REFERENCES

[1] Bluetooth SIG, “Specification of the Bluetooth system,” Core Version 1.1,
Feb. 22, 2001.

[2] M. C. Valenti, M. Robert, and J. H. Reed, “On the throughput of Bluetooth
data transmissions,” in IEEE Wireless Commun. and Networking Conf.,
(Orlando, FL), Mar. 2002.

[3] S. Wicker, Error Control Systems for Digital Communicationsand Storage.
Englewood Cliffs, NJ: Prentice Hall, Inc., 1995.

[4] M. C. Valenti and M. Robert, “A turbo code based error control strategy for
Bluetooth,” in Proc. IEEE Military Commun. Conf. (MILCOM), (Anaheim,
CA), Oct. 2002. to appear.

[5] J. Proakis, Digital Communications. New York, NY: McGraw-Hill, Inc.,
fourth ed., 2001.

