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6.1 Introduction

In this chapter, we consider space-time coding strategies for multiple-relay coop-
erative systems that effectively harness available spatial diversity. More specif-
ically, the goal is to examine ways to efficiently forward signals from multiple
relays to the destination while addressing the important practical issue of syn-
chronization among the relays. We assume a general two-phase transmission
protocol as illustrated in Figure 6.1. In the first phase of the protocol, the source
broadcasts a message which is received by the relays and (possibly) the desti-
nation. During the second transmission phase, a subset of the relays, possibly
in conjunction with the source, transmit additional information to the desti-
nation. This protocol is useful in practical scenarios where signals received at
the destination due to transmissions directly from the source (Phase 1) will not
carry enough useful information because of noise, fading, and/or interference. It
is expected that Phase 2 will dramatically increase reliability of the system, but

Phase I! Phase II!

Figure 6.1: Illustration of the two-phase transmission protocol using a distributed
space-time code. In the first phase (left subfigure) the source transmits to several
relays, while in the second phase (right subfigure), the relays simultaneously
transmit to the destination.
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if the symbols cannot be decoded correctly after the second phase, the protocol
can re-start by returning to Phase 1 or Phase 2.
The primary problem associated with forwarding information from multiple

relays to the destination is determining how the information should be spread
out among the relays over space and time. This is analogous to the classic space-
time coding problem in point-to-point multiple transmit antenna systems, and
so it is often called the distributed space-time coding problem. Similar to the
point-to-point scenario, performance can vary dramatically based on the coding
scheme, so care must be taken to achieve high performance in terms of diversity
and coding gain while accounting for the practical limitations of cooperative
systems. In fact, poorly-designed distributed space-time coding schemes may
perform worse than point-to-point systems, especially considering that the two-
stage protocol consumes additional degrees of freedom (time resources) relative
to direct transmission.
A conservative solution to the distributed space-time coding problem is for

each terminal that participates in the second phase to transmit using orthogo-
nal subchannels, which could be implemented using disjoint time slots, different
frequency subbands, or orthogonal spreading codes (assuming that they can be
synchronized). When disjoint time slots are used, this strategy is a distributed
form of delay diversity [22]. However, there are two problems associated with
this approach: 1) it is known that orthogonalizing system resources is subopti-
mal [18], and 2) enforcing orthogonalization in time, frequency, or code space
would require significant additional signaling overhead, e.g., feedback and/or
synchronization, and, in many cases, may not even be possible.
A more efficient, albeit more aggressive, approach is for the terminals trans-

mitting in the second phase to use a distributed space-time block code1 [10, 15].
There are two main varieties of forwarding mechanisms that can be used with
distributed space-time coded systems: decode and forward (DF) [10] and amplify
and forward (AF) [8]. In DF protocols, the source’s signal is encoded with a for-
ward error correcting code that must be successfully decoded by a relay before
that relay may participate in the transmission of the distributed space-time code.
After decoding, the information is re-encoded and re-modulated. A linear com-
bination of the re-modulated symbols and their conjugates are transmitted by
each participating relay. While the DF protocol avoids error propagation or the
amplification of noise received over the source-relay channel, its implementation
is complicated by fact that the set of relays that are able to decode and so
participate in the space-time code in the second phase is random and unknown
to the system. Therefore, unlike point-to-point multiple antenna systems, extra
care must be taken to assure that the relays coordinate in the transmission of
the space-time codeword.

1 Distributed space-time trellis codes can be used as well, but we focus here on block codes
and refer the interested reader to, for example, [13].
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With AF protocols, a fixed number of relays participate in the second phase
by transmitting a linear combination of the time samples of the noisy received
signal (not decoded symbols) they receive from the source. Because the number
of relays is fixed, AF does not have to manage which relays transmit which part
of the space-time codeword, unlike DF. However, with AF the noise received
over the source-relay channels is amplified, which has the potential to degrade
performance.
There are a number of challenges associated with practical distributed space-

time code implementation, some of which are shared with conventional space-
time coding used in point-to-point multiple antenna systems, but some are unique
to the distributed scenario. As with conventional space-time codes, distributed
codes typically (but not always) require the destination receiver to have knowl-
edge of the channels between the relays and the destination. Unlike conventional
space-time codes, however, distributed space-time codes are subject to some
challenging synchronization issues. Because the transmitters are widely sepa-
rated and have different time references, and due to differences in the propaga-
tion delay between the relays and the destination, the different signals received
by the destination will generally be offset in time. Although this problem can
perhaps be overcome with appropriate synchronization protocols, it can more
effectively be handled with delay diversity, delay-tolerant distributed space-time
codes, or space-time spreading.
The remainder of this chapter is as follows. In Section 6.2, we give a system

model that will be used through the chapter. In Section 6.3, we review concepts
related to fixed space-time block codes. In Section 6.4, we describe the DF proto-
col, while in Section 6.5 we describe the AF protocol. We discuss synchronization
issues in Section 6.6, and conclude in Section 6.7.

6.2 System model

Consider a wireless network consisting of a source node, a destination node, and a
set ofR relay nodesN = {Ni : 1 ≤ i ≤ R}. Each node has a half-duplex radio and
a single antenna. Messages are transmitted according to a two-phase protocol.
During the first phase, a signal of duration T1 symbol periods is broadcast by
the source and received by the relays. During the second phase, a subset of
the relays will simultaneously, but perhaps not synchronously, transmit signals
of duration T2 symbol periods, and the destination will receive a noisy sum of
the relay signals. After approximately T = T1 + T2 consecutive symbol periods
(depending upon transmission and channel delays), the source will move on to the
next message (or a retransmission of a failed message). For ease of exposition, we
assume that there is no direct link between the source and destination, although
the protocols and performance analyses can easily be generalized to allow for
such a link.



156 Chapter 6. Distributed space-time block codes

We adopt a discrete-time model, whereby the signal transmitted by the source
during the first phase is represented by the vector s = [s1, ..., sT1 ]

t. The individual
symbols s�, 1 ≤ � ≤ T1 are each drawn from a complex constellation X of M

symbols. The signal constellation is normalized so that its average energy is
unity, i.e., 1

M

�
s∈X |s|2 = 1. The normalized signal is amplified and transmitted

by the source with power P1 during the first phase. Let fi represent the complex
gain of the channel between the source and node Ni. Then the signal received
by node Ni during the first phase is

ri = fi

�
P1s+ vi (6.1)

where vi = [vi,1, ...., vi,T1 ]
t is a noise vector containing independent circularly-

symmetric complex Gaussian random variables with zero mean and unit variance.
In the second phase, a subset K ⊆ N of the relays will simultaneously, but per-

haps without symbol-level synchronization, transmit to the destination. During
this phase, node Ni ∈ K will transmit a signal represented by the discrete-time
vector ti = [ti,1, ..., ti,T2 ]

t with power P2. When the signals are perfectly synchro-
nized, the signal received at the destination will be

x =
�

i:Ni∈K
gi

�
P2ti +w (6.2)

where gi is the complex gain of the channel between node Ni and the desti-
nation, and the noise vector w = [w1, ...., wT2 ]

t contains independent circularly-
symmetric complex Gaussian random variables with zero mean and unit vari-
ance. When the signals are not synchronized, the model must be generalized to
account for time offsets.
In general, the power E[|fi|2] and E[|gi|2] of the channel gains fi and gi will

depend on the topology of the network and the propagation characteristics of the
wireless channel, and will usually be unequal. However, for ease of exposition,
we make the simplifying assumption that the fi’s and gi’s are independent and
identically distributed (i.i.d.). In particular, each fi and gi is assumed to be a
circularly-symmetric complex Gaussian with zero mean and unit variance, so
that their envelopes |fi| and |gi| are Rayleigh distributed. The coefficients fi are
held fixed for the transmission of the signal s, and the coefficients gi are held
constant for the transmission of the ti, i.e., we assume a Rayleigh block fading
model.
Just as the channel gains might have unequal powers, the powers P2 trans-

mitted by the relays can, in general, be selected such that they are unequal,
in which case our notation would need to be modified to indicate the different
powers. However, in the following discussion we impose the simplifying limita-
tion that all relays transmit with the same power P2, which is optimal when
the average channel powers are all equal and the transmitters operate without
channel state information.
Note that this is a fairly general model which leaves unaddressed several critical

design and implementation issues. For example, the composition of the set K will
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depend on the protocol being used. In DF protocols, K contain only relays that
successfully decoded the source’s transmission, while in AF protocols, K may
contain any (or all) of the relays. Another key issue is the selection of the signals
ti that are to be transmitted by the nodes in K during the second phase of the
protocol. These signals can be jointly coded, but in a distributed way, using a
space-time code, or they can use simpler strategies, e.g., delay diversity or space-
time spreading. We will discuss all of these options in this chapter. Finally, the
allocation of power between P1 and P2 for the two transmission phases and the
allocation of time over the two time phases are protocol-dependent optimization
problems that must be solved to maximize performance.

6.3 Space-time block codes

As described in the Introduction, one of the primary problems associated with
forwarding information from relays to a destination in a cooperative wireless
network is how information is transmitted from the relays over time, i.e., the
space-time transmission scheme. One natural strategy is to extend the concept
of space-time block codes, typically used for point-to-point multiple transmit
antenna systems, to relay networks, where they are called distributed space-time

block codes. We begin with a description of conventional space-time block codes
under the quite general linear dispersion paradigm [6].
Suppose for the moment that the first-phase transmission is perfectly received

by all R relays. Under the linear dispersion paradigm, the ith relay transmits a
linear combination of the T1 symbols in s and their complex conjugates,

ti = Ais+Bis̄ (6.3)

where s̄ is the column vector containing the complex conjugates of s and the com-
plex T2 × T1 matrices Ai and Bi are called dispersion matrices. These matrices
define the space-time code. Each nonzero matrix Ai or Bi is constrained to be
unitary, and since the signal set X is normalized to unit energy, the symbols
transmitted by the relays will also have unit energy.
The family of space-time block codes that can be represented by (6.3) are

called linear dispersion (LD) codes [6]. This family of codes includes many well-
known space-time codes as special cases. For example, one linear dispersion code
that has been proposed for cooperative communications with R = 2 relays is
described by the dispersion matrices [9]

A1 =

�
+1 0
0 +1

�
, A2 = 02×2, B1 = 02×2, B2 =

�
0 −1
+1 0

�
(6.4)

where 0m×n is a m× n matrix of all-zeros. This code is simply a transpose of
the well-known Alamouti space-time block code [1].
For many codes of interest, including the one specified by (6.4), either Ai or Bi

is a matrix of zeros for every i. This means that a particular relay will transmit
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a linear combination of the symbols in s or s̄, but not both. If we define

Ci =

�
Ai, if Bi = 0

Bi, if Ai = 0
(6.5)

and

s(i) =

�
s, if Bi = 0

s̄, if Ai = 0
(6.6)

then we can write (6.3) more compactly as

ti = Cis
(i)
. (6.7)

Assume that nodes N1, ..., NR participate in the second phase transmission with
the same power P2. The signal received at the destination will be

x =
�
P2Sh+w (6.8)

where

S =
�
C1s(1) ... CRs(R)

�
(6.9)

is the T2 ×R space-time codeword, and

h =
�
g1 ... gR

�t
(6.10)

is the channel vector. The maximum-likelihood (ML) detector at the destination
estimates the source signal as

ŝ = arg min
s∈XT1

���x−
�

P2Sh
��� (6.11)

where || · || indicates the Frobenius norm.
Unless the distributed space-time code, described by the set of all possible

codewords S, has some special structure, ML detection will have exponential
complexity in the number of source symbols T1. Fortunately, several classes
of codes allow reduced complexity for ML decoding, including the well-known
orthogonal design family [15], whose orthogonal structure allows for decoupling
of the symbols in the codeword, permitting for symbol-by-symbol ML detection
with linear complexity in T1. The (Alamouti) code given by (6.4) is one example
of an orthogonal design. Another orthogonal design which has been applied to
cooperative diversity with R = 4 relays is described by the dispersion matrices
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[9]

A1 =





1 0 0
0 0 0
0 0 0
0 0 0



 , A2 =





0 1 0
0 0 0
0 0 0
0 0 0



 , A3 =





0 0 1
0 0 0
0 0 0
0 0 0





A4 =





0 0 0
0 0 1
0 1 0
−1 0 0



 , B1 =





0 0 0
0 −1 0
0 0 1
0 0 0



 , B2 =





0 0 0
1 0 0
0 0 0
0 0 1





B3 =





0 0 0
0 0 0
−1 0 0
0 −1 0



 , B4 = 04×3.

(6.12)

Note that for this code, only B4 is all-zeros and thus the model given by (6.5)
through (6.10) must be generalized slightly. See [8, 9] for details.
The rate of a space-time block code is T1/T2, and a code is said to be full rate

if it has a rate of unity. While the rate of the code specified by (6.4) is unity, the
rate of the R = 4 code specified by (6.12) is only 3/4. No full-rate orthogonal
STBC exists for R > 2 when complex symbols are used [11], although reduced-
rate orthogonal codes can be designed for any number of transmit antennas.
Thus, for R > 2, the convenience (linear ML decoding complexity) of using an
orthogonal design comes at the cost of reduced spectral efficiency. An alterna-
tive to using orthogonal designs is to use quasi-orthogonal designs [7], which
can achieve full rate with four antennas with higher complexity than orthogonal
designs, but much lower than worst-case ML complexity. The additional com-
plexity over orthogonal designs is because quasi-orthogonal codes reduce the ML
detection problem to the joint detection of pairs of complex symbols, whereas
orthogonal designs reduce it to the detection of individual complex symbols. The
ML detector for a quasi-orthogonal code thus requires that each of the T1/2 pairs
of symbols be compared against M2 hypothesis. An example quasi-orthogonal
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STBC considered for cooperative-diversity with R = 4 relays is given by [9]

A1 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 , A2 = 04×4, A3 = 04×4

A4 =





0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0



 , B1 = 04×4, B2 =





0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0





B3 =





0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0



 , B4 = 04×4.

(6.13)

In Figure 6.2, four systems are compared by plotting the bit error rate (BER) of
each system as a function of the signal-to-noise ratio (SNR). Three values of R are
considered, R = {1, 2, 4}, and all systems transmit with a spectral efficiency of 3
bits-per-second-per-Hertz (bps/Hz). The signals are transmitted over Rayleigh
fading channels, and the power is split evenly across the R transmit antennas.
Since the noise power is unity, the transmitted power is P2 = SNR/R. The
R = 1 system represents conventional point-to-point communications between
a pair of terminals, each with a single antenna and no space-time coding. The
R = 2 system uses the transposed Alamouti code given by (6.4). Two systems
are compared for use with R = 4 transmitting antennas, the orthogonal code of
(6.12) and the quasi-orthogonal code (6.13). The rate of the orthogonal space
time code used with R = 4 antennas is 3/4, while the rates of the other STBC
are all unity. In order for the spectral efficiency to be maintained at 3 bps/Hz,
gray-labeled 8-PSK modulation is used for the full rate systems (including the
system with no space-time coding), while gray-labeled 16-QAM modulation is
used for the rate 3/4 system. The worst-performing system is the one that uses
just one transmit antenna (R=1), while the next worst-performing system is the
one with two transmit antennas (R=2). The two systems four transmit antennas
(R=4) exhibit the best performance.
The most significant feature to notice in Figure 6.2 is the steepness of the

curves. At high SNR, these curves become straight lines, implying that asymp-
totically there is a a linear relationship between the logarithm of the error prob-
ability and the SNR expressed in dB. The negative slope is called the diversity of
the system, also called the diversity order or diversity gain. Inspection of the dia-
gram reveals that the diversity of the R = 1 system is equal to one (i.e., the BER
drops by an order of magnitude with every decade of SNR), while the diversity
of the R = 2 system is equal to two. Although the SNR is not sufficiently high
in the figure to show it, the diversity of the two R = 4 systems are both equal
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Figure 6.2: Bit error rate (BER) performance of four systems: An uncoded
system with R = 1 transmit antenna, an Alamouti-coded system with R = 2
transmit antennas, an orthogonal STBC with R = 4 transmit antennas, and a
quasi-orthogonal STBC with R = 4 transmit antennas. In each case, the spectral
efficiency is 3 bps/Hz and the signals are transmitted over independent Rayleigh
fading channels.

to four. A system with R antennas is said to have full diversity if its diversity
order is R. Thus, all four systems shown in Figure 6.2 exhibit full diversity, as
seen by the fact that their error probabilities decay proportional to 1/SNRR.
The performance of a space-time coded system can be determined by analyzing

the pairwise error probability (PEP) between all pairs of distinct space-time
codewords Sk and S�. The PEP can be bounded by, for example, a Chernoff
bound. By taking the limit with respect to the SNR, the diversity order is then
determined. Full diversity is achieved by assuring that Sk − S� is full rank for all
k �= � [15].
Linear dispersion codes need not be orthogonal or quasi-orthogonal. For

instance, the linear dispersion codes presented in [6] were designed to maximize
the mutual information between the transmitter and receiver under a power con-
straint. However, such codes do not lend themselves to the very simple decoder
structures that are possible with orthogonal or quasi-orthogonal codes. While
a brute-force ML decoder requires comparison against all MT1 hypothesis, the
complexity can be greatly reduced by using a sphere decoder [2]. Another option
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is to use the designs in [17], which permit decoupled symbol-by-symbol decoding
and full-rate at the cost of reduced diversity.

6.4 Decode-and-forward distributed STBC

Returning to the two-phase relay network configuration, consider the case that
the first-phase transmission must take place over a channel that is corrupted by
noise and fading. Now, there is no guarantee that any particular node will receive
the transmission correctly. With a decode-and-forward protocol, the source will
encode its transmissions with a channel code. Each relay will attempt to decode
using the signal it receives, and can only participate in the second-phase trans-
mission if it successfully decoded the message sent by the source. The condition
that a node can only transmit in the second phase if it successfully decodes the
message requires that the code be used not only as an error correcting code, but
also as an error detecting code (i.e., the relay needs to detect the existence of
uncorrectable errors). The set of nodes K that successfully decoded the source’s
message and may transmit during the second phase is called the decoding set

[10], and the number of nodes in the decoding set is K = |K|.
During the second phase, nodes in K transmit using a distributed space-time

code. A major complicating factor is that the size of the decoding set is random,
yet the space-time code must be designed with a certain number of transmitting
antennas in mind. Because of this, the number of relays that actually transmit
should be limited to the maximum number of antennas supported by the space-
time code, which we denote Kmax. It is possible that K < Kmax, which means
that there will not be enough relays participating in the second phase to use the
entire space-time code. This implies that the space-time code should be “scale
free”, meaning that it still offers the maximum possible diversity even if some
of the transmitting antennas are not used. When K < Kmax, the maximum
possible diversity order is reduced from Kmax to K. It is known that orthogonal
space-time codes have this scale-free property [9].
If relay Ni ∈ K transmits during the second phase, then it does so by transmit-

ting a signal vector ti of the form given by (6.3), where s is the signal obtained
by decoding, re-encoding, and re-modulating, and the Ai and Bi are the disper-
sion matrices currently assigned to that relay. Note that since the composition
of the set of transmitting nodes changes after each source transmission, the set
of dispersion matrices assigned to a particular relay may also change. The pro-
tocol must be careful to make sure that each transmitting relay is allocated a
distinct set of dispersion matrices. When either Ai or Bi is all zeros for all i,
the received signal at the destination is as given by (6.8), where the columns of
the space-time codeword S will be the signals transmitted by the relays. When
K < Kmax, fewer relays transmit than there are columns in S and Kmax −K

columns in S will be all-zeros.
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6.4.1 Performance analysis

The performance of a DF system depends on the error control code or codes used.
If the system uses a capacity-approaching code, such as a turbo code or a low-
density parity-check (LDPC) code, then the codeword error rate over a particular
link may be approximated by the information-outage probability of that link. The
information-outage probability is the probability that the conditional mutual
information between the channel input and output is below some threshold. For
the first phase, the channel between the source and each relay is an additive
white Gaussian noise (AWGN) channel when it is conditioned on the fading gain
fi. The conditional mutual information between the signal transmitted by the
source and the signal received by the ith relay is given by

I(s, ri|fi) = log2(1 + P1|fi|2) (6.14)

where P1|fi|2 is the “instantaneous” SNR of the link between source and the ith

relay. Note that (6.14) represents the mutual information when the source-relay
channel is used all the time. However, in the DF protocol, the relay source-
relay link is only used for T1 out of every T symbol periods. Thus, the mutual
information needs to be scaled by the ratio T1/T when computing the probability
that a relay is in an outage.
The information-outage probability of the link from the source to node Ni is

pi = Pr

�
T1

T
I(s, ri|fi) < r

�
(6.15)

where r is the rate of the error control code. Substituting (6.14) into (6.15) gives

pi = Pr

�
T1

T
log2(1 + P1|fi|2) < r

�

= Pr
�
|fi|2 < Γ1

�
(6.16)

where

Γ1 =
2rT/T1 − 1

P1
. (6.17)

Equation (6.16) is the cumulative distribution function (CDF) of the random
variable |fi|2 evaluated at Γ1. If we assume that fi is circularly-symmetric com-
plex Gaussian with zero mean and unit variance, then |fi|2 will be exponential
with unit mean. By recalling the CDF of an exponential random variable, the
information-outage probability is

pi = 1− e
−Γ1 . (6.18)

Because the fi’s are independent and identically distributed (i.i.d.) and the
threshold Γ1 is common to all relays, pi is the same at all R relays and may
be denoted as p.
Let Zi = {0, 1} be an indicator variable that equals unity when the ith relay is

in an outage. Zi is a Bernoulli random variable with P [Zi = 1] = p. The number
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of relays K = |K| that successfully decode the first-phase transmission is K =�R
i=1 Zi. Because the channels are independent, so are the Zi’s, and it follows

that K is a binomial random variable. The probability that the random variable
K is equal to k is given by the probability mass function (pmf) of K,

pK [k] = Pr[K = k]

=

�
R

k

�
(1− p)kpR−k

. (6.19)

The second-phase transmission may also be characterized in terms of an outage
probability. However, the outage probability at the destination depends on the
number of nodes K in the decoding set as well as the maximum number of nodes
Kmax that may transmit during the second phase of the protocol. Define the
conditional end-to-end information-outage probability for the second phase of
the DF protocol as

Pr[Outage|k] = Pr
�
I(S,x|h) < r

��K = k
�

(6.20)

where S is the space-time codeword and h is a length min(k,Kmax) vector con-
taining the coefficients gi corresponding to those relays that transmit during the
second phases. Equation (6.20) represents the probability that the destination is
in an outage during the second phase given that the decoding set has k relays in
it.
When using a rate T1/T2 orthogonal STBC over a point-to-point link, the

mutual information is [11]

I(S,x|h) = T1

T2
log2

�
1 + P2||h||2

�
. (6.21)

This mutual information expression assumes full use of the channel. However, in
the DF protocol, the relay-destination link is only active for T2 out of every T

channel uses, and thus (6.21) must be scaled by T2/T .
Substituting the scaled version of (6.21) into (6.20) results in

Pr[Outage|k] = Pr

�
T1

T
log2

�
1 + P2||h||2

�
< r

��K = k

�

= Pr
�
||h||2 < Γ2

��K = k
�

(6.22)

where

Γ2 =
2rT/T1 − 1

P2
. (6.23)

This is the CDF of ||h||2 evaluated at Γ2. When there are min(k,Kmax) relays
transmitting in the second phase, then ||h||2 is Erlang-m with min(k,Kmax)
degrees of freedom. Using the CDF of an Erlang-m distribution, the outage
probability becomes

Pr[Outage|k] = 1−
min(k,Kmax)−1�

n=0

Γn
2

n!
e
−Γ2 . (6.24)
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Of course, when k = 0, Pr[Outage|k] = 1 since the system is always in an end-
to-end outage when no relays receive the source transmission (recall that we
assume no direct link from source to destination).
From the theorem on total probability, the overall end-to-end outage proba-

bility may be found from the conditional outage probabilities as

Pr[Outage] =
R�

k=0

pK [k]Pr[Outage|k]. (6.25)

By substituting (6.19) and (6.24) into (6.25), we get the following expression for
end-to-end outage probability

pD = p
R +

R�

k=1

�
R

k

�
(1− p)kpR−k



1−
min{k,Kmax}−1�

n=0

Γn
2

n!
e
−Γ2



 .

(6.26)

6.4.2 Numerical results

By using (6.26), we can determine the outage probability for a network comprised
of R relays that uses a particular space-time code. Consider two examples, one
that uses the transposed Alamouti code with dispersion matrices given by (6.4),
and another that uses the orthogonal STBC with dispersion matrices given by
(6.12). Both systems use a rate r = 1/2 error control code. With the Alamouti-
coded system, no more than Kmax = 2 relays may transmit during the second
phase, while with the other orthogonal system, no more than Kmax = 4 relays
may transmit. Let K � = min(K,Kmax) be the number of relays that actually
transmit during the second phase, where K is the number of relays that suc-
cessfully decoded the source’s transmission. The total transmitted power of all
relays is P = P1 +K �P2. As explained later in this section, the powers P1 and
P2 are selected to minimize the outage probability subject to the total power
constraint.
Figure 6.3 shows the information-outage probability as a function of SNR for

both space-time codes and a variable number of relays. Since the noise power is
unity, the SNR is equal to the total power P . For the Alamouti-coded system, the
number of relays is between 2 and 8, while for the other orthogonal system, the
number of relays is between 4 and 10. For both systems, performance improves
with increasing R. Even though no more than Kmax relays can be used during
the second transmission phase, it is still advantageous to have more than Kmax

relays present in the network. This is due to the diversity present in the first
phase transmission. Having more than Kmax relays makes it more likely that at
least Kmax relays will be able to decode the source’s transmission, and thus it is
very likely that Kmax relays will transmit the entire space-time codeword during
the second phase. From the curves, it is seen that the Alamouti code provides
a diversity order of Kmax = 2 while the other orthogonal system provides a
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Figure 6.3: Comparison of the information-outage probability of several systems:
Direct, DF using the Alamouti code and up to Kmax = 2 transmitting relays, DF
using orthogonal STBC and up to Kmax = 4 transmitting relays. For each value
of Kmax, a set of seven curves is shown corresponding to a different number of
relays R. For the Kmax = 2 system, the total number of relays R is between 2
and 8, while for the Kmax = 4 system there were between 4 and 10 relays. For
each value of Kmax performance improves with increasing R.

diversity order of Kmax = 4. Using additional relays does not improve the overall
system’s diversity order, but it does provide an additional coding gain.
Also shown in Figure 6.3 is the performance of a direct point-to-point link

transmitting with transmission power P = SNR and using a single antenna at
each end of the communication link. Because this is just a single-input single-
output (SISO) system, the diversity order is only equal to one, and thus asymp-
totically the performance of the direct transmission is worse than the considered
DF protocols. However, at very low SNR, the performance of the direct link is
actually better than the systems that use a distributed STBC. This is because
the system using a direct link may concentrate all of its power into the single
transmission rather than diluting the energy across the transmissions of the two
hops. Thus, at very low SNR, a direct link might be more effective than using
the distributed STBC. However, keep in mind that these results assume that
all channels have unity power gain. When relays are placed between the source
and destination, then it is possible that channels used by the system with the



Distributed space-time block codes 167

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (in dB)

O
pt

im
al

 P
ow

er
 R

at
io

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (in dB)

O
pt

im
al

 P
ow

er
 R

at
io

Figure 6.4: The optimal power ratio for the Kmax = 2 system and between 2 and
8 relays (left subfigure) and the Kmax = 4 system with between 4 and 10 relays
(right subfigure). The optimal power ratio decreases with increasing R.

distributed STBC (i.e., the gains from source to relays and the gains from relays
to destination) will have a higher gain than the channel used by the system that
uses direct transmission.
Let P1/(K �P2) be the ratio of the power used during the first phase to the

power used during the second phase. The results shown in Figure 6.3 assume that
the power is selected to minimize the information-outage probability subject to
the total power constraint P = P1 +K �P2. To find the optimal power ratio for
each SNR point, we compute the information-outage probability for all ratios
between 10−4 and 1 in increments of 10−4, and pick the ratio that minimizes the
information-outage probability. The result of this optimization is shown in Figure
6.4. The left subfigure shows the optimal power ratios for the Kmax = 2 system
(Alamouti coded) and the right subfigure shows the optimal power ratios for the
Kmax = 4 system. For each system, a family of curves is shown corresponding to
the different values of R considered in Figure 6.3. The power ratio decreases with
increasing R and with increasing SNR. This is because as R grows, the likelihood
that Kmax relays can decode the source’s signal improves as a function of P1,
and thus the system can afford to decrease P1 and devote more power to the
second phase transmission.
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6.5 Amplify-and-forward distributed STBC

In contrast to decode-and-forward protocols, amplify-and-forward protocols do
not require that each relay fully demodulates and decodes the signal it receives
from the source. Instead, relay Ni obtains the vector ri given in (6.1) by down-
converting the received signal to baseband and passing it through a pair of filters
matched to the in-phase and quadrature basis functions. The matched-filters are
sampled at the symbol rate, resulting in a set of T1 complex samples that are
placed into the vector ri. Rather than demodulating and decoding ri, the relay
transmits a linear combination of the samples in ri and its conjugates at power
P2 [8].
We can write the normalized signal transmitted by node Ni in vector form as

ti =

�
1

P1 + 1
(Airi +Bir̄i) (6.27)

where Ai and Bi are the dispersion matrices assigned to node Ni. The two major
differences between (6.27) and the DF transmitted signal in (6.3) are 1) in AF, the
transmitted signal is a linear combination of the samples in the received vector
ri (and its conjugates) rather than a linear combination of the re-modulated
symbols in the vector s (and its conjugates), and 2) because the noise power

is unity, the average received signal power is P1 + 1, and the scaling
�

1
P1+1 is

required to normalize the signal.
For the important special case where either Ai or Bi is zero, we can simplify

the transmitted signal similar to (6.7) as

ti =

�
1

P1 + 1
Cir

(i) (6.28)

where

r(i) =

�
r, if Bi = 0
r̄, if Ai = 0

(6.29)

and Ci is as given by (6.5).
Using (6.2) and assuming perfect symbol-level synchronization, the resulting

received signal vector at the destination can be written as

x =
R�

i=1

gi

�
P2ti +w. (6.30)

Substituting (6.1) into (6.29) and (6.30) results in

x =
R�

i=1

gifi

�
P1P2

P1 + 1
Cis

(i) +

�
P2

P1 + 1

R�

i=1

giCivi +w.

� �� �
n

(6.31)
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This may compactly be represented as

x =

�
P1P2

P1 + 1
Sh+ n (6.32)

where the T2 ×R space-time codeword S is as given in (6.9), the channel vector
is

h =





f1g1

f2g2

...
fRgR




(6.33)

and the complex noise vector n is Gaussian when conditioned on the {gi} and
will generally be colored because the signal transmitted by the relay will contain
a linear combination of the elements of the white noise vector vi.
Compared with the DF case (6.8), the AF received signal in (6.32) differs in

3 ways: 1) all R relays transmit a signal during the second phase, not just those
that can decode the source’s transmission, 2) the channel vector consists of the
product of the source-relay and relay-destination channel gains instead of just
the relay-destination channel gains, and 3) the additive noise will have a higher
power and will generally be colored.
As was the case for DF, the T2 ×R matrix S in (6.32) plays the same role as a

space-time code matrix in a conventional point-to-point multiple-input multiple-
output (MIMO) system, except that in the distributed space-time code scenario,
the matrix is generated without access to s. For this reason, we say that S

defines a distributed space-time code operating in AF mode. We can think of h
as the equivalent channel matrix and n as additive noise, although n is clearly
a function of the space-time code. Because of the similarities to conventional
STBCs, we can analyze the diversity gain and coding gain performance of this
family of distributed AF space-time codes using the the same technique we use
for conventional codes, i.e., bounding the pairwise error probability.

6.5.1 Performance analysis

The achievable diversity of linear dispersion (LD) codes operating in an AF sys-
tem can be determined using the same technique that is often used for point-to-
point space-time coded systems, i.e., by bounding the pairwise error probability.
The exact results are complex and we refer to the reader to [8] for details. The
main result, however, is that the achievable diversity is

d = R

�
1− log logP

P

�
(6.34)

which is achieved whenever the Sk − Sl is full rank for all l �= k. This result
converges to R for very large power P , so LD coding operating in AF systems
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achieves approximately the same diversity as a point-to-point system with R

antennas2.
Interestingly, when the number of relays is large and the power is also large,

the coding gain for distributed LD codes is the same as for LD codes operating in
point-to-point systems. On the other hand, when the power P is moderate, the
code matrices should be designed such that the code is “scale-free”, i.e., it should
perform well when some relays are not working. Mathematically, this requires
the codeword difference matrices to remain full rank when some columns are
deleted.

6.5.2 Practical distributed STBC for AF systems

Although arbitrary LD codes can achieve almost full diversity with mild condi-
tions on the Ai matrices, they are generally difficult to decode because maximum
likelihood decoding, i.e.,

argmin
s

�����x−
�

P1P2

P1 + 1
Sh

����� (6.35)

has high computational complexity for the general case. This problem can be alle-
viated by using extending well-known orthogonal [15] or quasi-orthogonal [7] code
designs for point-to-point systems to the distributed scenario, as discussed in [9].
The results are distributed codes that are fully diverse, allow low-complexity
decoding, and are scale-free, yielding good coding gain for moderate transmit
powers. Because the noise vector n is not generally white, true-ML detction
cannot be achieved through linear processing methods such as the decoupled-
decoding approach commonly used for orthogonal codes operating over point-
to-point links. However, as was reported in [9], the performance when using
decoupled decoding is only slightly inferior to that of using true-ML detection
(i.e. around 0.5 dB).

6.6 The synchronization problem

One of the key challenges to designing high-performance distributed space-time
coded systems is symbol-level synchronization among the relay nodes. In conven-
tional point-point space-time coded MIMO systems, co-located antennas obviate
this issue. In cooperative systems, sometimes described as virtual MIMO, the
antennas are separated by wireless links. One approach is simply to use appro-
priate hardware and higher-layer protocols to ensure that transmissions from
every participating relay are synchronized. Unfortunately, this may not be pos-

2 Note that here we assume there that there is no information passed directly between the
source and destination. If such a link exists, the diversity result simply increases by 1.
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sible in practice and, in any case, it would require significant signaling overhead
that may dramatically increase bandwidth requirements. Other approaches that
effectively circumvent the synchronization problem include delay diversity, delay
tolerant distributed space-time codes, and space-time spreading. We will next
consider each of these approaches briefly.

6.6.1 Delay diversity

It is well known that point-point communication over multipath fading channels
provides diversity that can be exploited by appropriate receiver design [18]. In
cases where Intersymbol Interference (ISI) is negligible, as is common in spread-
spectrum systems, RAKE reception is sufficient. When ISI cannot be ignored,
maximum likelihood sequence detection can be performed using the Viterbi algo-
rithm to extract full diversity in the number of resolvable paths. Mathematically,
this involves transforming the frequency selective SISO system into an equivalent
flat-fading multi-input single-output (MISO) system that uses a particular space-
time code induced by the frequency selective channel. Interestingly, the reverse
is also possible. That is, we can transform a flat fading MISO system into a
virtual frequency selective SISO system by using a space-time code described
by the following scheme: in the first time slot, the symbol x[1] is transmitted
on antenna 1 and all other antennas are silent. In the second time slot, x[1] is
transmitted from antenna 2 and x[2] is transmitted by antenna 1 and all other
antennas remain silent. At time slot m, x[m− l] is transmitted on antenna l + 1
for l = 0, 1, . . . L− 1. This transmission scheme yields a received signal that is
identical to that received in a SISO frequency selective channel with L paths.
This special point-point space-time coding scheme is called delay diversity [22].
Delay diversity cannot be implemented in cooperative communication systems

in exactly this way without requiring what we are trying to avoid, i.e., syn-
chronization to determine which relay transmits which symbol in which order.
Fortunately, it is straightforward to implement delay diversity in a distributed
manner. The simplest way to do this is simply for the relays to wait a random
amount of time before they re-transmit the symbol or signal they have most
recently received. The destination will receive a signal that is equivalent to that
received in a SISO multipath channel, so full diversity will be achievable (with
probability 1), assuming maximum likelihood detection at the destination. Linear
detectors/equalizers can also be used at the destination, e.g., minimum mean-
squared error (MMSE), or decorrelating equalization, with some diversity loss.
Interestingly, MMSE detection in conjunction with serial interference cancella-
tion (decision feedback implementation) achieves full diversity [21] with much
lower complexity than ML detection when the number of relays is large.
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6.6.2 Delay tolerant space-time codes

Another approach to distributed space-time coding without synchronization
involves the use of so-called delay tolerant distributed space-time codes whose
performance is insensitive to delays among the received signals from each relay.
It is well known that the diversity order of a space-time block code is equal the

minimum rank of the difference matrix over all pairs of distinct code matrices
[15]. A space-time code is said to be τ -delay tolerant if for all distinct code matri-
ces Sk and S�, the difference matrix Sk − S� retains full rank even though the
columns of the code matrices are transmitted or received with arbitrary delays
of duration at most τ symbols. Let S be a codeword matrix from a synchronized
space-time block code, as in (6.9), and let ∆S be the code matrix received at the
destination due to transmission or propagation delays. Then ∆S can be written
as

∆S =




0∆1 0∆2 · · · 0∆R

C1s(1) C2s(2) · · · CRs(R)

0τ−∆1 0τ−∆2 · · · 0τ−∆R



 . (6.36)

The collection of all such codewords∆S constitutes a τ -delay tolerant space-time
code if for all delay profiles {∆k}Rk=1 such that ∆k ≤ τ for all k, it achieves the
same diversity as the synchronized code. Work on delay-tolerant codes under this
framework includes [13, 5, 3, 16]. Although delay diversity extracts full diversity
in the number of relays, delay tolerant space-time codes promise better coding
gain and, in some circumstances, lower decoding complexity.

6.6.3 Space-time spreading

Delay diversity is successful in achieving full diversity in part because the distinct
delays for the received signals from each relay provide a unique signature enabling
the receiver to separate each resolvable path before co-phasing and combining.
A similar unique signature can be implemented with coding, i.e., space-time
spreading (STS).
One of the simplest space-time spreading strategies is to assign the source and

each relay a unique spreading code, as in code-division multiple access (CDMA)
communications. When the relays are not synchronized, the signal received at the
destination will be similar to that obtained in a conventional (non-cooperative)
asynchronous CDMA uplink, so that the transmissions from the source and each
relay can be separated using well-known multiuser detection (MUD) signal pro-
cessing strategies, co-phased, and re-combined to extract full diversity without
symbol-level synchronization. Note that, although CDMA is a spread-spectrum
signaling format, it does not need to operate in a spectrally inefficient mode. In
fact, it was shown in [19] that the information outage probability of an asyn-
chronous cooperative CDMA uplink under decorrelating multiuser detection is
minimized when the system is slightly overloaded, i.e., when the number of relays
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is slightly larger than the processing gain. This is not surprising because an over-
loaded CDMA system is operating at high spectral efficiency.
A more sophisticated space-time spreading strategy was designed in [14], which

does not require synchronization among the relays, channel estimation, or com-
plex multiuser signal processing at the destination or relays. The necessity of
channel information is obviated by the use of differentially-encoded symbols
from each source, as in [4], during the first transmission phase. During the sec-
ond transmission phase, dedicated relays use a STS AF strategy described in [4]
that allows for low complexity decoding and large diversity gain without channel
estimation. Because high-complexity multiuser detection strategies are not used
here, the residual multiple access interference (MAI) and ISI must be mitigated
by the use of specially designed spreading codes that provide an “interference
free window” (IFW) where the off-peak aperiodic autocorrelation and crosscorre-
lation values become zero, resulting in zero MAI and ISI, provided the maximum
asynchronous delay is within the IFW [20]. The resulting system extracts full
diversity without channel knowledge or complex multiuser detection at the des-
tination or relays.

6.7 Conclusion

Distributed space-time block codes are able to effectively exploit the spatial
diversity present in a multi-relay network. With a distributed-space time code,
each relay transmits a particular column of a space-time codeword. The decode-
and-forward strategy is appropriate when there are more relays than there are
columns in the space-time codeword, since only a subset of relays may participate
in the transmission of the distributed space-time codeword, namely those that
receive the source’s transmission. However, DF protocols require coordination
among the relays to assure that each relay transmits a specific column of the
space-time codeword. Amplify-and-forward protocols are well suited to the case
that the number of relays is equal to the number of columns in the space-time
code, since with AF protocols every relay participates in the transmission of the
space-time codeword regardless of the quality of the source-relay transmission.
In addition to the implementation challenges that are common to conven-

tional MIMO systems, the lack of synchronization at the destination receiver
imposes additional challenges to systems that use distributed space-time codes.
The synchronization problem can be alleviated by using delay diversity, space-
time spreading, or delay-tolerant space-time codes.
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