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Spatial Correlation of the Interference

▸ Interference exhibits a spatial correlation [1], that can be captured by evaluating
the correlation coefficient of the outage probability at two reference receivers:
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▸ R1 and R2 are two reference receivers
that are located on a circle of radius r0

and separated by θ radians.
▸ T0 is a reference transmitter.
▸ The network is circular and finite.
▸M interferers are randomly distributed.

▸ The SINR at receiver Ri is:

γi =
gi,0r−α0

SNR−1 +
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Ijgi,jr
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where:

{ri,j} are the distances between the ith receiver and the M interferers.
r0 = ri,0 is the distance from T0 to either Ri.
{gi,j} are the fading gains (e.g., i.i.d. exponential).
{Ij} are Bernoulli variables indicating interference (P[Ij = 1] = p).
α ≥ 2 is the path-loss exponent.

▸ For a SINR threshold of β, the outage probability (OP) is

εi (M,r) = Eg [1 (γi ≤ β) ∣M,r]
where

1 (⋅) is an indicator function.
Eg [⋅] is the expectation operator, evaluated over the fading.

▸ The spatially averaged correlation coefficient of the OP at the two receivers is

ζ(R1,R2) =
EM,r [ε1ε2] −E2

M,r [εi]
EM,r [ε2

i] −E2
M,r [εi]

(1)

where EM,r [⋅] is the expectation operator, evaluated over the number of
interferers and their distances to the reference receivers.

Approach to Spatial Averaging [2]

r
0

r
net

T
0

R
1

R
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

/

(R
1
,R

2
)

 

 

PPP

BPP

p = 50

p = 25

p = 5

Specific Cases

▸ In Rayleigh fading [2, 4],

εi = 1 − e−βrα0 /(SNR)
M

∏
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▸ When the M interferers are i.u.d. (i.e., a binomial point process), then:
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▸ When M is Poisson (i.e., Poisson point process ) with intensity λ , then:
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▸ The spatially averaged correlation coefficient can be evaluated by
substituting the expressions provided above in (1), where
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Numerical Results

Fading Rayleigh

Network area πr2net =1

Distance between T0 and Ri r0 =
rnet
2

Path loss exponent α =3.5

SNR SNR = 10 dB

SINR threshold β = 0 dB
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Benefits and Conclusions

▸ The spatial correlation of the interference is quantified for a finite wireless
network.

▸ The approach used is particularly effective when the interferers are drawn
from a BPP or PPP, for which semi-closed form expressions are derived.
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