Interference Correlation in Fixed and Finite Networks Salvatore Talarico and Matthew C. Valenti

WestVirginiaUniversity.

ane Department of Computer Science and Electrical Engineering, West Virginia University, U.S.A.

Spatial Correlation of the Interference

- Interference exhibits a spatial correlation [1], that can be captured by evaluating the correlation coefficient of the outage probability at two reference receivers:
 - R₁ and R₂ are two reference receivers that are located on a circle of radius r₀ and separated by θ radians.
 T₀ is a reference transmitter.
 - ► The network is circular and finite.
 - $\blacktriangleright M$ interferers are randomly distributed.

Specific Cases

► In Rayleigh fading [2, 4],

$$\epsilon_i = 1 - e^{-\beta r_0^{\alpha}/(\text{SNR})} \prod_{j=1}^M \left(1 - p + \frac{pr_{i,j}^{\alpha}}{\beta r_0^{\alpha} + r_{i,j}^{\alpha}} \right)$$

► When the *M* interferers are i.u.d. (i.e., a binomial point process), then:

$$\mathbb{E}_{\boldsymbol{r}}\left[\epsilon_{i}|M\right] = 1 - \exp\left(-\frac{\beta r_{0}^{\alpha}}{\mathsf{SNR}}\right) \left[1 - p + \frac{2p}{\pi r_{\mathsf{net}}^{2}}\left(\mathcal{T} + \Phi_{1}\right)\right]^{M}$$
$$\mathbb{E}_{\boldsymbol{r}}\left[\epsilon_{i}^{2}|M\right] = 2E_{\boldsymbol{r}}\left[\epsilon_{i}|M\right] - 1 + \exp\left(-\frac{2\beta r_{0}^{\alpha}}{\mathsf{SNR}}\right)\mathcal{S}^{M}$$
$$\mathbb{E}_{\boldsymbol{r}}\left[\epsilon_{1}\epsilon_{2}|M\right] = 2E_{\boldsymbol{r}}\left[\epsilon_{i}|M\right] - 1 + \exp\left(-\frac{2\beta r_{0}^{\alpha}}{\mathsf{SNR}}\right)\mathcal{W}^{M}$$

• When M is Poisson (i.e., Poisson point process) with intensity λ , then:

• The SINR at receiver R_i is:

$$\gamma_{i} = \frac{g_{i,0}r_{0}^{-\alpha}}{\mathsf{SNR}^{-1} + \sum_{j=1}^{M} I_{j}g_{i,j}r_{i,j}^{-\alpha}}$$

where:

 $\{r_{i,j}\}\$ are the distances between the i^{th} receiver and the M interferers. $r_0 = r_{i,0}$ is the distance from T_0 to either R_i .

 $\{g_{i,j}\}\$ are the fading gains (e.g., i.i.d. exponential).

 $\{I_j\}$ are Bernoulli variables indicating interference $(\mathbb{P}[I_j = 1] = p)$. $\alpha \ge 2$ is the path-loss exponent.

For a SINR threshold of β , the outage probability (OP) is

 $\epsilon_i(M, \boldsymbol{r}) = \mathbb{E}_{\boldsymbol{g}}[\mathbf{1}(\gamma_i \leq \beta) | M, \boldsymbol{r}]$

where

 $\mathbf{1}\left(\cdot\right)$ is an indicator function.

 $\mathbb{E}_{g}[\cdot]$ is the expectation operator, evaluated over the fading.

The spatially averaged correlation coefficient of the OP at the two receivers is

$$\zeta(R_1, R_2) = \frac{\mathbb{E}_{M, \boldsymbol{r}}[\epsilon_1 \epsilon_2] - \mathbb{E}_{M, \boldsymbol{r}}^2[\epsilon_i]}{\mathbb{E}_{M, \boldsymbol{r}}[\epsilon_i^2] - \mathbb{E}_{M, \boldsymbol{r}}^2[\epsilon_i]}$$

$$\mathbb{E}_{M,\boldsymbol{r}}\left[\epsilon_{i}\right] = 1 - \exp\left[-\frac{\beta r_{0}^{\alpha}}{\mathsf{SNR}} - 2\lambda p \left(\frac{\pi r_{\mathsf{net}}^{2}}{2} - \mathcal{T} - \Phi_{1}\right)\right]$$
$$\mathbb{E}_{M,\boldsymbol{r}}\left[\epsilon_{i}^{2}\right] = 2\mathbb{E}_{M,\boldsymbol{r}}\left[\epsilon_{i}\right] - 1 + \exp\left(-\frac{2\beta r_{0}^{\alpha}}{\mathsf{SNR}} - \pi r_{\mathsf{net}}^{2}\lambda\left[1 + \mathcal{S}\right]\right)$$
$$\mathbb{E}_{M,\boldsymbol{r}}\left[\epsilon_{1}\epsilon_{2}\right] = 2E_{M,\boldsymbol{r}}\left[\epsilon_{i}\right] - 1 + \exp\left(-\frac{2\beta r_{0}^{\alpha}}{\mathsf{SNR}} - \pi r_{\mathsf{net}}^{2}\lambda\left[1 + \mathcal{W}\right]\right)$$

The spatially averaged correlation coefficient can be evaluated by substituting the expressions provided above in (1), where

$$\begin{aligned} \mathcal{T} &= \frac{1}{r_{\text{ret}}^2} \frac{\left(r_{\text{net}} - r_0\right)^{\alpha+2}}{2 + \alpha} \Psi_1 \left(r_{\text{net}} - r_0\right) \\ \Phi_i &= \int_{r_{\text{net}} - r_0}^{r_{\text{net}} + r_0} \frac{r}{\beta r_0^{\alpha} r^{-\alpha} \left[\beta r_0^{\alpha} + 2\left(i - 1\right) r^{\alpha}\right] + 1} \arccos\left(\frac{r^2 + r_0^2 - r_{\text{net}}^2}{2r_0 r}\right) dr \\ \Psi_k(y) &= {}_2F_1\left(\left[1, \frac{2}{\alpha} + k\right]; \frac{2}{\alpha} + 1 + k; -\frac{y^{\alpha}}{\beta r_0^{\alpha}}\right) \\ \mathcal{S} &= (1 - p)^2 + \frac{4}{\pi r_{\text{net}}^2} \left(1 - p\right) p \left(\mathcal{T} + \Phi_1\right) + \frac{2p^2}{\pi r_{\text{net}}^2} \left(\mathcal{Z} \left(r_{\text{net}} - r_0\right) + \Phi_2\right) \\ \mathcal{Z}(y) &= \frac{y^2}{2\alpha \left[y^{\alpha} + \beta r_0^{\alpha}\right]} \left[\alpha + 2\beta r_0^{\alpha} + \alpha y^{\alpha} - (\alpha + 2) \Psi_0(y)\right] \\ \mathcal{W} &= (1 - p)^2 + \frac{4}{\pi r_{\text{net}}^2} \left(1 - p\right) p \left(\mathcal{T} + \Phi_1\right) + p^2 \mathcal{X} \\ \mathcal{X} &= \frac{1}{2\pi} \int_0^1 \int_0^{2\pi} \frac{l(\rho, \phi, 0) l(\rho, \phi, \theta)}{\left[\beta r_0^{\alpha} + l(\rho, \phi, 0)\right] \left[\beta + l(\rho, \phi, \theta)\right]} d\rho d\phi. \end{aligned}$$

where $\mathbb{E}_{M,r}[\cdot]$ is the expectation operator, evaluated over the number of interferers and their distances to the reference receivers.

Approach to Spatial Averaging [2]

Fix \boldsymbol{r} and M and find the conditional OP averaged over just the fading: $\epsilon_i(M, \boldsymbol{r}) = \mathbb{E}_{\boldsymbol{g}} [\mathbf{1}(\gamma_i \leq \beta) | M, \boldsymbol{r}]$

For a given M, evaluate the spatial average using $f_r(r|M)$ from [3] : \triangleright The spatially averaged OP is

$$\mathbb{E}_{\boldsymbol{r}}[\epsilon_i|M] = \int \epsilon_i(M,\boldsymbol{r}) f_{\boldsymbol{r}}(\boldsymbol{r}|M) d\boldsymbol{r}$$

> The *spatially averaged second moment OP* is

 $\mathbb{E}_{\boldsymbol{r}}\left[\epsilon_{i}^{2}|M\right] = \int \epsilon_{i}^{2}\left(M,\boldsymbol{r}\right) f_{\boldsymbol{r}}\left(\boldsymbol{r}|M\right) d\boldsymbol{r}$

The spatially averaged first joint moment OP is

 $\mathbb{E}_{\boldsymbol{r}}[\epsilon_{1}\epsilon_{2}|M] = \iint \epsilon_{i}(M, l(\boldsymbol{\rho}, \boldsymbol{\phi}, 0)) \epsilon_{i}(M, l(\boldsymbol{\rho}, \boldsymbol{\phi}, \theta)) f_{\boldsymbol{\rho}}(\boldsymbol{\rho}) f_{\boldsymbol{\phi}}(\boldsymbol{\phi}) d\boldsymbol{\rho} d\boldsymbol{\phi}$

Numerical Results

(-)

Benefits and Conclusions

The spatial correlation of the interference is quantified for a finite wireless network.

where

 $\rho \sim \mathcal{U}(0,1).$ $\phi \sim \mathcal{U}(0,2\pi).$ $l(\rho,\phi,\theta) = ||r_0 \exp(j\theta) + r_{\text{net}} \sqrt{\rho} \exp(j\phi)||.$

If M is random (i.e PPP), then take the expectation with respect to M: $\mathbb{E}_{M,r} \left[\epsilon_i^x \epsilon_j^y \right] = \sum_{m=0}^{\infty} p_M[m] E_r \left[\epsilon_i^x \epsilon_j^y | m \right]$ where $p_M[m]$ is the PMF of M.

The approach used is particularly effective when the interferers are drawn from a BPP or PPP, for which semi-closed form expressions are derived.

References

[1] R. K. Ganti and M. Haenggi, "Spatial and temporal correlation of the interference in ALOHA ad hoc networks," *IEEE Communications Letters*, vol. 13, pp. 631-633, Sept. 2009.

 M.C. Valenti, D. Torrieri, and S. Talarico, "A direct approach to computing spatially averaged outage probability," *IEEE Communications Letters*, vol. 18, pp. 1103-1106, Jul. 2014.

[3] Z. Khalid and S. Durrani, "Distance distributions in regular polygons," *IEEE Transactions* on Vehicular Technology, vol. 62, pp. 2363-2368, Jun. 2013.

[4] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge University Press, 2012.

