Mutual Information as a Tool for the Design, Analysis, and Testing of Modern Communication Systems

June 8, 2007

Matthew Valenti
Associate Professor
West Virginia University
Morgantown, WV 26506-6109
mvalenti@wvu.edu
Motivation:
Turbo Codes

- Berrou et al 1993
 - Rate $\frac{1}{2}$ code.
 - 65,536 bit message.
 - Two K=5 RSC encoders.
 - Random interleaver.
 - Iterative decoder.
 - BER = 10^{-5} at 0.7 dB.

- Comparison with Shannon capacity:
 - Unconstrained: 0 dB.
 - With BPSK: 0.2 dB.
Key Observations and Their Implications

Key observations:
- Turbo-like codes closely approach the channel capacity.
- Such codes are complex and can take a long time to simulate.

Implications:
- If we know that we can find a code that approaches capacity, why waste time simulating the actual code?
- Instead, let’s devote our design effort towards determining capacity and optimizing the system with respect to capacity.
- Once we are done with the capacity analysis, we can design (select?) and simulate the code.
Challenges

- How to efficiently find capacity under the constraints of:
 - Modulation.
 - Channel.
 - Receiver formulation.

- How to optimize the system with respect to capacity:
 - Selection of free parameters, e.g. code rate, modulation index.
 - Design of the code itself.

- Dealing with nonergodic channels:
 - Slow and block fading.
 - hybrid-ARQ systems.
 - Relaying networks and cooperative diversity.
 - Finite-length codewords.
Overview of Talk

- The capacity of AWGN channels
 - Modulation constrained capacity.
 - Monte Carlo methods for determining constrained capacity.
 - CPFSK: A case study on capacity-based optimization.

- Design of binary codes
 - Bit interleaved coded modulation (BICM) and off-the-shelf codes.
 - Custom code design using the EXIT chart.

- Nonergodic channels.
 - Block fading and Information outage probability.
 - Hybrid-ARQ.
 - Relaying and cooperative diversity.
 - Finite length codeword effects.
Noisy Channel Coding Theorem (Shannon 1948)

Consider a memoryless channel with input X and output Y

- The channel is completely characterized by $p(x,y)$

The **capacity** C of the channel is

$$C = \max_{p(x)} \{ I(X;Y) \} = \max_{p(x)} \left\{ \int \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \, dx \, dy \right\}$$

- where $I(X,Y)$ is the (average) **mutual information** between X and Y.

The channel capacity is an upper bound on **information rate** r.
- There exists a code of rate $r < C$ that achieves reliable communications.
- “Reliable” means an arbitrarily small error probability.
Capacity of the AWGN Channel with Unconstrained Input

Consider the one-dimensional AWGN channel

The input X is drawn from any distribution with average energy $E[X^2] = E_s$.

The capacity is

$$C = \max_{p(x)} \{ I(X;Y) \} = \frac{1}{2} \log_2 \left(\frac{2E_s}{N_o} + 1 \right)$$

bits per channel use

The X that attains capacity is Gaussian distributed.

- Strictly speaking, Gaussian X is not practical.
Suppose X is drawn with equal probability from the finite set \(S = \{X_1, X_2, \ldots, X_M\} \)

- where \(f(Y|X_k) = \kappa p(Y|X_k) \) for any \(\kappa \) common to all \(X_k \)

Since \(p(x) \) is now fixed

\[
C = \max_{p(x)} \{I(X;Y)\} = I(X;Y)
\]

- i.e. calculating capacity boils down to calculating mutual info.
Entropy and Conditional Entropy

- Mutual information can be expressed as:
 \[I(X; Y) = H(X) - H(X \mid Y) \]

- Where the entropy of X is
 \[H(X) = E[h(X)] = \int p(x)h(x)dx \]
 where \(h(x) = \log \frac{1}{p(x)} = -\log p(x) \)

- And the conditional entropy of X given Y is
 \[H(X \mid Y) = E[h(X \mid Y)] = \iint p(x, y)h(x \mid y)dxdy \]
 where \(h(x \mid y) = -\log p(x \mid y) \)
Calculating Modulation-Constrained Capacity

- To calculate:
 \[I(X;Y) = H(X) - H(X | Y) \]

- We first need to compute \(H(X) \)
 \[H(X) = E[h(X)] \]
 \[= E\left[\log \frac{1}{p(X)} \right] \]
 \[= E[\log M] \]
 \[= \log M \]

- Next, we need to compute \(H(X|Y) = E[h(X|Y)] \)
 - This is the “hard” part.
 - In some cases, it can be done through numerical integration.
 - Instead, let’s use Monte Carlo simulation to compute it.
Step 1: Obtain \(p(x|y) \) from \(f(y|x) \)

- Since
\[
\sum_{x' \in S} p(x'|y) = 1
\]
- We can get \(p(x|y) \) from
\[
p(x|y) = \frac{p(x|y)}{\sum_{x' \in S} p(x'|y)} = \frac{p(y|x)p(x)}{\sum_{x' \in S} p(y|x')p(x')} = \frac{f(y|x)}{\sum_{x' \in S} f(y|x')}
\]
Step 2: Calculate $h(x|y)$

Given a value of x and y (from the simulation) compute

$$p(x \mid y) = \frac{f(y \mid x)}{\sum_{x' \in S} f(y \mid x')}$$

Then compute

$$h(x \mid y) = -\log p(x \mid y) = -\log f(y \mid x) + \log \sum_{x' \in S} f(y \mid x')$$
Step 3: Calculating $H(X|Y)$

- Since:
 $$H(X | Y) = E[h(X | Y)] = \int \int p(x, y)h(x | y)dxdy$$

- Because the simulation is ergodic, $H(X|Y)$ can be found by taking the sample mean:
 $$H(X | Y) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} h(X^{(n)} | Y^{(n)})$$

- where $(X^{(n)}, Y^{(n)})$ is the n^{th} realization of the random pair (X, Y).
 – i.e. the result of the n^{th} simulation trial.
Example: BPSK

- Suppose that $S = \{+1,-1\}$ and N has variance $N_0/2E_s$

- Then:

 $$\log f(y \mid x) = -\frac{E_s}{N_o} \| y - x \|^2$$
BPSK Capacity as a Function of Number of Simulation Trials

$E_b/N_0 = 0.2 \text{ dB}$

As N gets large, capacity converges to $C=0.5$
Unconstrained vs. BPSK Constrained Capacity

It is theoretically impossible to operate in this region.

It is theoretically possible to operate in this region.
Power Efficiency of Standard Binary Channel Codes

[Graph showing the relationship between Eb/No in dB, Spectral Efficiency, Code Rate r, and BER: Pb = 10^{-5}.]

Turbo Code 1993
LDPC Code 2001
Chung, Forney, Richardson, Urbanke
IS-95 1991
Odenwalder Convolutional Codes 1976

arbitrarily low BER: Pb = 10^{-5}
Software to Compute Capacity
www.iterativesolutions.com
Capacity of Noncoherent Orthogonal FSK in AWGN

Noncoherent combining penalty

Minimum E_b/N_0 (in dB) at $r=0.48$

- $M=2$: $\min E_b/N_0 = 6.72$ dB
- $M=4$
- $M=16$
- $M=64$
Capacity of Nonorthogonal CPFSK

S. Cheng, R. Iyer Sehshadri, M.C. Valenti, and D. Torrieri,
“The capacity of noncoherent continuous-phase frequency shift keying,”
in Proc. Conf. on Info. Sci. and Sys. (CISS), (Baltimore, MD), Mar. 2007.

for $h = 1$
$\frac{\text{min } E_b/No}{T_s} = 6.72 \text{ dB}$
at $r = 0.48$

BW constraint: 2 Hz/bps
No BW Constraint
Overview of Talk

- The capacity of AWGN channels
 - Modulation constrained capacity.
 - Monte Carlo methods for determining constrained capacity.
 - CPFSK: A case study on capacity-based optimization.

- Design of binary codes
 - Bit interleaved coded modulation (BICM).
 - Code design using the EXIT chart.

- Nonergodic channels.
 - Block fading: Information outage probability.
 - Hybrid-ARQ.
 - Relaying and cooperative diversity.
 - Finite length codeword effects.
BICM
(Caire 1998)

- Coded modulation (CM) is required to attain the aforementioned capacity.
 - Channel coding and modulation handled jointly.
 - Alphabets of code and modulation are matched.
 - e.g. trellis coded modulation (Ungerboeck); coset codes (Forney)
- Most off-the-shelf capacity approaching codes are binary.
- A pragmatic system would use a binary code followed by a bitwise interleaver and an M-ary modulator.
 - Bit Interleaved Coded Modulation (BICM).
BICM Receiver

- The symbol likelihoods must be transformed into bit log-likelihood ratios (LLRs):

\[
\lambda_n = \log \frac{\sum_{X_k \in S_n^{(1)}} f(Y \mid X_k)}{\sum_{X_k \in S_n^{(0)}} f(Y \mid X_k)}
\]

- where \(S_n^{(1)} \) represents the set of symbols whose \(n^{th} \) bit is a 1.
- and \(S_n^{(0)} \) is the set of symbols whose \(n^{th} \) bit is a 0.
BICM Capacity

Can be viewed as $\mu = \log_2 M$ binary parallel channels, each with capacity

$$C_n = I(c_n, \lambda_n)$$

Capacity over parallel channels adds:

$$C = \sum_{n=1}^{\mu} C_n$$

As with the CM case, Monte Carlo integration may be used.
CM vs. BICM Capacity for 16QAM
BICM-ID
(Li & Ritcey 1997)

A SISO decoder can provide side information to the demapper in the form of a priori symbol likelihoods.

- BICM with Iterative Detection The demapper’s output then becomes

\[
\lambda_n = \log \frac{\sum_{X_k \in S_n^{(1)}} f(Y | X_k) p(X_k)}{\sum_{X_k \in S_n^{(0)}} f(Y | X_k) p(X_k)}
\]
Assume that v_n is Gaussian and that:

$$I(c_n, v_n) = I_v$$

For a particular channel SNR E_s/No, randomly generate a priori LLR’s with mutual information I_v.

Measure the resulting capacity:

$$C = \sum_{n=1}^{\mu} I(c_n, \lambda_n) = \mu I_z$$
16-QAM
AWGN
$E_s/N_0 = 6.8$ dB

(BICM capacity curve)
Similarly, generate a simulated Gaussian decoder input z_n with mutual information I_z.

- Measure the resulting mutual information I_v at the decoder output.

$$I_v = I(c_n, v_n)$$
16-QAM
AWGN
6.8 dB
adding curve for a FEC code
makes this an extrinsic information
transfer (EXIT) chart

K=3
convolutional code
Code Design by Matching EXIT Curves

Variable node degree (ratio): 15 (18.33%), 4 (2.4%), 3 (76.9%), 2 (2.37%)

Check node degree (ratio): 1 (20%), 3 (80%)

from M. Xiao and T. Aulin,
“Irregular repeat continuous-phase modulation,”

coherent MSK
EXIT curve at 0.4 dB
Capacity is 0.2 dB
Overview of Talk

- The capacity of AWGN channels
 - Modulation constrained capacity.
 - Monte Carlo methods for determining constrained capacity.
 - CPFSK: A case study on capacity-based optimization.

- Design of binary codes
 - Bit interleaved coded modulation (BICM).
 - Code design using the EXIT chart.

- Nonergodic channels.
 - Block fading: Information outage probability.
 - Hybrid-ARQ.
 - Relaying and cooperative diversity.
 - Finite length codeword effects.
Ergodicity vs. Block Fading

- Up until now, we have assumed that the channel is **ergodic**.
 - The observation window is large enough that the time-average converges to the statistical average.
- Often, the system might be **nonergodic**.
- Example: *Block fading*

<table>
<thead>
<tr>
<th>b=1</th>
<th>b=2</th>
<th>b=3</th>
<th>b=4</th>
<th>b=5</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_3</td>
<td>γ_4</td>
<td>γ_5</td>
</tr>
</tbody>
</table>

The codeword is broken into B equal length blocks.
The SNR changes randomly from block-to-block.
The channel is conditionally Gaussian.
The instantaneous Es/No for block b is γ_b.
Accumulating Mutual Information

- The SNR γ_b of block b is a random.
- Therefore, the mutual information I_b for the block is also random.
 - With a complex Gaussian input, $I_b = \log(1 + \gamma_b)$
 - Otherwise the modulation constrained capacity can be used for I_b

The mutual information of each block is $I_b = \log(1 + \gamma_b)$
Blocks are conditionally Gaussian
The entire codeword’s mutual info is the sum of the blocks’

$$I_1^B = \sum_{b=1}^{B} I_b$$
(Code combining)
An information outage occurs after B blocks if

\[I_i^B < R \]

- where \(R \leq \log_2 M \) is the rate of the coded modulation

An outage implies that no code can be reliable for the particular channel instantiation

The information outage probability is

\[P_0 = P[I_i^B < R] \]

- This is a practical bound on FER for the actual system.
Notice the loss of diversity as $B \to \infty$, the curve becomes vertical at the ergodic Rayleigh fading capacity bound.
Hybrid-ARQ
(Caire and Tunninetti 2001)

- Once $I_1^B > R$ the codeword can be decoded with high reliability.
- Therefore, why continue to transmit any more blocks?
- With hybrid-ARQ, the idea is to request retransmissions until $I_1^B > R$
 - With hybrid-ARQ, outages can be avoided.
 - The issue then becomes one of latency and throughput.

\[
\begin{array}{|c|c|c|c|c|}
\hline
b=1 & b=2 & b=3 & b=4 & b=5 \\
I_1 = \log(1+\gamma_1) & I_2 & I_3 & I_4 & I_5 \\
\hline
\end{array}
\]

\[
R < 1 \\
\text{NACK} \quad \text{NACK} \quad \text{ACK} \quad \{\text{Wasted transmissions}\}
\]
Latency and Throughput of Hybrid-ARQ

With hybrid-ARQ B is now a random variable.
- The average *latency* is proportional to $E[B]$.
- The average *throughput* is inversely proportional to $E[B]$.

Often, there is a practical upper limit on B
- Rateless coding (e.g. Raptor codes) can allow $B_{\text{max}} \to \infty$

An example
- HSDPA: High-speed downlink packet access
- 16-QAM and QPSK modulation
- UMTS turbo code
- HSET-1/2/3 from TS 25.101
- $B_{\text{max}} = 4$
R = 3202/2400 for QPSK
R = 4664/1920 for QAM
B_{\text{max}} = 4

Hybrid-ARQ and Relaying

- Now consider the following ad hoc network:

- We can generalize the concept of hybrid-ARQ
 - The retransmission could be from any relay that has accumulated enough mutual information.
 - “HARBINGER” protocol
 - Hybrid ARq-Based INtercluster GEographic Relaying
HARBINGER: Overview

Amount of fill is proportional to the accumulated entropy.
Once node is filled, it is admitted to the decoding set D.
Any node in D can transmit.
Nodes keep transmitting until Destination is in D.
HARBINGER: Initial Transmission

Now D contains three nodes. Which one should transmit? Pick the one closest to the destination.
HARBINGER: 2nd Transmission
HARBINGER: 3rd Transmission
HARBINGER: 4th Transmission
HARBINGER: Results

<table>
<thead>
<tr>
<th>Cumulative transmit SNR Eb/No (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>105</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>95</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>80</td>
</tr>
</tbody>
</table>

Topology:
- Relays on straight line
- S-D separated by 10 m

Coding parameters:
- Per-block rate R=1
- No limit on M
- Code Combining

Channel parameters:
- n = 3 path loss exponent
- 2.4 GHz
- $d_0 = 1$ m reference dist
- Unconstrained modulation

Relaying has better energy-latency tradeoff than conventional *multihop*

Finite Length Codeword Effects

- Outage Region

Codeword length vs. capacity plot showing a shaded area indicating the outage region.
FER of the (1092,360) UMTS turbo code with BPSK in AWGN
Conclusions

- When designing a system, first determine its capacity.
 - Only requires a slight modification of the modulation simulation.
 - Does not require the code to be simulated.
 - Allows for optimization with respect to free parameters.

- After optimizing with respect to capacity, design the code.
 - BICM with a good off-the-shelf code.
 - Optimize code with respect to the EXIT curve of the modulation.

- Information outage analysis can be used to characterize:
 - Performance in slow fading channels.
 - Delay and throughput of hybrid-ARQ retransmission protocols.
 - Performance of multihop routing and relaying protocols.
 - Finite codeword lengths.
Thank You

- For more information and publications
 - http://www.csee.wvu.edu/~mvalenti

- Free software
 - http://www.iterativesolutions.com
 - Runs in matlab but implemented mostly in C
 - Modulation constrained capacity
 - Information outage probability
 - Throughput of hybrid-ARQ
 - Standardized codes: UMTS, cdma2000, and DVB-S2