Mutual Information as a Tool for the Design, Analysis, and Testing of Modern Communication Systems

June 8, 2007

Matthew Valenti Associate Professor West Virginia University Morgantown, WV 26506-6109 mvalenti@wvu.edu

Motivation: Turbo Codes

6/8/2007

Mutual Information for Modern Comm. Systems

Key Observations and Their Implications

- Key observations:
 - Turbo-like codes closely approach the channel capacity.
 - Such codes are complex and can take a long time to simulate.
- Implications:
 - If we know that we can find a code that approaches capacity, why waste time simulating the actual code?
 - Instead, let's devote our design effort towards determining capacity and optimizing the system with respect to capacity.
 - Once we are done with the capacity analysis, we can design (select?) and simulate the code.

Challenges

- How to efficiently find capacity under the constraints of:
 - Modulation.
 - Channel.
 - Receiver formulation.
 - How to optimize the system with respect to capacity.
 - Selection of free parameters, e.g. code rate, modulation index.
 - Design of the code itself.
- Dealing with nonergodic channels
 - Slow and block fading.
 - hybrid-ARQ systems.
 - Relaying networks and cooperative diversity.
 - Finite-length codewords.

Overview of Talk

- The capacity of AWGN channels
 - Modulation constrained capacity.
 - Monte Carlo methods for determining constrained capacity.
 - CPFSK: A case study on capacity-based optimization.
 - Design of binary codes
 - Bit interleaved coded modulation (BICM) and off-the-shelf codes.
 - Custom code design using the EXIT chart.
- Nonergodic channels.
 - Block fading and Information outage probability.
 - Hybrid-ARQ.
 - Relaying and cooperative diversity.
 - Finite length codeword effects.

Noisy Channel Coding Theorem (Shannon 1948)

Consider a memoryless channel with input X and output Y

- The channel is completely characterized by p(x,y)

The capacity C of the channel is

$$C = \max_{p(x)} \left\{ I(X;Y) \right\} = \max_{p(x)} \left\{ \iint p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dx dy \right\}$$

- where I(X,Y) is the (average) *mutual information* between X and Y.

- The channel capacity is an upper bound on *information rate* r.
 - There exists a code of rate r < C that achieves reliable communications.
 - "Reliable" means an arbitrarily small error probability.

Capacity of the AWGN Channel with a Modulation-Constrained Input Suppose X is drawn with equal probability from the finite set S = { $X_1, X_2, ..., X_M$ } Modulator: ML Receiver: Pick X_k at random from Compute $f(Y|X_k)$ for every $X_k \in S$ $S = \{X_1, X_2, ..., X_M\}$ N_k - where $f(Y|X_k) = \kappa p(Y|X_k)$ for any κ common to all X_k Since p(x) is now fixed $C = \max_{p(x)} \{I(X;Y)\} = I(X;Y)$ - i.e. calculating capacity boils down to calculating mutual info.

Entropy and Conditional Entropy

6/8/2007

Calculating Modulation-Constrained Capacity

To calculate:

I(X;Y) = H(X) - H(X | Y)

We first need to compute H(X)

$$H(X) = E[h(X)]$$

= $E\left[\log \frac{1}{p(X)}\right]^{-1}$
= $E[\log M]$
= $\log M$

Next, we need to compute H(X|Y)=E[h(X|Y)]

- This is the "hard" part.
- In some cases, it can be done through numerical integration.
- Instead, let's use Monte Carlo simulation to compute it.

Step 1: Obtain p(x|y) from f(y|x)

Step 2: Calculate h(x|y)

6/8/2007

Step 3: Calculating H(X|Y)

Example: BPSK

6/8/2007

BPSK Capacity as a Function of Number of Simulation Trials

Unconstrained vs. BPSK Constrained Capacity

Power Efficiency of Standard Binary Channel Codes

Software to Compute Capacity www.iterativesolutions.com

🖉 Matlab Turbo Code Toolbox - Windows Internet Explorer	
Coo + D http://www.iterativesolutions.com/Matlab.htm	M 4 Kive Search
👷 🕸 🍘 Matlab Turbo Code Toolbox	🏠 * 🔝 - 👼 * 🔂 Page * 🎯 Tools + 🍟
Iterativ	ve Solutions
[Main] [Matlab] [FAQ	PC Demo] [VisSim] [Links]
Contrast of this second	
Contents of this page:	
	File Edit View Insert Tools Desitop Window Help
Description	🗕 🗅 🚅 🖶 🕼 🍳 약 ?) 👯 🗋 📰 💷 🔲 🚽 🚽
Editor - h:\valenti\matlab\cml\scenarios\CapacityScenarios.m*	
ile Edit Text Cell Tools Debug Desktop Window Help	1
57 - sin param(record) biom = 0;	
58 - sim param(record) demod type = 4: 2 does not matter if not BICH	3.5
59 = sim param(record), linetype = 'k-':	
60 - sim param(record).legend = sim param(record).comment;	3
61 - sim param(record).filename = strcat(data directory, 'QPSK.mat');	
62 - sim param(record).reset = 0;	2.5 - File Edit View Insert Tools Desitop Window Help
63 - sim_param(record).max_trials = trials*ones(size(sim_param(record).SNF	x) 🛼 🗋 🗗 🖨 🖕 🍳 🔍 🖑 🥥 🐙 🚺 📰 💷 🗔
64 - sim_param(record).save_rate = 20;	
65	de -
66 - record = 3;	
67 - sim_param(record).comment = 'CH capacity of 16-QAH in AWGN';	1.5-
68 - sim_param(record).legend = sim_param(record).comment;	3.5-
<pre>69 - sim_param(record).filename = strcat(data_directory, 'QAM16CM.mat');</pre>	1-
<pre>70 - sim_param(record).sim_type = 'capacity';</pre>	3 - CM capcity of QPSK in AWGN -
71 - sim_param(record).SNR = [-20:0.5:40];	0.5 - CM capacity of 16-QAM in AWGN
72 - sim_param(record).SNR_type = 'Es/No in dB';	2.5 - CM capacity of 16-HEX in AWGN
73 - sim_param(record).framesize = 100000;	
74 - Sim_param(record) .max_trials = trials ones(size(sim_param(record).SNN	9 ×20 8 .
75 - sim param(record) mod order = 16:	
77 - sim param(record) mod order - 18;	
78 - sim param(record) linetype = 'r:':	1.5-
79 - sim param(record).bicm = 0;	Current Directory:
80 - sim param(record).reset = 0; Shutate II How to Add II Made Man	1- 1
81 - sim_param(record).save_rate = 20;	1
82 >> cd h:/valenti/matlab/cml	0.5-
83 - record = 4; >> CmlStartup	
84 - sim_param(record).comment = 'CH capacit >> edit CapacityScenarios	
<pre>85 - sim_param(record).sim_type = 'capacity' >> CmlSimulate('CapacityScenar</pre>	cios',3); -5 0 5 10 15 20 25 30 35 40
86 - sim_param(record).SNR = [-20:0.5:20];	Eb/No in dB
<pre>87 - sim_param(record).SNR_type = 'Es/No in >> CmlPlot('CapacityScenarios'</pre>	, [2 3 4]);
<pre>88 - sim_param(record).framesize = 100000; Initializing case (2): CM cap</pre>	peity of QPSK in AWGN
9 - Sim_param(record).modulation = 'HEX'; Initializing case (3): CM capacity of 16-QAM in AWGN	
Initializing case (4): CR capacity of 16-MEX in AWGN	
>>	
Dove Start	

Capacity of Nonorthogonal CPFSK

Overview of Talk

- The capacity of AWGN channels
 - Modulation constrained capacity.
 - Monte Carlo methods for determining constrained capacity.
 - CPFSK: A case study on capacity-based optimization.
 - Design of binary codes
 - Bit interleaved coded modulation (BICM).
 - Code design using the EXIT chart.
- Nonergodic channels.
 - Block fading: Information outage probability.
 - Hybrid-ARQ.
 - Relaying and cooperative diversity.
 - Finite length codeword effects.

BICM (Caire 1998)

- Coded modulation (CM) is required to attain the aforementioned capacity.
 - Channel coding and modulation handled jointly.
 - Alphabets of code and modulation are matched.
 - e.g. trellis coded modulation (Ungerboeck); coset codes (Forney)
- Most off-the-shelf capacity approaching codes are binary.
- A pragmatic system would use a binary code followed by a bitwise interleaver and an M-ary modulator.
 - Bit Interleaved Coded Modulation (BICM).

BICM Receiver

BICM Capacity

CM vs. BICM Capacity for 16QAM

BICM-ID (Li & Ritcey 1997)

becomes

$$\lambda_n = \log \frac{\sum_{X_k \in S_n^{(1)}} f(Y \mid X_k) p(X_k)}{\sum_{X_k \in S_n^{(0)}} f(Y \mid X_k) p(X_k)}$$

6/8/2007

Information Transfer Function (ten Brink 1998)

Information Transfer Function

Information Transfer Function for the Decoder

- Similarly, generate a simulated Gaussian decoder input z_n with mutual information I_{τ} .
- Measure the resulting mutual information I_{v} at the decoder output.

$$I_v = I(c_n, v_n)$$

EXIT Chart

Code Design by Matching EXIT Curves

Overview of Talk

- The capacity of AWGN channels
 - Modulation constrained capacity.
 - Monte Carlo methods for determining constrained capacity.
 - CPFSK: A case study on capacity-based optimization.
- Design of binary codes
 - Bit interleaved coded modulation (BICM).
 - Code design using the EXIT chart.
 - Nonergodic channels.
 - Block fading: Information outage probability.
 - Hybrid-ARQ.
 - Relaying and cooperative diversity.
 - Finite length codeword effects.

Ergodicity vs. Block Fading

- Up until now, we have assumed that the channel is ergodic.
 - The observation window is large enough that the time-average converges to the statistical average.
- Often, the system might be *nonergodic*.
- Example: *Block fading*

Accumulating Mutual Information

- The SNR γ_{b} of block b is a random.
- Therefore, the mutual information I_b for the block is also random.
 - With a complex Gaussian input, $I_b = log(1+\gamma_b)$
 - Otherwise the modulation constrained capacity can be used for I_b

Information Outage

An *information outage* occurs after B blocks if

 $I_1^B < R$

- where R≤log₂M is the rate of the coded modulation
- An outage implies that no code can be reliable for the particular channel instantiation
- The information outage probability is

$$P_0 = P \Big[I_1^B < R \Big]$$

– This is a practical bound on FER for the actual system.

Hybrid-ARQ (Caire and Tunnineti 2001)

- Once $I_1^B > R$ the codeword can be decoded with high reliability.
- Therefore, why continue to transmit any more blocks?
- With hybrid-ARQ, the idea is to request retransmissions until $I_1^B > R$
 - With hybrid-ARQ, outages can be avoided.
 - The issue then becomes one of latency and throughput.

6/8/2007

Mutual Information for Modern Comm. Systems

Latency and Throughput of Hybrid-ARQ

- With hybrid-ARQ B is now a random variable.
 - The average *latency* is proportional to E[B].
 - The average *throughput* is inversely proportional to E[B].
- Often, there is a practical upper limit on B
 - Rateless coding (e.g. Raptor codes) can allow $B_{max} \rightarrow \infty$
- An example
 - HSDPA: High-speed downlink packet access
 - 16-QAM and QPSK modulation
 - UMTS turbo code
 - HSET-1/2/3 from TS 25.101

$$-B_{max} = 4$$

Hybrid-ARQ and Relaying

- Now consider the following ad hoc network: Source Destination Relays We can generalize the concept of hybrid-ARQ - The retransmission could be from *any* relay that has accumulated enough mutual information. "HARBINGER" protocol Hybrid ARg-Based INtercluster GEographic Relaying
 - **B. Zhao and M. C. Valenti.** "Practical relay networks: A generalization of hybrid-ARQ," *IEEE JSAC,* Jan. 2005.

HARBINGER: Overview

HARBINGER: Initial Transmission

HARBINGER: 2nd Transmission

HARBINGER: 3rd Transmission

HARBINGER: 4th Transmission

HARBINGER: Results

Finite Length Codeword Effects

Conclusions

- When designing a system, first determine its capacity.
 - Only requires a slight modification of the modulation simulation.
 - Does not require the code to be simulated.
 - Allows for optimization with respect to free parameters.
- After optimizing with respect to capacity, design the code.
 - BICM with a good off-the-shelf code.
 - Optimize code with respect to the EXIT curve of the modulation.
- Information outage analysis can be used to characterize:
 - Performance in slow fading channels.
 - Delay and throughput of hybrid-ARQ retransmission protocols.
 - Performance of multihop routing and relaying protocols.
 - Finite codeword lengths.

Thank You

- For more information and publications
 - http://www.csee.wvu.edu/~mvalenti

Free software

- http://www.iterativesolutions.com
- Runs in matlab but implemented mostly in C
- Modulation constrained capacity
- Information outage probability
- Throughput of hybrid-ARQ
- Standardized codes: UMTS, cdma2000, and DVB-S2