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Turbo Codes
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Key Observations
and Their Implications

/- Key observations: \

— Turbo-like codes closely approach the channel capacity.
— Such codes are complex and can take a long time to simulate.

m Implications:

— If we know that we can find a code that approaches capacity, why
waste time simulating the actual code?

— Instead, let’s devote our design effort towards determining
capacity and optimizing the system with respect to capacity.

— Once we are done with the capacity analysis, we can design
(select?) and simulate the code.

- /
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Challenges

/- How to efficiently find capacity under the constraints of: \

— Modulation.
— Channel.
— Receiver formulation.

= How to optimize the system with respect to capacity.
— Selection of free parameters, e.g. code rate, modulation index.
— Design of the code itself.
m Dealing with nonergodic channels
— Slow and block fading.
— hybrid-ARQ systems.
— Relaying networks and cooperative diversity.
k — Finite-length codewords.
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Overview of Talk

/- The capacity of AWGN channels

— Modulation constrained capacity.
— Monte Carlo methods for determining constrained capacity.
— CPFSK: A case study on capacity-based optimization.

m Design of binary codes

— Custom code design using the EXIT chart.

m Nonergodic channels.

— Block fading and Information outage probability.
— Hybrid-ARQ.

— Relaying and cooperative diversity.

— Finite length codeword effects.

o

— Bit interleaved coded modulation (BICM) and off-the-shelf codes.
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Noisy Channel Coding Theorem
(Shannon 1948)

m Consider a memoryless channel with input X and output Y

-

Source
p(x)

X

A 4

Channel
p(YIX)

Y

A 4

Receiver

— The channel is completely characterized by p(x,y)

C = max{l(X;Y)}=max

2 { JI p(x.y)1og

— where I(X,Y) is the (average) mutual information between X and Y.

m The channel capacity is an upper bound on information rate r.
— There exists a code of rate r < C that achieves reliable communications.
— “Reliable” means an arbitrarily small error probability.

p(x)

m The capacity C of the channel is

PO Y yly

p(x) p(y)

|

/
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Capacity of the AWGN Channel
with Unconstrained Input

/- Consider the one-dimensional AWGN channel

The input X isdrawn X Y = X+N

from any distribution

with average energy

E[X?] =E, N~zero-mean white Gaussian

with energy E[N?]= N,/2

m The capacity is

2E, .
C=max;l(X:Y —|o bits per channel use
nax(l (X;Y) = 92( N j

0]

m The X that attains capacity is Gaussian distributed.
K — Strictly speaking, Gaussian X is not practical.
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Capacity of the AWGN Channel

with a Modulation-Constrained Input

-

. Xy}

Modulator:

Pick X, at random from 5
S= X, Xy .., Xpp}
N

X

Y

/- Suppose X is drawn with equal probability from the finite\
set S = {X,,X,, ..

— where f(Y|X,) =« p(Y|X,) for any x common to all X,
m Since p(x) is now fixed

k

ML Receiver:

» Compute f(Y|X,)

forevery X, € S

C =max{l(X;Y)}=1(X;Y)

— i.e. calculating capacity boils down to calculating mutual info.

p(x)

/
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Entropy and Conditional Entropy

/- Mutual information can be expressed as:
1(X5Y)=H(X)-H(X]Y)

m Where the entropy of Xis
H(X) = E[n(X)]= | p(x)h(x)dXx

where h(X) = Iogi =—log p(x)
p(x)

— 7
—~

self-information

= And the conditional entropy of X given Y is

H(X |Y)=E[h(X |Y)]= [[ p(x, y)h(x]| y)dxdy
\ where h(x|y) =—log p(x|y)

~
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Calculating Modulation-Constrained

Capacity

m To calculate:

— This is the “hard” part.
— |n some cases, it can be

1(X;Y)=H(X)-H(X]Y)
m We first need to compute H(X)

H(X) = E[h(X)]
I 1
=E Iog}
BGOSR
= E[logM] K_//p(x):i
=log M M

m Next, we need to compute H(X|Y)=E[h(X|Y)]

done through numerical integration.

K — Instead, let’'s use Monte Carlo simulation to compute it.
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Step 1: Obtain p(x|y) from f(y|x)

-

m Since

-

Modulator: X, Y Receiver:

Pick X, at random | » Compute f(Y]X,)
from S forevery X, € S
Ny

Noise Generator

> p(xly)=1

x'eS

= We can get p(x|y) from

p(y [ x)p(x)
_ pix]y) _ p(y) _ T(ylx)
pm”‘zmmw‘zmwmmm > f(y|x)
xes s p(y) ves

~
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Step 2: Calculate h(x|y)

-

Modulator: X, Y Receiver:

Pick X, at random | » Compute f(Y]X,)
from S forevery X, € S
Ny

Noise Generator
= Given a value of x and y (from the simulation) compute

m Then compute

h(x|y)=~log p(x|y)=-log f (y|x)+log > f(y|x)

x'eS

-

/
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Step 3: Calculating H(X|Y)
4 2

Modulator: X, Y Receiver:

Pick X, at random | » Compute f(Y]X,)
from S forevery X, € S
Ny

Noise Generator

H(X |Y) = E[N(X [Y)]= [ p(x, y)h(x | y)dxdy

m Because the simulation is ergodic, H(X|Y) can be found by taking the
sample mean:

N
H(X|Y)= Liﬂﬁzh(x (n) |Y(n))
n=1

m Since;

= where (XM Y() is the nt" realization of the random pair (X,Y).
— i.e. the result of the nth simulation trial. /
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Example: BPSK

m Then:

-

Modulator: Xy Y
Pick X, at random I
from S ={+1,-1}

\ 4

Ny

Receiver:
Compute log f(Y|X,)
forevery X, € S

Noise Generator

ES
NO

log f(y|x)=——=]y—x|

m Suppose that S ={+1,-1} and N has variance N,/2E,
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Spectral Efficiency
Code Rate r

Unconstrained vs.
BPSK Constrained Capacity
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Spectral Efficiency

Code Rate r

Power Efficiency of Standard
Binary Channel Codes
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Software to Compute Capacity
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Capacity (bits per symbol)
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Minimum Eb/No (in dB)

15

RN
o
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Capacity of Noncoherent Orthogonal FSK in AWGN

Noncoherent combining penalty

/

W. E. Stark, “Capacity and cutoff rate of noncoherent FSK
with nonselective Rician fading,” IEEE Trans. Commun., Nov. 1985.

M.C. Valenti and S. Cheng, “Iterative demodulation and decoding of turbo coded
M-ary noncoherent orthogonal modulation,” IEEE JSAC, 2005.

\ min E,/N,=6.72 dB
at r=0.48

! \ ! ! ! ! \

0.1

0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Rate R (symbol per channel use)



min Eb/No (in dB)
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Capacity of Nonorthogonal CPFSK

I

I

I

T T T T T

S. Cheng, R. lyer Sehshadri, M.C. Valenti, and D. Torrieri,
“The capacity of noncoherent continuous-phase frequency shift keying,”
in Proc. Conf. on Info. Sci. and Sys. (CISS), (Baltimore, MD), Mar. 2007. —

A

v

forh=1
min E,/N, = 6.72 dB| -~
atr=0.48 |

BW constraint: 2 Hz/bps
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Overview of Talk

< N

m Design of binary codes
— Bit interleaved coded modulation (BICM).
— Code design using the EXIT chart.

- /
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BICM
(Caire 1998)

/=

o

Coded modulation (CM) is required to attain the \

aforementioned capacity.

— Channel coding and modulation handled jointly.

— Alphabets of code and modulation are matched.

— e.g. trellis coded modulation (Ungerboeck); coset codes (Forney)

Most off-the-shelf capacity approaching codes are binary.
m A pragmatic system would use a binary code followed by

a bitwise interleaver and an M-ary modulator.
— Bit Interleaved Coded Modulation (BICM).

. Binar
u, Binary | Cn | Bitwise Cq toM-a)r/y Xy

Encoder | Interleaver

A 4

v

mapping /
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BICM Recelver

-

Cq
—>

from

Modulator:
Ple Xk (= S
from(c, ... c,)

encoder

~

Xy Y | Receiver: fYIX
Compute f(Y|X,) (ViXd,
forevery X, € S
Ny

A, =109

— where S,gl) represents the set of symbols whose nt" bit is a 1.
\ — and s'”is the set of symbols whose nt" bit is a 0.

Demapper:
Compute A,
from set of f(Y|X,)

}‘*n
—»
to

decoder

= The symbol likelihoods must be transformed into bit
log-likelihood ratios (LLRs):

000_.--=" " @
Z F(Y [X) /199,/’ Y 3
X, eSM <7101 011.*
Z (Y [X,) Vo117 010
X, eS{® \.--77 110

j
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BICM Capacity

m Can be viewed as p=log,M binary parallel channels,

each with capacity
C, =1(Cy. 4y)

m Capacity over parallel channels adds:
U
C= ZCn
n=1

m As with the CM case, Monte Carlo integration may be used.

-
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Capacity

CM vs. BICM Capacity for 16QAM
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BICM-ID
(Li & Ritcey 1997)

-

Modulator: X Y | Receiver: :
C ) k fy1x,) | Demapper:
_ " Pick X €S Compute f(Y[X,) (v k)= Compute A, A»
from from (c, ... c,) for every X, € S from set of f(y|x,) | @ecoder
encoder N, and p(X,)

~

m A SISO decoder can provide side information to the
demapper in the form of a priori symbol likelihoods.
— BICM with lterative Detection The demapper’s output then

becomes
DY X )p(Xy)
A = log XS
n g Zf (X )

\ X, eS{®

I p(X,) from decoder
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Information Transfer Function

(ten Brink 1998)

-

-

f(Y|X,) | Demapper: A Z,
—k> Compute }\’n n > B > dSISdO
from set of f(Y|X,) > ecoaer
D
and p(X) E
T =
P(X) | [convertLLRto  |&'n p

symbol likelihood

m Assume that v, is Gaussian and that:

I(Cn’vn) — Iv

m For a particular channel SNR Es/No, randomly generate a priori LLR'’s
with mutual information |,

m Measure the resulting (iapacity:

C :ZI(Cn’ﬂn)::ulz
n=1

/
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Information Transfer Function
for the Decoder

4 N

f(Y|X,) | Demapper: A Z,
—k> Compute }\’n n > B > dSISdO
from set of f(Y|X,) > ecoaer
D
and p(X,) =
T =
P(Xi) || convert LLR to <V” <

symbol likelihood

= Similarly, generate a simulated Gaussian decoder input z,
with mutual information ..

= Measure the resulting mutual information |, at the decoder
output. I =1(c.,v.)

- /
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|E,SPC-MSK’ lA,Repetition
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Code Design by Matching EXIT Curves

Variable node degree(ratio):15(18.33%), 4(2.4%), 3(76.9%), 2(2.37%)
Check node degree(ratio): 1(20%), 3(80%)

T i e beeh @@l from M. Xiao and T. Aulin,
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“Irregular repeat continuous-phase modulation,”
IEEE Commun. Letters, Aug. 2005.
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Overview of Talk

m Nonergodic channels.

— Block fading: Information outage probability.
— Hybrid-ARQ.

— Relaying and cooperative diversity.

— Finite length codeword effects.

-
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Ergodicity

vs. Block Fading

= Up until now, we have assumed that the channel is ergodic.
— The observation window is large enough that the time-average converges

-

to the statistical average.

m Often, the system might be nonergodic.
m Example: Block fading

b=1 b=2 b=3 b=4 b=5
Y1 V2 V3 Ya Vs
N
vl

The codeword is broken into B equal length blocks
The SNR changes randomly from block-to-block

The channel is conditionally Gaussian

The instantaneous Es/No for block b is vy,

~
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Accumulating Mutual Information

ﬂ The SNR vy, of block b is a random.

— With a complex Gaussian input, |,= log(1+y,)

m Therefore, the mutual information I, for the block is also random.

— Otherwise the modulation constrained capacity can be used for |,

b=1 b=2 b=3 b=4
I, = log(1+y,) l, 15 l,

b=5

N

\/

Blocks are conditionally Gaussian

B
B _
P=21
N

The mutual information of each block is I,= log(1+y,)

The entire codeword’s mutual info is the sum of the blocks’

(Code combining)

~
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Information Outage

/- An information outage occurs after B blocks if \
1 <R
— where Rs<log,M is the rate of the coded modulation

= An outage implies that no code can be reliable for the
particular channel instantiation

= The information outage probability is
P, =P|I® <R]
— This is a practical bound on FER for the actual system.

- j
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Information Outage Probability
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Rayleigh fading
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Hybrid-ARQ
(Caire and Tunnineti 2001)

ﬂ Once |7 >R the codeword can be decoded with high reliability. \
m Therefore, why continue to transmit any more blocks?

= With hybrid-ARQ, the idea is to request retransmissions until 1° >R
— With hybrid-ARQ, outages can be avoided.
— The issue then becomes one of latency and throughput.

b=1 b=2 b=3 b=4 b=5
I, = log(1+y,) l, 15 l, 5

\ NACK NACK ACK {Wasted transmissions} /
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Latency and Throughput
of Hybrid-ARQ
/l With hybrid-ARQ B is now a random variable. \

— The average latency is proportional to E[B].
— The average throughput is inversely proportional to E[B].

m Often, there is a practical upper limit on B
— Rateless coding (e.g. Raptor codes) can allow B, —

= An example
— HSDPA: High-speed downlink packet access
— 16-QAM and QPSK modulation
— UMTS turbo code
— HSET-1/2/3 from TS 25.101
_ Bmax =4

- j
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Normalized throughput
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T. Ghanim and M.C. Valenti, “The throughput of
hybrid-ARQ in block fading under modulation constraints,” -
in Proc. Conf. on Info. Sci. and Sys. (CISS), Mar. 2006.
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Hybrid-ARQ
and Relaying

= Now consider the following ad hoc network:

-

O

O O O

Source Q

Relays

O

mutual information.
— “HARBINGER” protocol

O

Destination

m We can generalize the concept of hybrid-ARQ
— The retransmission could be from any relay that has accumulated enough

« Hybrid ARg-Based INtercluster GEographic Relaying

« B. Zhao and M. C. Valenti. “Practical relay networks: A generalization of

hybrid-ARQ,” IEEE JSAC, Jan. 2005.

/
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HARBINGER: Overview

O
O

O O O

Source O Destination

O
O

Amount of fill is proportional to the accumulated entropy.

Once node is filled, it is admitted to the decoding set D.

Any node in D can transmit.

Qodes keep transmitting until Destination is in D. /
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HARBINGER: Initial Transmission

. O

Sourc \' Destination

O

Now D contains three nodes.
Which one should transmit?
Pick the one closest to the destination.



HARBINGER: 2" Transmission

\ \‘\

L e O
Source Destination

Relay G



HARBINGER: 3 Transmission

’ Relay

SW Destination



HARBINGER: 4t Transmission
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HARBINGER: Results
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tradeoff than conventional multinop \_
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Topology:
Relays on straight line
S-D separated by 10 m

Coding parameters:
Per-block rate R=1
No limiton M
Code Combining

Channel parameters:

n = 3 path loss exponent
2.4 GHz

dg = 1 m reference dist

Unconstrained modulation

B. Zhao and M. C. Valenti. “Practical relay networks: A
Average delay generalization of hybrid-ARQ,” IEEE JSAC, Jan. 2005.
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Finite Length Codeword Effects
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Conclusions

/- When designing a system, first determine its capacity. \
— Only requires a slight modification of the modulation simulation.

— Does not require the code to be simulated.

— Allows for optimization with respect to free parameters.

m After optimizing with respect to capacity, design the code.
— BICM with a good off-the-shelf code.
— Optimize code with respect to the EXIT curve of the modulation.

= Information outage analysis can be used to characterize:
— Performance in slow fading channels.

— Delay and throughput of hybrid-ARQ retransmission protocaols.

— Performance of multihop routing and relaying protocols.

— Finite codeword lengths.
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Thank You

/- For more information and publications \

— http://www.csee.wvu.edu/~mvalenti

m Free software
— http://www.iterativesolutions.com
— Runs in matlab but implemented mostly in C
— Modulation constrained capacity
— Information outage probability
— Throughput of hybrid-ARQ
— Standardized codes: UMTS, cdma2000, and DVB-S2
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