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Multicast-Broadcast Single-Frequency Network (MBSFN)

@ MBSFN is a transmission mode in the LTE standard.
@ MBSFN allows multimedia content to be broadcast over a cellular network (no
additional license spectrum, no new infrastructure and end-user devises).

Different MBSFN Areas can broadcast different contents.
A cell can be part of multiple (up to eight) MBSFN Areas.
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MBSFN Subframes

@ In an MBSFN area, it is also required the use of the same radio resources.

@ The coordination is provided by a logical node called Multi-cell/multicast Coordina-

tion Entity (MCE).
@ Inside a radio frame, certain sub-frames are reserved as MBSFN subframes.
@ The MBSFN subframes use the extended cyclic prefix (16.7us).
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MBSFN Areas: Deployment

@ In absence of real data, a MBSFN network can be created as follows:
@ Deploy M base stations according to a uniform clustering model characterized

by an exclusion zone of radius s () [15];
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[15] D. Torrieri, M. C. Valenti, and S. Talarico, “An analysis of the DS-CDMA cellular uplink for arbitrary and constrained

topologies”, IEEE Trans. Commun., vol. 61, pp. 3318-3326, Aug. 2013.
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MBSFN Areas: Deployment

@ In absence of real data, a MBSFN network can be created as follows:
@ Deploy M base stations according to a uniform clustering model characterized
by an exclusion zone of radius s () [15];
@ Pick Z points {Z1, ..., Zs} according to a regular hexagonal grid, which are
equally separated by dsm (%);
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MBSFN Areas: Deployment

@ In absence of real data, a MBSFN network can be created as follows:
@ Deploy M base stations according to a uniform clustering model characterized
by an exclusion zone of radius s () [15];
@ Pick Z points {Z1, ..., Zs} according to a regular hexagonal grid, which are
equally separated by dsm (%);
© Form MBSFN areas by grouping the radio cells of all base stations that are
closer to each of the points {Z1, ..., Zs}.
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Network Model

@ The Network comprises:
o S MFSFN areas {Z1, ..., Zs} which are equally separated by dsn;
o M cellular base stations { X1, ..., Xas}.

@ Finite network area discretized into N points, {Yi...,Yn}.

@ The instantaneous power of X; received at position Yj is

pig = Pogis 10590 f (||X; = Yj])) (1)

where
e P, is the transmit power;
@ g;,; is the power gain due to Nakagami fading;
o f(-) is a path-loss function:

o= (2)°

@ « is the path loss exponent;

e d > do;
e & ; is a shadowing factor and & ; ~ N (O,Jf) with Gudmundson’s autocor-
relation function || Az]]
R(Am):exp{—ilHQ} (2)
with the decorrelation length deorr = 20 m as suggested by the 30.03 UMTS

standard.
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Inter-Symbol Interference (I1SI)

@ In a MBSFN OFDMA network, given a MBSFN area Zj, there are two sources of
ISI:

@ Inter-MBSFN area interference: all the base stations outside Zy;
o Intra-MBSFN area interference: a transmission results in ISI if

c
X —Yj||>=——=5km
1 = Y311 > 7=
where

@ ¢ =3 x 10® m/s, which is the speed of light;
o Tecp = 16.7us, which is the extended cyclic prefix.

([ JoFpMsymboln- | OFDM symbol n OFDM symbol n+1 [ ]
[ ] JorpMsymboln- OFDM symboi n [ oFDM symbol n+1 [ J
ICI FFT window Tecp Time
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- 0000 ikt |
Signal-To-Interference-And-Noise Ratio (SINR)

@ Let G; . denote the set of the indexes of the base stations that belong to the 2t
MBSFN area and serving location Yj, and let N; = |G, .| denote the cardinality of
gj,z-

@ The signal from base station X;,i € Gz, to the UE at location Yj is included in the
maximal-ratio combining (MRC) combined signal passed to the demodulator and
the instantaneous SINR at location Y; by using (1) and (2) can be expressed as

> 905y
iEgj,zj
Vo= o : (3)
4 Z 91,582,
i¢G;,2;

where
o I' =d§N,;Py/N is the signal-to-noise ratio (SNR) at a mobile located at unit
distance when fading and shadowing are absent, where A is the noise power;

109 /101X, — Vi~

N is the normalized power of X at receiver Y;.
J
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Conditional Outage Probability

@ An outage occurs when the SINR is below a threshold S.
e [3 depends on the choice of modulation and coding.

@ The outage probability for the mobile Y; conditioned over the network is
¢ = Ply<Bi9]. (4)
@ The conditional outage probability is found in closed form [5] for non-identical
Nakagami-m parameters {m; ; }:

o characterize the fading from the base station X to the mobile Y;;
e selected based on a distance-depending fading model:

3 if || X =Y <re/2
m; ; = 2 if Tf/2<|‘Xi—}/}‘|§Tf (5)
1 if ||Xi—Y}||>Tf

where r¢ is the line-of-sight radius.

[5] S. Talarico, M. C. Valenti, and D. Torrieri, “Analysis of multi-cell downlink cooperation with a constrained spatial model”,

Proc. IEEE Global Telecommun. Conf (GLOBECOM), Atlanta, GA, Dec. 2013.
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Performance Analysis

Area Below An Outage Threshold (ABOT)

@ The area below an outage threshold (ABOT) is defined as the fraction of the network
realization ¢ that provides an outage probability (averaged over the fading) that

meets a threshold ¢ following

5
4
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distance in km

(6)

Figure: Close-up of an example network topology. The white areas are the portion
of the network for which the outage probability is above a typical value of ¢ = 0.1.
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Area Below An Outage Threshold (ABOT)

@ The area below an outage threshold (ABOT) is defined as the fraction of the network
realization ¢ that provides an outage probability (averaged over the fading) that
meets a threshold ¢ following

AL = Pl <d. (6)
(t)

@ After computing A,

as

for T network topologies, its spatial average can be computed

T
_ 1 .
A = 3D A (M
t=1
@ Let R = C(B,) represent the relationship between the code rate R (in bit per

channel used [bpcu]) and SINR threshold ;. For modern cellular systems, it is
reasonable to use:

C(Bj) = logy(1+5;)
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ABOT vs Rate
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Figure: ABOT as function of the rate for both a
shadowed (0s = 8 dB) and unshadowed environment.

Code rate [bpcu]

Settings:

[

Square arena of side dnet = 20 km;
SNR: I" =10 dB;
Path loss exponent: a = 3.5;

Distance among MBSFN areas:
dsfn =6 km;

Line-of-sight radius: 7 = 0.5 km;
Exclusion zone: rps = 0.5 km;

Outage constraint: € = 0.1.
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ABOT vs Minimum Separation Among Base Stations
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Figure: ABOT as a function of the minimum sepa-
ration among base stations, for both Rayleigh fading
and a distance-depending fading when rys = 7.
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Settings:

@ Square arena of side dnet = 20 km;
SNR: I' = 10 dB;
Path loss exponent: o = 3.5;

Distance among MBSFN areas:
dstn = 6 km;

Code Rate: R =0.1;

Density of base station: A = 0.1
#bs/km?

Outage constraint: € = 0.1.
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ABOT vs Outage Constraint
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Figure: ABOT as a function of the outage threshold
€ for both a shadowed (o0s = 8 dB) and unshadowed
environment.
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| Settings:

Square arena of side dnet = 20 km;
SNR: I' =10 dB;

Path loss exponent: a = 3.5;
Code Rate: R =0.5;

Density of base station: A = 0.5
#bs/km?

Line-of-sight radius: r¢ = 0.5 km;

Exclusion zone: rps = 0.5 km;
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Conclusions

@ A new approach for modeling and analyzing the performance of multicast-broadcast
single-frequency network (MBSFN) has been presented.

@ The analysis is driven by a new outage probability closed form expression, which is
exact for a given network realization and accounts for path loss, correlated shadow-
ing, and Nakagami-m fading with non-identical parameters.

@ Despite other works that characterize the performance of a MBSFN network, the
topology of the network is determined by a constrained random spatial model.

@ The results show:

@ An increase in the size of an MBSFN areas leads to an improvement in per-
formance until the inter-MBSFN area IS| begins to degrade performance;

o As expected, densification or an increase in the minimum separation among
base stations improve performance.
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Conclusion

Thank You
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