Accurately Accounting for Random Blockage in Device-to-Device mmWave Networks

Enass Hriba, **Matthew C. Valenti**, <u>West Virginia University</u> Kiran Venugopal, Robert W. Heath, Jr., <u>University of Texas</u>

D2D, Wearables, and Virtual Reality

- The next frontier for wireless communications
 - Multiple devices in and around human body
 - + Low-rate fitness monitors to high-rate virtual reality devices.
- Critical challenge
 - + Supporting Gbps per user in dense environments
 - + Effective operation in finite areas like VR rooms, trains, or buses
 - [1] Photo by David Paul Morris/Bloomberg via Getty Images

[2] "Smart wearable devices: Fitness, healthcare, entertainment & enterprise 2013-2018," Juniper Research, Oct. 2013.

MmWave as a Solution for Connected Devices

- High bandwidth and reasonable isolation
- Compact antenna arrays to provide array gains via beamforming
- Commercial products already available: IEEE 802.11ad, WirelessHD

¹47 CFR 15.255; ² ARIB STD-T69, ARIB STD-T74; ³ Radiocommunications Class License 2000; ⁴ CEPT : Official journal of the EU;

Challenges and Opportunities of mmWave for D2D

Antenna Directivity

- To compensate for path-loss, mmWave antennas are directional.
- + Can model as sectorized antenna.
- + Interference tends to be "pointy".

Blockage

- + mmWave subject to **blocking**.
- + Propagation primarily LOS.
- In D2D, bodies are a main source of blockage.
- + Blockage isolates interference.

Blockage effect I: Change in Path Loss

- Blocked signal has significantly higher path loss
 - + Path loss is proportional to d^{α}

+ Modeled as a change in path loss exponent α

73 GHz Directional Path loss vs. Distance in Manhattan with RX Height: 2 m & 4.06 m Using 27 dBi, 7[°] 3dB BW TX and RX Antennas

[3] T. S. Rappaport, G. R. MacCartney, M. K. Samimi and S. Sun, "Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design," in *IEEE Transactions on Communications*, vol. 63, no. 9, pp. 3029-3056, Sept. 2015.

Blockage effect II: Impact on Fading Distribution

- Some energy of blocked signals still arrives, but via scattered and reflected paths.
 - Increases amount of fading tends towards Rayleigh fading
- Direct paths are LOS-like, tends towards Nakagami fading
 - Variable "m" determines how direct the path is.

Modeling Blockage

- Blockage can be modeled as a point process.
 - + Here, a binomial point process.
- Here, each source of blockage represented by a blue circle.
 - Constant width "W"
 - + Its shadow is shown
- Transmitters are:
 - If in shadow = blocked/NLOS
 - Otherwise LOS

Computing Blockage Probability

- An interferer at distance r from the receiver will be blocked if a blocking object lies in its blocking zone.
- Probability that a given object lies in a given blocking zone can be found using geometric arguments:

 $p_z(r) = \frac{\text{Zone Area}}{\text{Network Area}}$

 If there are K objects in the network, then the interferer is blocked if any of them are in its blocking zone:

$$p_b(r) = 1 - (1 - p_z(r))^K$$

Example Blockage Probability

Analytical Challenges

- We would like to quantify the outage or coverage probabilities.
- However, there are multiple interrelated sources of randomness:
 - + Fading
 - Orientation of the antennas
 - + Blockage
 - + Location of the interferers
- These operate at different time scales
- Approach:
 - + Determine SINR distribution conditioned on location
 - Averaged over fading, antenna orientation, and blockage
 - + To handle random location, compute a meta-distribution of SINR's [1]
 - Or simply the spatial average

LOS Ball Concept

- Even when conditioned on the interferer locations, computing outage probability is challenging.
 - The probability of blocking is distance dependent, and the fading factor depends on the blockage state.
- An approximation is to assume all interferers within distance r_{LOS} are LOS and those beyond are NLOS [5].
 - r_{LOS} can be found by matching areas.

[5] T. Bai and R. W. Heath, Jr., "Coverage and rate analysis for millimeter-wave cellular networks," IEEE TWC, Feb. 2015.

LOS Ball Concept

- Even when conditioned on the interferer locations, computing outage probability is challenging.
 - The probability of blocking is distance dependent, and the fading factor depends on the blockage state.
- An approximation is to assume all interferers within distance r_{LOS} are LOS and those beyond are NLOS [5].
 - r_{LOS} can be found by matching areas.

[5] T. Bai and R. W. Heath, Jr., "Coverage and rate analysis for millimeter-wave cellular networks," IEEE TWC, Feb. 2015.

Framework for Computing Outage

- Rather than using the LOS Ball approximation, our approach is to compute the outage probability exactly.
- The key is to define several interferer states, each with its own probability of occurrence:

State	Transmitting?	Pointing?	Blocked?	Probability
0	N	-	-	$1-p_t$
1	Y	Y	Y	$p_b(R_i)\frac{\theta_t}{2\pi}p_t$
2	Y	Y	Ν	$(1 - p_b(R_i))\frac{\theta_t}{2\pi}p_t$
3	Y	Ν	Y	$p_b(R_i)(1-\frac{\theta_t}{2\pi})p_t$
4	Y	Ν	Ν	$(1 - p_b(R_i))(1 - \frac{\theta_t}{2\pi})p_t$

- The (conditional) outage probability is the CDF of the SINR, where each interferer's distribution is itself randomly selected
 - + Averaged over the fading and the interferer states
 - + See paper for details of the derivation

Results for Fixed Interferer Locations

- Outage probability for the pictured example network.
- Network features:
 - Disk w/ inner radius I and outer radius 6.
 - + K=20 interferers and blockages.
 - ✦ Blockage width W=I.
- Channel parameters:
 - + $m_{LOS} = 4; m_{NLOS} = 1.$
 - + $\alpha_{\text{LOS}} = 2; \alpha_{\text{NLOS}} = 4.$
 - + $P_t = 0.5$; SNR = 20 dB.
 - + 4-element antenna arrays.
- Simulation shown by dots.

Results for Various Topologies

- Previous slide shows results for one network realization.
 - + i.e., interferer locations.
- Drew 100 network realizations.
 - + Red curve is average.
 - Dotted lines show outage for 10 realizations.
- Outage varies significantly with the location of the interferers.
- Analytical approach needed for characterizing the variability of the outage distribution.

Spatial Averaging

- A first-order assessment of the effect of the variability in the outage distribution can be achieved by spatial averaging.
 - Assume interferers drawn from a binomial point process (BPP).
 - Spatial average: E_X[F_s(s|X)]
- The distance-dependent nature of blockage precludes the use of basic stochastic geometry.
- Our solution (the key):
 - + Break network into L rings.
 - Blockage probability is constant within each ring.
 - + Allow number of rings to get large.

Spatial Averaging Results

Spatial model:

K=20 interferers.

+ Uniformly distributed on a disk.

Same parameters as before:

- + $m_{LOS} = 4; m_{NLOS} = 1.$
- + $\alpha_{\text{LOS}} = 2; \alpha_{\text{NLOS}} = 2.$
- + $P_t = 0.5$; SNR = 20 dB.
- + 4-element antenna arrays
- Radius: inner=1; outer=6.
- + Blockage width W=1.
- "Exact" analysis uses L=10 rings.
- Simulation shown by dots.

Concluding Remarks

- When the interferers are in fixed locations, the outage probability can be found in closed form, even in the presence of random blockage and randomly oriented directional antennas.
 - + Key is to properly define a set of interferer states.
 - + Each interferer's fading realization is drawn from a randomly chosen distribution.
- The spatial outage probability can be found in closed form over a disk.
 - + Key is to break disk into rings.
 - Otherwise it can be found numerically [6].
- The approach is general and could be used for other applications where the power distribution of each interferer is drawn from a set of possibilities.
 - Frequency hopping systems.
 - More elaborate MAC protocols.
 - + More accurate representation of the antenna pattern.
- Can extend from BPP to PPP by assuming the number of interferers is random, and that all signals beyond r_{out} are completely blocked.

[6] M.C. Valenti, D. Torrieri, and S. Talarico, "A direct approach to computing spatially averaged outage probability," IEEE Communications Letters. vol. 18. no. 7. pp. 1103-1106. July 2014.

QUESTIONS?