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Robust Iterative Noncoherent Reception of
Coded FSK over Block Fading Channels

Shi Cheng, Student Member, IEEE, Matthew C. Valenti, Member, IEEE, and Don Torrieri, Senior Member, IEEE

Abstract— An iterative noncoherent receiver is developed for
bit-interleaved coded orthogonal multiple frequency-shift key-
ing (FSK) over block fading channels. The receiver uses the
Expectation Maximization (EM) algorithm to jointly estimate
the received amplitude and noise spectral density of each block.
The received symbols and their corresponding channel estimates
are passed through a soft-output demapper, deinterleaved, and
decoded. Soft-outputs from the decoder are passed back to
the channel estimator and demapper to refine estimates of
the channel and bit likelihoods, respectively. Several techniques
for reducing the estimator’s complexity are discussed, and the
performance is assessed through simulation.

Index Terms— EM (expectation maximization) algorithm, ML
(maximum likelihood) estimation, NFSK (noncoherent frequency
shift keying), turbo code.

I. INTRODUCTION

NONCOHERENT FSK is an attractive modulation when
the phase changes too quickly to be tracked. To improve

performance, higher-order orthogonal FSK signal sets can be
used along with channel coding, though this comes at the
expense of spectral efficiency. While modulation and coding
could be combined into a single operation, a more pragmatic
approach is to use a binary encoder followed by a bitwise
interleaver prior to performing FSK modulation. Such an
approach, known as bit interleaved coded modulation (BICM),
can offer performance benefits in fading channels [1]. The
performance of a BICM system can be improved by feeding
a priori information from the decoder back to the demodulator,
as proposed in [2] where it was termed BICM with iterative
decoding (BICM-ID). In [3], BICM-ID was applied to systems
with FSK modulation and turbo coding, and gains of up to 1
dB were observed relative to BICM.

The receiver developed in [3] relied on the availability of
perfect estimates of the noise variance and the received signal
amplitude. In practice, this information is not known a priori
and must be estimated at the receiver. In an iterative receiver,
a reasonable approach is to feed back extrinsic information
from the decoder back to a channel estimator [4]. For a good
overview of iterative decoding and channel estimation, see [5]
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Fig. 1. Discrete-time system model. Π represents the BICM interleaver and
Π−1 the deinterleaver.

and the references therein.
This paper extends [3] by including an iterative channel

estimator in the receiver structure. To facilitate the devel-
opment of a pragmatic estimator, it is assumed that the
channel experiences block fading. Blocks of N consecutive
FSK symbols are attenuated by the same channel gain (though
they could experience different phase shifts) and are corrupted
by noise that is stationary for the duration of the block. Aside
from this block fading condition, the estimator makes no
assumptions regarding the statistics of the channel. Both the
received fading amplitude and the noise spectral density are
estimated because either one or both could change from block-
to-block due to jamming, interference, or other environmental
conditions. The estimator itself is derived using the expectation
maximization (EM) algorithm [6], which iteratively finds the
maximum likelihood (ML) estimate even though an explicit
form is not readily achievable when extrinsic information is
fed back to the estimator from the decoder.

After presenting the system model in Section II and sum-
marizing the receiver implementation in Section III, an EM-
based estimator is derived in Section IV. Complexity reduction
techniques are discussed in Section V and simulation results
given in VI. After a discussion of algorithmic complexity in
Section VII, the paper concludes in Section VIII.

II. SYSTEM MODEL

In the discrete-time system model shown in Fig. 1, a vector
u ∈ {0, 1}Nu of message bits is passed through a binary
encoder to produce a codeword b′ ∈ {0, 1}Nb . The codeword
is passed through an interleaver, which permutes the order
of the code bits and reshapes the permuted vector into a
matrix B with μ = log2M rows and Nd columns, where
M is the symbol alphabet size. B is then transformed into a

1536-1276/07$25.00 c© 2007 IEEE



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 9, SEPTEMBER 2007 3143

length-Nd row vector d, with elements di ∈ {0, 1, ...,M−1}.
Element di of d is found from column bi of B through a
mapping function d(b). Because the signaling is orthogonal,
the mapping function is irrelevant. Each element di is used
to select the tone sent during the ith signaling interval. This
is accomplished by transforming the vector d into the M by
Nd matrix X = [x0, ...,xNd−1], where the column vector xi

is equal to
√Es in position di and has zeros elsewhere.

The modulated signal passes through a frequency-
nonselective fading channel with additive Gaussian noise.
The receiver front-end downconverts the signal and passes it
through a bank of 2M matched filters, a quadrature pair for
each of the M possible transmitted tones [7]. The output of
the matched filters are sampled at the symbol rate (assuming
perfect synchronization) and each quadrature pair is repre-
sented as a complex scalar value. The complex samples are
then placed into an M × Nd matrix Y whose ith column
represents the outputs of the matched filters corresponding to
the ith received symbol.

The channel estimator is derived under the assumption of
a block-fading channel. More specifically, it is assumed that
blocks of N contiguous symbols experience the same fading
amplitude, though the symbols in the block could experience
different phase shifts. An appropriate choice for N is to equate
it to the coherence time of the channel [8]. Because the
estimator works on a block-by-block basis, the correlations
among blocks are irrelevant. Furthermore, it is assumed that
while the noise spectral density is constant for the duration of
a block, it could vary from one block to the next in an arbitrary
manner. If there are N symbols per fading block, then there
will be L = �Nd/N� blocks per codeword. The matrix Y can
be partitioned according to Y = [Y0,Y1, ...,YL−1], where
the M by N submatrix Y� corresponds to the �th fading block.

During the �th block, the channel is represented by the N×
N diagonal matrix H� = a�diag

(
ejθ0 , . . . , ejθN−1

)
, where a�

is the (real-valued) fading amplitude during the �th block, and
the θi’s are independent and identically distributed (i.i.d.) over
the range [0, 2π). The �th block at the output of the receiver
front-end is then Y� = X�H� + N�, where X� consists of
the corresponding columns of X and N� is a M × N noise
matrix whose elements are i.i.d. circularly symmetric complex
Gaussian variables with zero mean and variance N (�)

0 .
Following [7], we can represent the conditional probability

density function (pdf) of the (k, i)th entry of Y given that the
transmitted symbol is di = j, the symbol energy is Es, the
fading amplitude is a, and the noise spectral density is N0 as

p(yk,i|di = j, Es, a,N0) =

1
πN0

exp

(
−|yk,i|2 + a2Esδk,j

N0

)
I0

(
2a

√Es |yk,i| δk,j

N0

)
(1)

where δk,j is the Kroneker delta function (δk,j = 1 if k = j,
otherwise δk,j = 0) and Iν is the modified Bessel function of
the first kind and order ν.

Let B� = 2a�

√Es and A� = N
(�)
0 . It follows from (1) that

the conditional pdf of block Y� given A�, B�, and the corre-
sponding set of transmitted symbols d� = [d�N , ..., d(�+1)N−1]

is

p(Y�|d�, A�, B�) =
(

1
πA�

)NM

exp (ψ� − ξ�) (2)

where

ψ� =
(�+1)N−1∑

i=�N

log I0

(
B� |ydi,i|
A�

)
(3)

ξ� =
1
A�

[
C� +

NB2
�

4

]
(4)

C� =
(�+1)N−1∑

i=�N

M−1∑
k=0

|yk,i|2 . (5)

III. RECEIVER OVERVIEW

The channel observation matrix Y is passed to the receiver
back-end, which comprises three main processing modules:
a channel estimator, a demapper, and a soft-input/soft-output
(SISO) decoder. The channel estimator uses Y and a priori
information fed back to it from the decoder to produce the
ratio γ� = B̂�/Â� of channel estimates for the �th block. A
full description of the estimator is given in Section IV.

The demapper and decoder exchange extrinsic information
in a turbo-processing loop. Following [3], the demapper output
is a μ by Nd matrix Z whose (k, i)th element is

zk,i = log
p(bk,i = 1|yi, γ�i/N�,vi\vk,i)
p(bk,i = 0|yi, γ�i/N�,vi\vk,i)

, (6)

where vi is the ith column of V, a μ by Nd matrix output
by the SISO decoder. The conditioning in vi\vk,i implies that
the extrinsic information for bit bk,i is produced without using
vk,i. The (k, i)th element of V is

vk,i = log
p(bk,i = 1|Z\zk,i)
p(bk,i = 0|Z\zk,i)

. (7)

which is derived for SISO decoders in [9]. The derivation of
(6) for noncoherent FSK is given in [3] and can be expressed
as

zk,i = log

∑
d∈D(1)

k

I0
(
γ�i/N�|yd,i|

) μ−1∏
j=0
j �=k

exp (bj(d)vj,i)

∑
d∈D(0)

k

I0
(
γ�i/N�|yd,i|

) μ−1∏
j=0
j �=k

exp (bj(d)vj,i)

,

(8)

where D(b)
k is the set of all symbols labelled with bk = b, and

bj(d) is the value of the jth bit in the labelling of symbol d.

IV. CHANNEL ESTIMATOR

To compute γ� = B̂�/Â�, the estimator directly uses
the channel observation for the �th block, Y�, while the
observations of the other blocks are used indirectly through
feedback of extrinsic information from the decoder. Since the
form of the estimation algorithm is the same for each block,
in the following discussion we can drop the dependence on �.
Thus in this section, Y is a generic M × N received block,
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d = [d0, ...dN−1] is the corresponding set of transmitted
symbols, and {Â, B̂} are the corresponding channel estimates.

Although a direct maximum-likelihood estimation is im-
practical, the expectation-maximization (EM) algorithm is an
appropriate iterative approach to estimating {Â, B̂} [6]. Let
{Y,d} denote the complete data set, which using (2) has log-
likelihood

L(A,B) = log p(Y,d|A,B)
= log p(Y|A,B,d) + log p(d)

∼ −MN logA− C

A
− NB2

4A

+
N−1∑
i=0

log I0

(
B |ydi,i|
A

)
, (9)

where ∼ is used to indicate that the quantities are equal up
to irrelevant quantities that do not affect the maximization,
namely the terms −NM log π and log p(d).

Let q denote the EM iteration and Â(q), B̂(q) denote the
estimates of A,B after the qth iteration. Iteration q starts with
the E-step

Q(A,B) = Ed|Y,Â(q−1),B̂(q−1) [L(A,B)] (10)

where the expectation is taken with respect to the unknown
symbols d conditioned on Y and the estimates Â(q−1), B̂(q−1)

from the last EM iteration. Substituting the likelihood function
(9) into (10) yields

Q(A,B) = −MN logA− C

A
− NB2

4A
+

N−1∑
i=0

M−1∑
k=0

p
(q−1)
k,i log I0

(
B |yk,i|
A

)
(11)

where

p
(q−1)
k,i = p(di = k|yi, Â

(q−1), B̂(q−1))

=
p(yi|di = k, Â(q−1), B̂(q−1))p(di = k)

p(yi|Â(q−1), B̂(q−1))
.(12)

The last step uses the fact that d is independent of A and B.
Applying (1), we obtain

p
(q−1)
k,i = α

(q−1)
i I0

(
B̂(q−1)|yk,i|
Â(q−1)

)
p(di = k) (13)

where α
(q−1)
i is the normalization factor forcing∑M−1

k=0 p
(q−1)
k,i = 1, i.e.

α
(q−1)
i =

1∑M−1
k=0 I0

(
B̂(q−1) |yk,i|

Â(q−1)

)
p(di = k)

(14)

and p(di = k) is found from the a priori input vi using [10]

p(di|vi) =
μ−1∏
j=0

evj,ibj(di)

1 + evj,i
. (15)

The M-step is

Â(q), B̂(q) = arg max
A,B

Q(A,B) (16)

which can be found by setting the derivatives of the function
Q(A,B) with respect to A and B to zero. The solution to the
corresponding system of equations is

Â(q) =
1

MN

(
C − N(B̂(q))2

4

)
(17)

B̂(q) =
2
N

N−1∑
i=0

M−1∑
k=0

p
(q−1)
k,i |yk,i|F

(
4MNB̂(q)|yk,i|
4C −N(B̂(q))2

)
,

(18)

where F (x) = I1(x)/I0(x). While a closed form solution to
(18) is difficult to obtain, it can be found recursively [11].

To select an initial estimate for B prior to the first BICM-
ID iteration, consider that in the absence of noise, yk,i =
a
√Esδk,die

jθi , which has a magnitude of either |yk,i| = a
√Es

(when k = di) or |yk,i| = 0 (otherwise). Thus, an estimate for
a
√Es = B/2 can be achieved by taking the maximum |yk,i|

over any column of Y. To account for noise, the average could
be taken across all columns in the block, resulting in

B̂(0) =
2
N

N−1∑
i=0

max
k

|yk,i| . (19)

The initial estimate of A is found from B̂(0) by evaluating (17)
for q = 0. After the initial values Â(0) and B̂(0) are calculated,
the initial probabilities {p(0)

k,i} are calculated using (13) with
p(di = k) = 1/M for all i and k. Next, B̂(1) is found by
recursively solving (18). Once the recursion is complete, Â(1)

can be directly found from (17), which finalizes the first EM
iteration. The second EM iteration then starts by calculating
p
(1)
k,i using (13) with p(di = k) = 1/M and the newly acquired
Â(1) and B̂(1), and the remaining steps are identical to the first
EM iteration. The EM estimator will continue to iterate until
some stopping criterion is reached. In our simulations, we
halted the EM algorithm when the value of the estimate of B
changed less than 10%, when the estimate of B became very
close to zero, or when a maximum number of 20 iterations
was reached. After the first BICM-ID iteration, the final value
of B̂(q) from the previous BICM-ID iteration can be used as
the initial estimate of B, and the value of p(di = k) in (13)
is found from the decoder output using (15).

V. REDUCED COMPLEXITY ESTIMATION

A major drawback of the proposed EM-based estimator is
its complexity. In this section, two techniques are proposed
for reducing the complexity of the algorithm. One involves
a linear approximation to the F (·) function, while the other
involves the hard limiting of pk,i.

A. Linear Approximation of F (·)
During each iteration of the full-complexity EM algorithm,

B̂(q) is found by recursively solving (18). For each step in the
recursion, the nonlinear function F (x) = I1(x)/I0(x) must
be evaluated for each of the MN entries in the Y matrix,
presumably by a table look-up. The number of required table
look-ups can be drastically reduced by performing a first-
order Taylor series expansion of F (x) about the point x = t,
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Fig. 2. F (x) = I1(x)/I0(x) and its linear approximation.

resulting in F (x) = F (t)+F ′(t)(x− t). The expansion point
t is the approximate maximum value of the argument of F (·)
in (18). Setting |yk,i| ≈ a

√Es and C ≈ N(a2Es +MN0), we
obtain t ≈ 2a2Es/N0 = B2/(2A).

The linear approximation of the F (·) function is illustrated
in Fig. 2. As shown, F (x) is a monotonically increasing
function with respect to x and is concave, approaching 1 when
x→ ∞. Because the curve becomes flat when x is reasonably
large, such a linear approximation is reasonable. Assuming
4C >> N(B̂(q))2 and substituting the linear expansion of
F (·) about the point t = (B̂(q−1))2/(2Â(q−1)) into (18) yields

B̂(q) ≈ [F (t) − tF ′(t)]
∑N−1

i=0

∑M−1
k=0 p

(q−1)
k,i |yk,i|

N
(

1
2 − M

C F
′(t)
∑N−1

i=0

∑M−1
k=0 p

(q−1)
k,i |yk,i|2

)
(20)

where F ′(t) = 1−F (t)
t −F 2(t), as implied by equation (8.486)

of [12].
With this approximation, (18) is replaced with (20), and

now only a single table look-up is required per EM iteration,
instead of the NM look-ups in (18). Due to the linearization,
B̂(q) can be found directly from (20) without requiring a
recursion, which greatly simplifies the algorithm. Notice,
however, that the expansion point t(q−1) must be changed after
each EM iteration.

The linear approximation of F (x) is tight when the expan-
sion point is sufficiently large and the argument of F (·) in the
original EM equation (18) is close to the expansion point.
Since the expansion point is proportional to the estimated
SNR, the approximation gets worse with decreasing SNR. Be-
cause of the concavity of the F (·) function, the approximation
will overestimate its value, leading to an overestimation of B.
However, overestimating B is better than underestimating it,
which agrees with observations made in [13] that the SNR
can be overestimated in an AWGN channel by as much as 3
dB without significantly harming the performance of a turbo
code. Even when the expansion point is sufficiently high,
the approximation will be loose when the arguments in the
linearized F (·) function are small, which occurs for those

values of |yk,i| that are small. Small values of |yk,i| occur more
frequently at high SNR, since the M−1 entries of each vector
yi that do not pertain to the transmitted symbol would all be
small. While the linear approximation is indeed poor for these
small values of |yk,i|, this problem is mitigated by the fact that
every |yk,i| is weighted by its corresponding probability pk,i,
which will also be small. Thus, the contribution of the small
values of |yk,i| to the overall estimate is negligible, and the
poor approximation at these values does not seriously harm
overall performance.

B. Hard Limiting of pk,i

During the qth iteration of the full-complexity EM algo-
rithm, each pk,i must evaluated using (13). For each symbol,
the normalization factor αi must also be calculated to assure
that

∑M−1
k=0 pk,i = 1. The normalization factor can be avoided

by setting pk,i = 1 for one particular value of k, denoted k0,
and setting pk,i = 0 for all k 
= k0. The index k0 should be
the value of k that maximizes (13). Taking the logarithm of
(13), which does not change the maximization, and using (15)
for p(di = k) results in

k0 = arg max
k

log

[
I0

(
B̂(q−1)|yk,i|
Â(q−1)

)]
+

μ−1∑
j=0

vj,ibj(k).

(21)

In addition to eliminating the need for computing the
normalization factor αi, this approximation has the additional
benefit of eliminating the exponential functions in (15). Com-
plexity is further reduced when B̂ is calculated with either
(18) or (20) because those terms for which pk,i = 0 do not
need to be considered, and therefore the summations over k are
eliminated. Another benefit of this method is that it provides a
natural stopping criterion for the EM algorithm, which should
halt once the pk,i’s no longer change from one iteration to the
next.

While (21) is a very coarse approximation to (13) in the
normal EM algorithm, it still uses both the decoder’s a priori
information as well as the channel likelihood based on the
current estimates. This approximation tends to make (18)
overestimate the value of B, but the performance loss due
to this approximation is small, as will be demonstrated in the
next section.

VI. SIMULATION RESULTS

To illustrate the performance of the proposed estimators,
a set of simulations were run. The simulated system uses
the turbo code from the cdma2000 specification [14] and 16-
FSK modulation. The specific turbo code that was selected
is a rate-1/2 code with Nu = 1530 input bits. As the
cdma2000 standard requires 12 coded tail bits, the length of
each code word is actually Nb = 2(1530) + 12 = 3072 bits
or Nd = 768 FSK symbols. The receiver executed up to 20
BICM-ID iterations. A perfect CRC check was assumed in the
simulations, so that the iterations would stop once the data is
correctly decoded.

Fig. 3 shows the bit error rate (BER) performance of five
systems over a Rayleigh block fading channel with N = 4
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Fig. 3. BER comparison of the different estimators in block Rayleigh fading
with N = 4 symbols per block. The system uses 16-FSK modulation and
the rate 1/2 cdma2000 turbo code (Nu = 1530 input bits). Shown from left
to right is performance with: (1) a

√Es and N0 known for each block; (2)
The full-complexity EM estimator; (3) Estimator EM-H, which makes hard
decisions on pk,i; (4) Estimator EM-L, which uses a linear approximation to
the F (·) function; and (5) Estimator EM-H/L, which makes hard decisions
on pk,i and uses a linear approximation to F (·).

symbols per block. The curve with the best performance
corresponds to the case that a

√Es and N0 are known by
the receiver. While not possible in practice, this curve serves
as a benchmark. The other curves correspond to four imple-
mentations of the proposed estimator. The best performing
estimator is the full-complexity EM-based estimator described
Section IV (EM estimator). The other curves correspond to
the reduced complexity techniques described in Section V.
In order from best-to-worst performing, the curves use the
following complexity reduction techniques: (1) Hard limiting
of pk,i (EM-H); (2) Linear approximation of the F (·) function
(EM-L); and (3) Both Hard limiting of pk,i and a linear
approximation of F (·) (EM-H/L). For this example, the full-
complexity EM estimator has a 0.55 dB loss relative to the
system with known a

√Es and N0. The additional loss due
to the complexity reduction techniques is about 0.05 dB for
EM-H, 0.1 dB for EM-L, and 0.15 dB for EM-H/L.

Fig. 4 shows BER results in Rayleigh block fading for
several values of block length N . For each value of N , two
curves are shown. The curve on the left (dashed line) is
for the case that a

√Es and N0 are known by the receiver,
while the curve on the right shows performance of Estimator
EM-H/L. As the value of N decreases, performance of both
systems improves due to increasing diversity. However, the
gap between the two curves widens with decreasing N due to
increasing estimation error. Results were also produced for
N = 1 (not shown to keep the plot uncluttered), but the
performance of the EM-H/L estimator with N = 1 is about
0.5 dB worse than when N = 4 and nearly 2 dB worse than
when a

√Es and N0 are known.

To better illuminate the effect of block length on estimator
performance, Fig. 5 shows simulation results for the same
cdma2000 turbo code and 16-FSK in an unfaded, AWGN
channel. While the fading is a constant a = 1, the estimator

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
10 −5

10 −4

10 −3

10 −2

10 −1

10 0

Eb/No

B
ER

N=32
N=16
N=8
N=4

Fig. 4. Influence of the block length N on the BER performance in block
Rayleigh fading. For each value of N = {4, 8, 16, 32}, two curves are shown.
The left curve (dashed line) shows performance when a

√Es and N0 are
known for each block; the right curve (solid line) shows performance with
Estimator EM-H/L. The system uses 16-FSK modulation and the rate 1/2
cdma2000 turbo code (Nu = 1530 input bits).

2.6 2.8 3 3.2 3.4 3.6
10 −5

10 −4
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B
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Fig. 5. Performance in AWGN as a function of block length N . The
performance with known Es and N0 (dashed lines) is compared against the
performance with Estimator EM-H/L. Modulation is 16-FSK. The code is the
rate 1/2 cdma2000 turbo code with Nu = 1530.

runs assuming a block length of N symbols. When N = 4,
the performance of the estimator is about 0.3 dB away from
when Es and N0 are known. The performance improves with
increasing N , and when N = 32 it is only 0.03 dB away from
the performance with known Es and N0.

VII. COMPLEXITY COMPARISON

Table I shows the number of operations required for the
four versions of the proposed estimator that were used to
generate the results shown in Fig. 3. As all four estimators
use (17) to compute A, they differ only in how pk,i and B
are computed. Estimator EM-L benefits from not having to
perform a table look-up for each received symbol and by
not requiring a recursion on (18). Estimator EM-H benefits
from not needing to compute the normalization factor (14),
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TABLE I

NUMBER OF OPERATIONS REQUIRED FOR EACH TYPE OF ESTIMATOR TO

EXECUTE ONE EM ITERATION PER BLOCK OF N SYMBOLS. M IS THE

MODULATION ORDER AND R IS THE NUMBER OF RECURSIONS USED TO

SOLVE (18).

(a) Operations required to compute pk,i

Algorithm Additions Multiplications Look-Ups

EM N(M − 1) 3NM NM

EM-L N(M − 1) 3NM NM

EM-H NM NM NM

EM-L/H NM NM NM

(b) Operations required to compute B

Algorithm Additions Multiplications Look-Ups

EM RNM NM + R(2NM + 5) RNM

EM-L 2(NM − 1) + 4 2NM + 7 1

EM-H RN R(2N + 5) RM

EM-L/H 2(N − 1) + 4 3N + 7 1

by computing (15) in the log-domain, and not needing to sum
over k in (18). EM-L/H combines the benefits of EM-L and
EM-H.

The overall complexity also depends on the average number
of EM iterations per BICM-ID iteration. For the simulation
that produced the BER results shown in Fig. 3, the average
number of full EM iterations (per BICM-ID iteration) was
approximately 1.1 for EM-H, 1.4 for both EM and EM-
L/H, and 1.5 for EM-L. These values are small primarily
as a consequence of the loose stopping criterion for the EM
algorithm (if B changes less than 10%, it will halt). A tighter
stopping criterion (e.g. halting when B changes less than 1%)
will induce more EM iterations (about 3 for the EM estimator),
but will not significantly improve the BER performance.
Longer blocks generally required fewer iterations, on average.
The higher value for EM-L suggests that the approximation
for F (·) caused it to converge more slowly.

In addition to counting operations, another way to assess
complexity is to count CPU cycles in an actual implementa-
tion. We did this for the four estimators (implemented in the
C language) during the simulation that produced Fig. 3. As
expected, the original EM estimator required the most CPU
cycles, and in fact required more than that used for the turbo
decoder. Estimator EM-L had a complexity of about 1/4 that of
Estimator EM, making it only a little more complex than the
demapper. Estimator EM-L/H is 1/3 the complexity of Estima-
tor EM-L, making its complexity negligible compared to the
decoder and demapper. Given the slight loss in performance,
Estimator EM-L/H is an attractive solution.

VIII. CONCLUSION

The proposed robust noncoherent system has been shown
to withstand the severe channel conditions of fast fading,
unknown fading attenuation, unknown fading statistics, and
unknown noise-power spectral density. The channel-state esti-
mator is based on the Expectation Maximization algorithm and
exploits extrinsic information produced after each decoding
iteration of the turbo code. Each updated channel-state esti-

mate is applied to the next decoder iteration. Simulation results
indicate that if the fading coherence time exceeds four channel
symbols, then the performance is close to what could be
obtained with perfect channel-state information. Although the
estimator using the exact EM algorithm has a high complexity,
the linear approximation of F (·) and the hard limiting of pk,i

can be applied to reduce the complexity with minor loss in
BER performance.
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