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Abstract—The design of bit-interleaved coded continuous phase
modulation (CPM) is characterized by the code rate, alphabet size,
modulation index, and pulse shape. This paper outlines a method-
ology for determining the optimal values of these parameters
under bandwidth and receiver complexity constraints. The cost
function that is used to drive the optimization is the information-
theoretic minimum Eb/N0, which is found by evaluating the
constrained channel capacity. The capacity can be estimated using
Monte Carlo integration. A search for optimal parameters is
conducted over a range of coded CPM parameters, bandwidth
efficiencies, and channels. To limit complexity and allow any
modulation index to be considered, the receiver is constrained to
use a soft-output differential phase detector. Bit error rate curves
using a binary turbo code confirm that the constrained capacity is
a very good indicator of the performance of the complete system.

Index Terms—Bit-interleaved coded modulation (BICM), ca-
pacity, continuous phase modulation (CPM), differential phase
detector.

I. INTRODUCTION

IN RADIO environments suffering from spectral congestion,
continuous phase modulation (CPM) [1] is an attractive

modulation choice. This is because the small spectral sidelobes
of CPM signals can avoid adjacent channel interference. CPM
signals also have a constant envelope, which makes them
suitable for systems with nonlinear amplifiers. The energy
efficiency of CPM can be improved by combining channel
coding with CPM, for instance, by using a convolutional code
to increase the memory of the modulation [2], [3]. Additional
gains in energy efficiency can be made by using ring con-
volutional codes [4] or capacity-approaching codes instead.
However, channel coding generally comes at the expense of
bandwidth.

To incorporate coding while holding bandwidth constant,
one alternative is to combine a trellis encoder with a CPM
modulator that uses a larger alphabet [5], [6]. Systems that use
a symbol interleaver to separate the encoder and the modulator
are referred to as trellis coded CPM (TCCPM) [7]. Although
the interleaver precludes true maximum-likelihood (ML) joint
demodulation and decoding, it can be approximated by using
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turbo-style processing [7], [8]. If a bit interleaver is used
instead of a symbol interleaver [9], [10], then the symbol sizes
of the encoder and the modulator do not need to match, and it
is sufficient to use a binary code. The strategy of combining
a binary code, a bit-wise interleaver, and a modulator is called
bit-interleaved coded modulation (BICM), and, here, we
refer to its extension to coded CPM as BICCPM. Not only
is BICCPM more convenient to design and implement than
TCCPM, but also, results in [7] indicate that BICCPM can
provide higher diversity than TCCPM in fading channels,
which is consistent with the results for BICM in general [9].

In coded CPM systems, energy and bandwidth efficiency are
determined by the alphabet size M , the type and width of the
pulse shape, the modulation index h, the code rate Rc, and
the choice of the demodulator. Our goal in this paper is to
provide some insight into the relationship between the energy/
bandwidth tradeoff and the above variables for BICCPM. This
is a challenging problem, particularly since there exists an
inherent tradeoff between the code rate and CPM parameters.
For instance, as the code rate decreases, to maintain a specified
spectral efficiency, either a smaller modulation index, a longer
partial-response pulse, or a smaller alphabet size must be used.
For any particular scenario, it is not clear if the coding gain due
to lowering the code rate will offset the performance loss due
to using modulation that is further from being orthogonal or the
additional ISI due to using longer pulses.

In this paper, we jointly optimize the code rate and CPM
parameters for a given bandwidth efficiency and receiver com-
plexity. The cost function is based on the constrained ca-
pacity of the system. More specifically, the cost function is
the information-theoretic minimum Eb/N0 that is required for
reliable signaling under the constraints of a class of modulation,
a desired bandwidth efficiency, and a particular receiver design.
The cost function is evaluated by measuring the average mutual
information between the input and the output of an appropri-
ately defined binary composite channel as a function of Es/N0

and then setting Eb/N0 = (Es/N0)/(Rc log2 M), where Rc is
set to equal the measured mutual information (i.e., Rc is the rate
of the binary code that achieves capacity at a particular value of
Es/N0).

There are several benefits of performing a capacity-based
optimization. The most obvious is that capacity specifies the
performance limits for a coded system and inherently takes
into account the tradeoff between the code rate and the en-
ergy efficiency, which can be easily extended in our case to
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account for the tradeoff between the code rate and modulation
parameters. It is a very practical prediction of system perfor-
mance since either “off-the-shelf” capacity-approaching binary
codes or powerful binary codes that are tailored to the specific
modulation parameters [11], [12] can be used to get close to
the constrained capacity. Although closed-form solutions for
constrained capacity are, at times, nontrivial to compute, Monte
Carlo integration can be used to estimate the capacity, and
by using a very large number of trials, the estimate can be
quite accurate [9], [13]. Our capacity calculations also take into
account the design of the demodulator. A similar optimization
attempt for coherently detected BICCPM was made in [10]
using a union bound on the bit error rate (BER) as the cost
function. However, [10] limits itself to low constraint length
convolutional codes and relatively simple modulation parame-
ters. A key distinction is that the analysis in [10] depends, in
part, on the choice of the channel code. In our case, since the
information-theoretic limits predicted for a particular combina-
tion of code rate and modulation parameters can be (almost)
reached using capacity-approaching codes, our analysis is less
restricted by the choice of the channel code.

As with any optimization problem, our optimization is also
subject to some constraints. The first is on the type of the de-
tector used for CPM. The optimum detector would be coherent
[1], which can perfectly track the signal phase and has perfect
channel state information. This, however, increases the system
complexity. Hence, in this paper, we emphasize differential
phase detection [14] of BICCPM signals. Differential detectors
base their decisions on the phase differences that are calculated
over multiple symbol intervals. The underlying assumption is
that any random phase shifts caused by the channel remain
constant during the interval over which the phase difference can
be calculated, and thus, they can be factored out of the decision
metric. Unlike that of coherent detectors, the complexity of
the differential detectors does not increase with decreasing h,
which is a significant design issue at high bandwidth efficiency.
Furthermore, our results suggest that the performance of the
differential detectors is quite close to the ML coherent receiver
at small values of h, making them an attractive choice for
bandwidth-limited systems. Alternatively, noncoherent detec-
tors [15], [16] can be employed where the information is
estimated in the presence of phase uncertainty.

The next constraint is on the search space itself since the
parameters involved (Rc, h, M , type, and width of pulse
shapes) can assume a wide range of values, thus effectively
yielding an infinitely large search space. We hence perform
optimization over a trial search space by limiting the allowable
values for the above parameters to sensible alternatives.

The rest of this paper is organized as follows. Section II
deals with the system model, including a description of soft-
output differential detection of CPM signals using what we
call the soft-output soft-decision differential phase detector
(SO-SDDPD). This detector differs from traditional hard-
output differential detectors [14], [17], [18] and Fonseka’s [19]
original soft-decision differential phase detector reference, as
our detector produces bit-wise log-likelihood ratios (LLRs),
which are the required outputs for the composite binary channel
over which the mutual information is measured. Section III

Fig. 1. Block diagram of transmitter and channel.

describes the methodology for finding the capacity under
BICCPM constraints. Our optimization process and results are
given in Section IV. BER results are given in Section V.
Section VI concludes this paper.

II. SYSTEM MODEL

A. Transmitter

The transmitter model is shown in Fig. 1. A vector u =
[u0, u1, . . . , uNu−1] ∈ {0, 1}Nu of information bits is passed
through a linear binary encoder to produce the codeword
b′ ∈ {0, 1}Nb . The code rate is Rc = Nu/Nb. The row vec-
tor b′ is then interleaved by multiplying by a permutation
matrix Π to produce the bit-interleaved codeword b = b′Π.
The vector b is arranged in a log2 M × Na matrix B with
(i, k) element Bi,k = bk log2 M+i. The number of M -ary
symbols to be transmitted is Na = �Nb/ log2 M�. Each col-
umn of B is mapped to one of the M symbols (natural
mapping) to produce the vector a = [a0, a1, . . . , aNa−1] ∈
{±1,±3, . . . ,±(M − 1)}Na , which represents the sequence of
coded symbols to be transmitted.

As in [18], the symbol sequence is used to create the follow-
ing time-varying phase of the transmitted signal:

ϕ(t,a) = πh

∞∑
i=−∞

aiq(t − iT ) (1)

where h is the modulation index, T is the symbol period, and

q(t) =

t∫
−∞

g(τ)dτ (2)

where g(t) is the pulse shape, which is normalized so that∫ ∞
−∞ g(τ)dτ = 1. Although the symbol vector a has indexes

that range from 0 to Na − 1, the limits in the summation of
(1) are infinite to capture the effect of possible preceding and
subsequent coded frames. If there is a sufficient guard time
between subsequent frames, as in a packet radio system, then
the limits of this summation can be narrowed down to 0 ≤ i ≤
Na − 1.

Although a wide variety of g(t) may be used, we focus
on pulse shapes that ensure that the phase ϕ(t,a) has no
discontinuities. One example is to let g(t) be the response of
a truncated Gaussian filter to a rectangular pulse of duration T ,
resulting in [18]

g(t) =
1
T

[Q(−cBgt) − Q (−cBg(t − T ))] (3)

where BgT is the normalized 3-dB bandwidth of the filter,
c = 7.546, and Q(·) is the usual Gaussian Q-function. The
class of CPM that uses the Gaussian pulse shape of (3) is
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known as Gaussian frequency-shift keying (GFSK). GFSK is
a very popular form of CPM and is used in standards such
as Global System for Mobile Communications (GSM) and
Bluetooth [20].

Another example of pulse shape is the raised cosine (RC)
pulse shape [21], i.e.,

g(t) =
1

LT

[
1 − cos

(
2π

(t + ((L − 1)/2) T )
LT

)]
(4)

which is nonzero only in the interval −(((L − 1)T )/2) ≤ t ≤
(((L + 1)T )/2), and L is the width of the pulse shape [the
number of symbol intervals for which g(t) is nonzero]. The
class of CPM that uses the RC pulse shape of (4) is called
RC-CPM.

After forming the time-varying phase ϕ(t,a), the transmitter
generates the bandpass signal

x(t,a) =
√

2Px cos (2πfct + ϕ(t,a)) (5)

which is then transmitted over the radio frequency (RF) channel
with power Px and center frequency fc. Because the proposed
optimization technique operates under a bandwidth constraint,
it is important to determine the bandwidth of the transmitted
signal. The bandwidth for a fixed data rate is a function of the
alphabet size M , the modulation index h, and the pulse shape
g(t), as discussed in [21], and scales by the inverse of the code
rate Rc.

B. Channel

The modulated signal x(t,a) is transmitted through a fre-
quency nonselective Rician fading channel. The effects of
the channel are most conveniently described in terms of the
complex envelope of the signal. The complex envelope of the
transmitted signal is

x̃(t,a) =
√

2Px exp(jϕ(t,a)) . (6)

This signal is multiplied by a complex flat-fading process
c̃(t) and added to white Gaussian noise ñw(t), producing the
complex envelope of the signal at the input to the receiver, i.e.,

r̃(t,a) = c̃(t)x̃(t,a) + ñw(t) (7)

where ñw(t) is a complex white Gaussian process with power
spectral density N0, and

c̃(t) =
√

Ps +
√

Pdξ(t) (8)

where Pd is the power gain of the diffused component, Ps is the
power gain of the specular component, and ξ(t) is a circularly
symmetric unit power complex Gaussian process. Ps and Pd

are normalized such that Ps + Pd = 1. The Rician K-factor
is given by K = Ps/Pd. When K = 0, the channel is said to
be Rayleigh, and when K = ∞, the channel is said to be an
additive white Gaussian noise (AWGN). The process ξ(t) is

Fig. 2. Receiver block diagram.

usually characterized by an autocorrelation function, which, as
an example, could be [22]

Rξ(τ) = J0(2πfdτ) (9)

where J0 is the zero-order Bessel function of the first kind, and
fd is the maximum Doppler frequency shift.

C. Differential Front End

As shown in Fig. 2, the received signal r(t,a), whose com-
plex envelope is given by (7), is passed through a bandpass
receive filter that removes the out-of-band noise. It is assumed
that the equivalent noise bandwidth of the filter, i.e., Bn, is
greater than the signal’s 99% power bandwidth, and that the
passband of the filter is relatively flat. Thus, the information-
bearing portion of the signal is essentially undistorted by the
filter. Under this assumption, the signal y(t,a) at the output of
the bandpass filter has the complex envelope

ỹ(t,a) = c̃(t)x̃(t,a) + ñc(t)

=
√

2Py(t) exp(jφ(t,a)) (10)

where ñc(t) is the complex low-pass noise with power Pn =
N0Bn, Py(t) is the power of the received signal, and φ(t,a)
is the phase of the received signal. Due to fading and noise,
Py(t) is time varying, although the transmitted signal power Px

is constant.
The received phase may be expressed as

φ(t,a) = ϕ(t,a) + ψ(t) (11)

where ψ(t) is the phase noise as derived in [18], and ϕ(t,a) is
as given in (1).

As is shown in Fig. 2, the output of the bandpass filter
y(t,a), whose complex envelope is given by (10), is multiplied
by a delayed and phase-shifted version of itself. The resulting
bandpass signal is

d(t,a) = −2
√

Py(t)Py(t − T ) cos (2πfct + φ(t,a))

× sin (2πfc(t − T ) + φ(t − T,a)) . (12)

Using the well-known trigonometric identity cos α sin β =
(1/2) sin(α + β) − (1/2) sin(α − β) and dropping the double
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frequency term, after low-pass filtering, d(t,a) becomes

db(t,a) =
√

Py(t)Py(t − T )

× sin (φ(t,a) − φ(t − T,a) + 2πfcT ) . (13)

The signal is then sampled at time t = (k + 1)T , resulting in

db ((k + 1)T,a) =
√

Py(kT + T )Py(kT )

× sin (φ(kT + T,a) − φ(kT,a) + 2πfcT ) . (14)

As is common in the literature [17], we assume that the design
parameter fcT is selected to be an integer, in which case, the
received phase differences can be found by computing

∆φk =∠db ((k + 1)T,a)

=φ(kT + T,a) − φ(kT,a) (15)

where ∠κ sin z = z for any arbitrary constant κ.

D. Soft-Output Back End

In traditional differential detectors such as those described
in [14], [17], and [18], hard symbol decisions are made by
comparing ∆φk, as given in (15), to some threshold. Such
a symbol-by-symbol detector is suboptimal for two reasons.
First, such symbol-based detectors are unable to adequately
compensate for the ISI induced by the partial response CPM
signaling. Second, the formation of hard decisions is subop-
timal for a channel-coded system since properly implemented
soft-decision decoding outperforms hard-decision decoding.

The first drawback can be overcome by modeling the
memory in the modulation as a finite-state machine and
using the Viterbi algorithm to perform ML demodulation.
ML demodulation using the soft phase differences (15)
and the Viterbi algorithm was proposed in [19], where it is
termed soft-decision differential phase detector with Viterbi
decoding (SDDPD-VD). However, the bit decisions made with
SDDPD-VD are hard and, therefore, not suitable for soft-
decision decoding of the channel code.

The second drawback can be alleviated by replacing the
Viterbi algorithm in the SDDPD-VD algorithm with the Bahl,
Cocke, Jelinek, and Raviv [BCJR or maximum a posteriori]
algorithm of [23]. In such cases, the demodulator will output
the LLRs of the code bits, i.e.,

Zi,k = log
P [Bi,k = 1|∆φ]
P [Bi,k = 0|∆φ]

(16)

where ∆φ = {∆φk, 0 ≤ k ≤ Na − 1} is the received sequence
of phase differences. In this paper, we use the term soft-
output soft-decision differential phase detector (SO-SDDPD) to
describe our formulation of the soft differential detector based
on the BCJR algorithm, which is the subject of the present
section and was previously proposed in [24].

Both the Viterbi and BCJR algorithms require that the un-
derlying modulation be described in terms of a finite-state

TABLE I
θi (IN DEGREES) AT DIFFERENT BgT FOR GFSK WITH h = 0.5

TABLE II
θi (IN DEGREES) AT DIFFERENT L FOR RC PULSE SHAPE WITH h = 0.5

machine. For differential detection, the finite states manifest
themselves as a finite set of transmitted phase differences, i.e.,

∆ϕk(a) =ϕ(kT + T,a) − ϕ(kT,a)

=πh
∞∑

i=−∞
ak−ipi (17)

where ϕ(t,a) is as given in (1), and

pi =

iT+T∫
iT

g(t)dt. (18)

When the pulse g(t) is not time limited, the number of
distinct phase differences will be generally (countably) infinite.
However, for pulses of interest, the CPM-induced ISI terms are
generally limited to only extend from Zp past symbols to Zf

future symbols. In this case, (17) can be written as

∆ϕk(a) = πh

Zp∑
i=−Zf

ak−ipi (19)

and ∆ϕk(a) will assume one of only MZp+Zf +1 values. If the
Gaussian pulse shape of (3) or the RC pulse shape of (4) is used,
then the ISI will be centered such that Zf = Zp = Z. Tables I
and II list the values of θi = πhpi for GFSK and RC pulse
shapes, respectively, with h = 0.5. As an example, for GFSK
with BgT = 0.5, Z = Zf = Zp = 1.

Soft-output demodulation is performed by running the BCJR
algorithm on an M2Z state trellis. The state at time instant
t = kT is given by Sk = (ak−2Z , ak−2Z+1, . . . , ak−1), with
M branches emerging out of each state. Once the trellis is so
defined, the LLR given by (16) can be decomposed using the
BCJR algorithm as

Zi,k = log
∑

S(1) αk(s′)γk+1(s′, s)βk+1(s)∑
S(0) αk(s′)γk+1(s′, s)βk+1(s)

(20)

whereS(1) is the set of state transitions{Sk = s′}→{Sk+1 = s}
corresponding to Bi,k = +1, S(0) is defined similarly for
Bi,k = 0, and α, β, and γ are the metrics in the BCJR algo-
rithm. Because [23] already fully describes how to recursively
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calculate α and β from the branch metric γ, all that remains to
completely describe the demodulator is a derivation of γ.

As in [23], the metric γk+1(s′, s) is defined as

γk+1(s′, s) = P [Sk+1 = s,∆φk|Sk = s′]

= P [Sk+1 = s|Sk = s′]

× P [∆φk|(Sk → Sk+1) = (s′ → s)] (21)

where ∆φk is the received phase difference given in (15).
Because the interleaved code bits are equally likely, so
are the steady-state branch transition probabilities, and thus,
P [Sk+1 = s|Sk = s′] is a constant that can be dropped from
(21) without affecting the overall LLR (20). Note that if
a priori information were delivered from the decoder back to
the demodulator, then the a priori information could be used to
update the value of P [Sk+1 = s|Sk = s′]. Such an operation is
contemplated in [24] for iterative demodulation and decoding
and is outside the scope of this paper.

Let ∆ϕk(s′ → s) be the transmitted phase difference as-
sociated with a transition from state s′ to s, calculated by
substituting the symbols associated with the two states into
(19). Because of this one-to-one correspondence between state
transitions and transmitted phase differences, (21) may be
rewritten as

γk+1(s′, s) = P [∆φk|∆ϕk(s′ → s)] (22)

which is the conditional probability that phase difference ∆φk

was received given that phase difference ∆ϕk(s′ → s) was
transmitted. Because the received phase difference ∆φk is a
continuous random variable, the probability given in (22) is
actually zero. It is more appropriate to instead evaluate the
probability that ∆φk is within a small region (�−, �+), i.e.,

γk+1(s′, s) = P
[
�− ≤ ∆φk < �+|∆ϕk(s′ → s)

]
(23)

and then let ε = �+ − �− → 0. As ε gets smaller, the above
probability becomes

γk+1(s′, s) = εp∆φ (∆φk|∆ϕk(s′ → s)) (24)

where p∆φ(·|∆ϕk(s′ → s)) is the conditional pdf of the re-
ceived phase difference given a transmitted phase difference
of ∆ϕk(s′ → s). Because ε cancels in the overall LLR (20),
it can be dropped, and the branch metric γk+1(s′, s) can be
determined by substituting the received phase difference ∆φk

into the conditional pdf.
In a practical receiver, one would not want to directly evalu-

ate the true conditional pdf because it is not easily expressed in
a closed form. Alternatively, one could precalculate and store
the pdf in a lookup table with a finite number of entries and
read out the entry closest to the received phase difference.
This would be accomplished by partitioning the phase region
between 0 and 2π into R phase subregions Di = (�−i , �+

i ), 0 ≤
i ≤ R − 1, where adjacent regions share a common boundary,
i.e., �+

i = �−i+1. The table is read by first determining in which
phase region the received phase difference lies and then by
outputting the value stored in the table.

Although the above-described technique accurately approxi-
mates the true conditional pdf as the size of the phase regions
gets smaller, it is suboptimal when a coarser table is used with
fewer entries. This is because for wide regions, the conditional
pdf within the region is no longer a constant, and therefore, the
probability that the received phase difference lies in this region
can no longer be approximated by the area of a rectangle, as
given by (24). Instead, the probability given by (22) should be
calculated by integrating the pdf over the region

P
[
�−i ≤ ∆φ < �+

i |∆ϕk(s′ → s)
]

=

�+
i∫

�−
i

p∆φ (λ|∆ϕk(s′ → s)) dλ. (25)

The solution to the above integral is given in [18] to be

P
[
�−i ≤ ∆φ < �+

i |∆ϕk(s′ → s)
]

= 1 + F
(
�+

i |∆ϕk(s′ → s)
)
− F

(
�−i |∆ϕk(s′ → s)

)
(26)

when �−i ≤ ∆ϕk(s′ → s) < �+
i , and

P
[
�−i ≤ ∆φ < �+

i |∆ϕk(s′ → s)
]

= F
(
�+

i |∆ϕk(s′ → s)
)
− F

(
�−i |∆ϕk(s′ → s)

)
(27)

otherwise. The function F is described by the set of equations
given in [18]. Because the function F depends on the Rician
K-factor and the ratio Es/N0, it is assumed that these quantities
are known to the receiver or that that receiver can estimate them.
The SDDPD does not, however, require estimates of the fading
amplitudes.

The SDDPD works by first precalculating P [�−i ≤ ∆φ <
�+

i |∆ϕk(s′ → s)] for each state transition (s′ → s) and each
phase region Di using (26) and (27). The results are then stored
in a table with R columns (one for each phase region) and
M2Z+1 rows (one for each state transition). The table only
needs to be generated once for a particular SNR and Rician
K-factor, but needs to be recreated as these quantities change.
For each received phase difference ∆φk, the receiver deter-
mines the index of the phase region Di in which it lies, i.e.,
the value of i for which �−i ≤ ∆φk < �+

i . This index is then
used to read out the ith column from the table, whose elements
are used as the branch metrics γk+1(s′, s) for the corresponding
state transitions (s′ → s). Once the metrics are determined for
every branch in the trellis, the demodulator executes the BCJR
algorithm using (20), producing the LLR Zi,k for each bit i of
each symbol k. The LLRs are then placed into a row vector z
such that zk log2 M+i = Zi,k. The vector is then deinterleaved,
and the resulting sequence z′ is fed to the channel decoder for
soft-decision decoding.

III. CAPACITY UNDER BICCPM AND

DEMODULATOR CONSTRAINTS

The BICCPM system shown in Figs. 1 and 2 can be viewed
as shown in Fig. 3. The composite channel consists of the
modulator, the channel, and the soft-output demodulator. The
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Fig. 3. BICM system represented using a composite channel model. The
composite channel includes the modulator, the channel, and the demodulator.

constrained capacity is found by evaluating the average mutual
information between the input and the output of this composite
channel. As mutual information is a measurable quantity, it can
be estimated using Monte Carlo techniques in conjunction with
a simulation of the actual demodulator, much the same way that
extrinsic information transfer charts are generated [25].

As discussed in [9], BICM transforms the composite channel
into log2 M parallel binary-input continuous-output channels,
which we call BICM subchannels. With a sufficiently large
random bit interleaver between the encoder and the modulator,
these subchannels will be independent. Because the capacity
of parallel channels adds, the capacity of the overall BICM
system is

C =
log2 M∑

i=1

Ci (28)

where Ci is the capacity of the ith BICM subchannel. The
capacity Ci is the average mutual information that is measured
between input b′i ∈ {0, 1} and the corresponding LLR z′i at the
output of the ith BICM subchannel, i.e.,

Ci = I (b′i; z
′
i) = E [i (b′i; z

′
i)] . (29)

Since b′ is discrete, the mutual information random variable
i(b; z) can be written as [26]

i(b; z) = log
1

P [b]
+ log P [b|z]. (30)

Assuming that b is equally likely to be 1 or 0, 1/P [b] = 2.
From the mathematics of LLRs, we may write log P [b|z] =
−max ∗(0, z(−1)b), where max ∗ is as defined in [27]. Sub-
stituting (28) and (29) with i(b; z), as defined in (30), gives the
expression for BICCPM capacity, i.e.,

C =
log2 M∑

i=1

(
log 2 − E

[
max ∗

(
0, z′i(−1)b′i

)])
(31)

which is in units of nats. To convert to bits, (31) must be divided
by log 2.

Since the capacity is found by measuring the mutual infor-
mation between the modulator input and the soft demodulator
output, it takes into account the constraints of not only the
modulation and the channel but also the constraints imposed
by the receiver formulation. This allows receiver design issues
such as the choice of phase regions to be studied in terms of the
impact on constrained capacity. In fact, other receiver designs
such as the coherent receiver of [10] can be characterized in
terms of constrained capacity. All that is required is for the
demodulator to produce an LLR.

Fig. 4. BICCPM capacity versus Es/N0 (dB) in AWGN. The modulation
parameters are M = 2, BgT = ∞, and h ∈ {1/2, 1/4, 1/5}. (Dotted curves)
Capacity using SO-SDDPD. (Solid curves) Capacity using a coherent detector.

Due to the high dimensionality of the problem and the
nonlinear equations that are involved, neither a closed-form
expression nor numerical integration is a feasible method to
find (31). Fortunately, (31) can be evaluated through Monte
Carlo integration using a large number of trials. As in [13], we
found that simulating about 1 million symbols per SNR point
was sufficient to estimate the true capacity with a high degree
of confidence.

Example capacity curves are shown for an AWGN channel
in Fig. 4. Fig. 4 shows the BICCPM-constrained capacity C
versus Es/N0 for binary (M = 2) full response (GFSK with
BgT = ∞) signaling with h ∈ {1/5, 1/4, 1/2}. The figure
shows the constrained capacity of not only the SO-SDDPD
demodulator discussed in Section II-D but also the capacity
using the soft-output coherent demodulator of [10].

It is interesting to note that the largest gap between the
capacities of the two demodulators is about 3 dB, which occurs
for the full-response case (Fig. 4) with the highest value of
h (h = 1/2). However, the gap closes with diminishing h. It
should also be noted that whereas the trellis complexity of the
differential detector does not depend on the choice of h, the
complexity of the coherent detector increases with increasing
n, where h = k/n. In fact, if h cannot be expressed as a rational
fraction, then a finite complexity coherent detector cannot
be formulated. Since we are interested in bandwidth-efficient
systems with low values of h, the combination of reduced
complexity and only moderate performance loss compared to
coherent detection makes the proposed differential detection
scheme very attractive.

IV. CAPACITY-BASED SELECTION OF CPM PARAMETERS

Given any choice of modulation parameters [h, M , and g(t)],
a receiver design, and a channel, the capacity C (in units of nats)
is found using (31). For convenience, C is normalized as C̄ =
C/ log M . The SNR evaluated at a particular code rate Rc = C̄
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is the minimum Es/N0 required for reliable signaling at that Rc.
The corresponding minimum required Eb/N0 can then be found
using Es = Rc log2 MEb. As the parameters change, so does
the minimum value of Eb/N0, and what we seek is to determine
its global minimum for all possible values of coded modulation
parameters for the particular channel and receiver.

We could allow the set (h, M , g(t), Rc) to assume any value.
However, the resulting solution could have a high bandwidth
(i.e., a low Rc or a high h), or it could result in a high
complexity receiver [i.e., a g(t) with a large value of Z].
Hence, we restrict the search space to reasonable solutions
and impose bandwidth as well as complexity constraints. The
complexity constraint requires that the receiver be differential
(SO-SDDPD) and contain no more than M2 states and restrict
M ≤ 4. Because it is differential, the receiver’s complexity
will not depend on the choice on h, and since it contains
M2 states, only adjacent symbol interference is mitigated
(Z = 1). Although pulse shapes with ISI that extends beyond
the adjacent symbols (Z > 1) are allowed in the search space,
any ISI beyond Z = 1 will degrade performance.

With a bandwidth constraint, h, M , g(t), and Rc become
related. As in [10], the bandwidth constraint is expressed in
terms of the coded normalized double-sided 99% power band-
width 2B99Tb, where Tb is the information bit period. To find
2B99Tb, first, the bandwidth of the uncoded signal is found as
a function of h, M , and the pulse shaping parameter (e.g., BgT
or L) using methods given in [21]. The uncoded bandwidth is
simply multiplied by 1/Rc to determine the coded bandwidth.
Thus, with a given 2B99Tb, we are free to pick three of the
four parameters (h, M , BgT/L, and Rc); however, the fourth
parameter will be limited by some minimum (or maximum)
value.

The pulse shapes may be either GFSK with parameters
BgT = 0.5, 0.25, and 0.2 or RC with L = 3 or 5. We consider
the code rates Rc = {6/7, 5/6, 3/4, 2/3, 1/2, 1/3, 1/4, 1/5}.
We limit the alphabet size M to be either 2 or 4. The receiver
is restricted to use SO-SDDPD with uniformly spaced phase
regions with R = 40 for M = 2 and R = 26 for M = 4. Fi-
nally, we consider 2B99Tb = {0.4, 0.6, 0.8, 0.9, 1.0, 1.2}. The
value of h is determined by the choice of the other parameters
along with the bandwidth constraint. The optimization is run
for a Rayleigh channel (K = 0) and a Rician channel with
K = 6 dB. There are 80 design points to consider for each of
the six values of 2B99Tb and two channels. For each design
point, 2B99Tb, and channel, C and, consequently, the theoretic
minimum Eb/N0 were found. Then, for a particular channel and
2B99Tb, the design point with the smallest minimum Eb/N0

was selected and declared the best design for that channel and
bandwidth.

Because a total of 960 capacity curves were generated, a full
account of the results cannot be given in this paper. Figs. 5 and
6 show representative intermediate results. In Fig. 5, results are
shown in Rician fading (K = 6 dB) for the subset of design
points that contain Rc = 2/3 and GFSK pulse shapes. For each
of the six design points, a curve is given, showing the theoretic
required Eb/N0 as a function of 2B99Tb. Also listed is the
value of h for the curve with the smallest required Eb/N0.
For all but the largest 2B99Tb, the design point M = 4 and

Fig. 5. Minimum required Eb/N0 as a function of normalized bandwidth
2B99Tb for BICCPM in Rician fading (K = 6 dB). The code rate is
Rc = 2/3, GFSK modulation used with M = {2, 4}, and demodulation is
implemented using SO-SDDPD. The numbers denote modulation indexes
corresponding to GFSK parameters with the lowest min{Eb/N0} at different
2B99Tb.

Fig. 6. Minimum required Eb/N0 as a function of the code rate for BICCPM
with GFSK signaling in Rayleigh fading with SO-SDDPD and under bandwidth
constraint 2B99Tb = 0.8. The legend specifies the GFSK parameters (M , h,
BgT ) that achieves this minimum. Under the given constraints, the design
{Rc = 3/4, M = 4, h = 0.25, BgT = 0.5} has the best energy efficiency.

BgT = 0.5 has the lowest Eb/N0. In Fig. 6, the bandwidth is
held fixed at 2B99Tb = 0.8 in a Rayleigh fading channel, and
the minimum Eb/N0 for each code rate is shown. From the
curve, it is apparent that Rc = 3/4 is the best code rate for
this 2B99Tb, along with the parameters M = 4, h = 0.25, and
BgT = 0.5. Fig. 6 also shows the tradeoff between the code
rate and CPM parameters at a fixed bandwidth. As an example,
when Rc is lowered from 6/7 to 3/4, an improvement in the en-
ergy efficiency is seen due to increased coding gain. However,
when Rc is lowered below 3/4, the scaling of CPM parameters
(primarily h) not only offsets any potential coding gain but,
in fact, also worsens the performance. The design parameters
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TABLE III
COMBINATION OF CODE RATES AND CPM PARAMETERS HAVING THE LOWEST INFORMATION THEORETIC MINIMUM Eb/N0 UNDER

THE CONSTRAINT OF USING SO-SDDPD IN RAYLEIGH AND RICIAN FADING (K = 6 dB) AT DIFFERENT 2B99Tb

that minimize Eb/N0 for each bandwidth constraint and the
corresponding value of the minimum Eb/N0 are tabulated in
Table III for Rayleigh fading and for Rician fading. As can
be seen from the table, GFSK outperforms RC-CPM, except at
the most relaxed bandwidth constraint. Further insight into the
performance of the SO-SDDPD with different pulse shapes can
be obtained from Tables I and II. BgT = ∞ and L = 1 indicate
full-response CPM (Zf = Zp = 0). As BgT is lowered or L is
increased, the amount of ISI increases. It is interesting to note
that for a given pulsewidth, the amount of ISI in the RC pulse
shape is greater than GFSK. As a consequence, for the same M ,
h, and pulsewidth, RC-CPM would have a more compact power
spectrum than GFSK. This also implies that at a fixed 2B99Tb,
Rc, M , and pulsewidth, RC-CPM allows us to have a higher
value of h. Typically, larger values of h result in lower values
of min{Eb/N0}; however, since the induced ISI is also greater,
the RC-CPM may not always have better energy efficiency.

V. PERFORMANCE OF AN ACTUAL CODED SYSTEM

BER simulations were performed for the proposed BICCPM
system using the Universal Mobile Telecommunications Sys-
tem turbo code [28] and SO-SDDPD detection. The codeword
length was Nb = 6720 bits, and the decoder performed 16
decoder iterations. Although the mother code rate is Rc = 1/3,
rate matching was performed to obtain higher code rates.
Enough trials were run at each Eb/N0 to log 30 frame errors.

Simulations were performed for both Rayleigh fading and
Rician fading with K = 6 dB. In each case, the optimal pa-
rameters were chosen from Table III for 2B99Tb = 0.9. The
BER in Rayleigh fading for 4-GFSK with parameters h = 0.24,
BgT = 0.5, and Rc = 2/3 is shown in Fig. 7. From this curve,
it is seen that the Eb/N0 required to achieve a BER of 10−5

is 12.93 dB, which is less than 1 dB away from the Eb/N0

of 11.99 dB predicted by Table III. Space constraints prevent
us from displaying a similar plot for Rician fading. However,
in both cases, BER simulation results confirm that constrained
capacity is a practical measure of BICCPM performance since
it is possible to signal within 1 dB of the capacity by using off-
the-shelf binary capacity-approaching codes.

It is also informative to compare the performance of the
coded system against that of an uncoded system with the same
spectral efficiency. Simulation of uncoded CPM using SDDPD
detection and binary GFSK with h = 0.5 and BgT = 0.3 is

Fig. 7. BER of (solid line) coded and (dotted line) uncoded GFSK in Rayleigh
fading under bandwidth constraint 2B99Tb = 0.9 using SO-SDDPD. The
coded (BICCPM) system uses a rate Rc = 2/3, length Nb = 6720 turbo code,
16 decoder iterations, R = 26 phase regions, and GFSK parameters M = 4,
h = 0.24, and BgT = 0.5. The uncoded system uses R = 40 phase regions
and GFSK parameters M = 2, h = 0.5, and BgT = 0.3.

shown in Fig. 7 for the Rayleigh channel. These parameters
were chosen because they are used in the GSM standard and
because they also result in 2B99Tb = 0.9. It can be seen that
the coding gain at BER = 10−5 is 16 dB.

VI. CONCLUSION

We have investigated the problem of designing bit-
interleaved coded CPM systems under bandwidth constraints.
A methodology for solving the above problem using the con-
strained capacity as the cost function has been outlined. Monte
Carlo integration with a large number of trials offers a com-
putationally feasible method for determining the capacity for a
wide range of coded CPM parameters and detector designs. Our
BER results demonstrate that the information-theoretic limits
predicted by the capacity are practical indicators of the system
performance due to the availability of capacity-approaching
binary codes. To limit the receiver complexity, a soft-output
soft-decision differential phase detector has been developed for
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detecting the CPM signals. Our proposed methodology is used
to perform optimization over a trial search space.

Our approach to finding the most energy-efficient combina-
tion of code rates and CPM parameters at different bandwidth
efficiencies is a “brute force” approach, which is very com-
putationally intensive. As an example, nearly 1000 different
capacity curves had to be generated and analyzed to create
Table III. A more computationally efficient approach to the
optimization would be to apply simulated annealing [29] by
treating the constrained capacity as the internal energy and
defining the state as the combination of the code rate and CPM
parameters. An iterative type of search could also be used by
running a few Monte Carlo trials over a coarse search space and
then “zooming in” on the parameters of interest and running
further trials. Such improved optimization techniques remain
topics for further study.
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