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Constellation Labeling Maps for Low Error Floors
Don Torrieri and Matthew C. Valenti

Abstract—A constellation labeling map is the assignment of
a bit pattern to each symbol in a signal-set constellation. In
a system with iterative decoding and demodulation, the error
floor of the bit error rate is highly dependent on the labeling
map. A simple class of labeling maps that significantly lower
the error floors is presented. Examples show the applications of
the proposed mapping to multiple phase-shift keying (MPSK),
quadrature amplitude modulation (QAM), and continuous-phase
frequency-shift keying (CPFSK). Simulation results indicate that
the proposed labeling maps are comparable to or better than
other labeling maps in providing a low error floor. A major
advantage of the proposed labeling maps is that they are easily
generated even when the alphabet size is large.

Index Terms—Constellation, labeling map, error floor, iterative
decoding, bit-interleaved coded modulation.

I. INTRODUCTION

MANY communication systems include iterative decod-
ing and demodulation in which soft-decision informa-

tion is exchanged between the demodulator and the decoder,
which itself may be internally iterative. For example, a system
with bit-interleaved coded-modulation (BICM), which is used
to mitigate fading [1], may also use iterative decoding and
demodulation (BICM-ID system) [2], [3], [4]. The itera-
tive decoding and demodulation minimizes any performance
degradation experienced by BICM over the additive white
Gaussian noise (AWGN) channel.

Plots of the bit error rate for systems with iterative decoding
and demodulation generally exhibit a waterfall region, which
is characterized by a rapid decrease in the bit error rate as
the signal-to-noise ratio increases, and an error-floor region,
in which the bit error rate decreases much more slowly.
The choice of the labeling map has a major impact on
both regions. In this paper, we present a simple method for
constructing labeling maps that produce low error floors for
an arbitrary constellation and an error-control code that uses
iterative decoding and demodulation. A low error floor may
be important for radio-relay communications, space-ground
communications, or when an automatic-repeat request is not
feasible because of the variable delays.

Methods for generating good labeling maps for low error
floors have been previously described [5], [6], [7]. These
methods entail computer searches based on approximate upper
bounds on the bit error rate. The new labeling maps presented
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in this paper are based on the Euclidean distances in the
signal-set constellations and are much simpler to generate.
Simulation results indicate that the proposed labeling maps are
comparable to or better than other labeling maps in providing
a low error floor.

In addition to a suitable choice of the labeling map, there
are several independent strategies for lowering the error floor.
One can lower the error floor by strengthening or appropriately
selecting the error-control code. As examples, one can use a
turbo code instead of a convolutional code or more powerful
component codes within the turbo code. One can use a regular
low-density parity-check (LDPC) code instead of a compa-
rable irregular one to lower the error floor. Bit interleavers
that ensure the unequal protection of bits can be designed to
provide low error floors for both bit-interleaved turbo-coded
systems [8] and LDPC-coded systems [9] . The new labeling
maps can supplement any of the other methods of lowering
the error floor and lower it further.

A Gray labeling map minimizes the number of bit errors that
occur if an adjacent symbol of a received symbol is assigned
the highest likelihood or largest metric by the decoder. Thus, a
Gray labeling map will provide an early onset of the waterfall
region, but produces a relatively high error floor primarily
determined by the minimum Euclidean distance of the symbol
set. In contrast, the new labeling map described in Section
II lowers the error floor at the cost of an adversely shifted
waterfall region.

II. LABELING MAPS

The major components of a communication system with
iterative decoding and demodulation are diagrammed in Fig.
1. The interleaver and deinterleaver are omitted if the system
does not use BICM. In the transmitter, message bits are
encoded, bit-interleaved, and then applied to the modulator.
A constellation labeling or labeling map is the mapping
of a bit pattern to each symbol or point in a signal-set
constellation. Each set of m = log2 q consecutive bits in the
input b = {b0, ..., bm−1} ∈ [0, 1]m is mapped into a q-ary
symbol s =μ(b), where μ(b) is the labeling map, and the
set of constellation symbols has cardinality q. In the receiver,
the demodulator converts the received signal into a sequence
of received symbols. A demapper within the demodulator
processes each received symbol to produce a vector of bit
metrics. This vector provides extrinsic information that is
deinterleaved and passed to the decoder. The demapper and
decoder exchange extrinsic information until bit decisions are
made by the decoder after a specified number of iterations.

The Euclidean distance is a measure of the separation
between two constellation points. An adjacent constellation
symbol of symbol i is one at the minimum Euclidean distance
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Fig. 1. Communication system with iterative decoding and demod-
ulation. Π denotes an interleaver, and Π−1 denotes a deinterleaver.
The interleavers and deinterleaver are omitted if the system does not
use BICM.

de1(i) from symbol i. A second closest constellation symbol
of symbol i is one at the second shortest Euclidean distance
de2(i) from symbol i. A set of bits is said to be essentially
known if the decoder has assigned them very high likelihood
ratios that are fed back to the demodulator.

Let si, 1 ≤ i ≤ q, denote symbol i of the constellation,
and bk(si) denote bit k of si. Consider the constellation
symbols and the corresponding bits produced by the decoder.
When the SNR is high enough and there are enough decoder
iterations, some bits are essentially known by the decoder. The
constellation symbols that include bits equal to the essentially
known bits constitute a subset A of the constellation. For
example, if the first bit of an 8-symbol constellation is es-
sentially known to be b, then the 4 constellation symbols with
b1(si) = b are in A. Consider a demodulator iteration after the
demodulator receives extrinsic information from the decoder.
Let y =αs + n denote an arbitrary received symbol, where s
is the transmitted symbol, α is the fading amplitude, and n is
complex Gaussian noise with variance N0/2 per component.
If a bit is essentially known, the bit metric produced by
the demodulator for that bit no longer significantly affects
the computation of the decoder metric. However, if a bit is
unknown, then the demodulator bit metric has a significant
effect on the decoder bit metric produced by the next decoder
iteration. Let vj = log{Pr[bj = 1]/ Pr[bj = 0]} denote the
extrinsic log-likelihood ratio for bit j that is produced by the
decoder and fed back to the demodulator, where Pr[·] denotes
a probability. The demodulator metric for bit k is [10] , [11]

zk = log

∑
si∈D(1)

k

p(y|si)
∏m−1

j=0
j �=k

exp[bj(si)vj ]

∑
si∈D(0)

k

p(y|si)
∏m−1

j=0
j �=k

exp[bj(si)vj ]
(1)

where p(y|si) is the conditional density of y given that si was
transmitted and D(b)

k = {si : bk(si) = b} contains all symbols
labeled with bk = b. As an example, suppose that all bits
are essentially known. Then (1) indicates that zk, which will
not significantly affect subsequent decoder computations, is
approximately equal to log[p(y|sn)/p(y|sm)], where sn and
sm both include m − 1 of the essentially known bits but

bk(sn) �= bk(sm) .
Consider two terms in one of the summations in (1). In

term tl, sl ∈ D(b)
k ∩ A, and in term tm, sm ∈ D(b)

k ∩ Ac,
where Ac denotes the complement of A. Suppose that for
n �= k, bit n is essentially known so that vn has a large
magnitude. If bn(sl) �= bn(sm), then the factor exp[bn(sl)vn]
in tl is much larger than the factor exp[bn(sm)vn] in tm.
Therefore, in both summations in (1), any term for which
si /∈ D(b)

k ∩ A is negligible compared with terms for which
si ∈ D(b)

k ∩ A. For an unknown bit k,

zk � log

∑
si∈D(1)

k ∩A

p(y|si)
∏m−1

j=0
j �=k

exp[bj(si)vj ]

∑
si∈D(0)

k ∩A

p(y|si)
∏m−1

j=0
j �=k

exp[bj(si)vj ]
. (2)

If a labeling map can ensure that the set A does not include
symbols that are adjacent in the constellation, then (2) indi-
cates that each zk for an unknown bit k is independent of
adjacent symbols at the minimum distance de1(i) and, hence,
the effective minimum distance for the demodulator iteration
is at least de2(i). Thus, if the minimum distance predominates
in determining bit errors, then subsequent decoder iterations
with this labeling map are more likely to correctly determine
the bits and lower the error floor than iterations with maps for
which set A includes adjacent symbols.

A TV labeling map is defined as a labeling map for a con-
stellation with m ≥ 3 such that adjacent symbols are absent
from any set of symbols with κ known bits if 2 ≤ κ ≤ m−1.

Proposition 1: A labeling map for a constellation with m ≥
3 is a TV labeling map if and only if the minimum Hamming
distance da(i) from a constellation symbol i to its adjacent
ones is at least m − 1.

Proof: Necessity. Assume that a labeling map is such that
some symbol i is at Hamming distance da(i) ≤ m − 2 from
one or more adjacent ones. Then at least two bits are common
to the symbol i and one or more of its adjacent symbols. If
the common bits are known, symbol i and one or more of
its adjacent symbols are members of the set of symbols with
the two known bits. Thus, the labeling map cannot be a TV
labeling map. Sufficiency. Assume that a labeling map has
da(i) ≥ m − 1 for any symbol i. Let d2 (i, A) denote the
Hamming distance between symbol i and another member of
a set A of symbols with κ known bits. If 2 ≤ κ ≤ m − 1,
then d2 (i, A) ≤ m − κ < m − 1 ≤ da(i) for any symbol i.
Since d2 (i, A) < da(i), set A cannot include both symbol i
and its adjacent symbols.

The proposition implies that a TV labeling map can be
constructed by assigning bit patterns to symbols such that
the Hamming distance to adjacent symbols always is at least
m − 1. In the following labeling algorithm, the symbols are
labeled sequentially. After each symbol labeling, the unused
bit patterns are called the remaining labels.

Labeling Algorithm: Two tables are associated with each
symbol i. The adjacent-symbol table S(i) is a list of symbols
that are adjacent to symbol i. The adjacent-label table L(i) is
a list of labels that could be used by adjacent symbols. This
table is initially empty. After symbol i is labeled, L(i) is a
list of remaining labels that are at Hamming distance m − 1
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or m from the label of symbol i. As successive symbols are
labeled, L(i) is shortened. One symbol is selected to be the
first labeled symbol and is labeled arbitrarily.

Using the adjacent-symbol tables, arbitrarily select one of
the unlabeled symbols that have the largest number of labeled
adjacent symbols. This selected symbol is labeled with one
of the remaining labels that is common to all the adjacent-
label tables of its labeled adjacent symbols. If there is more
than one such label, one of them is chosen arbitrarily. The
process terminates when every symbol has been labeled. If
at any step, no further symbol labeling is possible, then the
algorithm returns to the last arbitrary choice, erases all labels
subsequent to this choice, makes a different choice, and then
continues with the sequential labeling. �

A TV labeling map exists only if every constellation symbol
has m + 1 or fewer adjacent symbols. Many TV labeling
maps exist for most practical constellations. If an m-digit
binary number is modulo-2 added to all the bit labels of one
TV labeling map, then another TV labeling map is produced.
Furthermore, rotated and reflected versions of a TV labeling
map can be constructed.

III. EXAMPLES OF LABELING MAPS

Example 1: For multiple phase-shift keying (MPSK), let
si = exp(j2πi/q), i = 0, 1, . . . , q − 1, denote the complex
value of constellation symbol i, where j =

√−1 and q = 2m.
For the small alphabet with m = 3, some previously described
labeling maps [3] , [7] belong to the class of TV labeling maps.
For m = 3, a TV labeling map is the following.

symbol bit label symbol bit label
0 010 4 110
1 001 5 101
2 100 6 000
3 011 7 111

The minimum Hamming distance between symbols 0 and
7 and all other adjacent symbols is equal to or greater than 2.
Suppose that the first two bits of the map are essentially known
to be 10. Then the decoder will use the demodulator metrics
for symbol 2 and symbol 5, which are not adjacent symbols,
to make a decision on the third bit. For m = 4, a TV labeling
map is the following.

symbol bit label
0 0 0 0 0
1 0 1 1 1
2 1 0 0 1
3 1 1 1 0
4 0 0 1 1
5 0 1 0 0
6 1 0 1 0
7 1 1 0 1

symbol bit label
8 0 1 1 0
9 0 0 0 1
10 1 1 1 1
11 1 0 0 0
12 0 1 0 1
13 0 0 1 0
14 1 1 0 0
15 1 0 1 1

�

Example 2: In Fig. 2 for quadrature amplitude modulation
(QAM), the bit labels of a TV labeling map for the 16-
QAM constellation are expressed in a decimal format. The
complex-valued symbols have 2, 3, or 4 adjacent symbols. The
application of the labeling algorithm is illustrated by its first
few steps. The constellation symbols are denoted by 0, 1, ..., 15
from left to right and from top to bottom starting in the upper

Fig. 2. Labeling map for 16-QAM constellation.

Fig. 3. Labeling map for 64-QAM constellation.

left corner of the figure. Symbol 0 is labeled 0000. Table L(0)
lists the labels 1111, 1110, 1101, 1011, and 0111. Since both
S(1) and S(4) list symbol 0, symbol 1 is arbitrarily selected to
be the next labeled symbol, and 1101 (13) is arbitrarily chosen
from L(0) as its label. This label is deleted from L(0). Symbol
4 is arbitrarily selected to be the next labeled symbol, and 0111
(7) is arbitrarily chosen from L(0) as its label. Symbol 5 is
the only unlabeled symbol with 2 labeled adjacent symbols,
so it is the next labeled symbol. Since 1010 is the only label
common to both L(1) and L(4), symbol 5 is labeled 1010
(10). The labeling algorithm is continued until we obtain the
TV labeling map of Fig. 2.

The "D5 mapping" of [12], which is proposed as an
approximation of an anti-Gray map, belongs to the class of
TV labeling maps for 64-QAM. In Fig. 3, the bit labels of a
TV labeling map for the 64-QAM constellation are expressed
in a decimal format. �
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Example 3: Consider a noncoherent q-ary continuous-
phase frequency-shift keying (CPFSK) system with modu-
lation index h > 0 that does not exploit the memory due
to the continuous phase of the signal. Then the signal-set
constellation consists of q symbols representing the signals
sl(t) =ej2πlht/T /

√
T , 0 ≤ t ≤ T, l = 1, 2, . . . , q , where T

is the signal duration. The square of the Euclidean distance
between symbols i and j is

d2(|i − j|) =
∫ T

0

|si(t) − sj(t)|2 dt

= 2Es

[
1 − sin[(i − j)hπ]

(i − j)hπ

]
(3)

where Es is the signal energy, and the Euclidean distance is a
function of |i − j| because sin x/x is an even function of x.

If 0 < h < 1, an adjacent symbol corresponds to the
signal closest in frequency to the signal associated with a
specified symbol, which is true because the minimum Eu-
clidean distance between constellation symbols is d(1) < d(k)
for any integer k ≥ 2. The latter follows from the fact that
sin hπ/hπ > sin khπ/khπ, 0 < h < 1, for k ≥ 2, which
may be proved by showing that k sin hπ − sin khπ > 0,
0 < h < 1, for k ≥ 2. The proof is by mathematical
induction. Assume that 0 < h < 1. Since sin 2hπ =
2 sinhπ coshπ, the inequality is true for k = 2. Assume
that k sin hπ − sin khπ > 0 is true for some k ≥ 2. Using
this inequality, we obtain (k + 1) sinhπ − sin(k + 1)hπ =
(k+1) sinhπ−sinkhπ coshπ−sinhπ cos khπ > sin hπ(k+
1−k coshπ−cos khπ) > 0, which completes the proof. Since
d(1) is the minimum Euclidean distance between constellation
symbols, each symbol has either one or two adjacent symbols.

The TV labeling maps for m = 3 and m = 4 in example 1
are applicable to noncoherent CPFSK with q = 8 and q = 16,
respectively. For q = 8, symbol i has adjacent symbols i − 1
and i + 1, 1 ≤ i ≤ 6, symbol 0 has adjacent symbol 1,
and symbol 7 has adjacent symbol 6. Symbols 0 and 7 are
not adjacent. Since symbol 6 is the only symbol adjacent to
symbol 7, the labeling map indicates that da(7) = 3. �

IV. CHARACTERISICS OF TV LABELING MAPS

If all the bits in a symbol are known except one, then
the dominant influence on the bit error probability over the
AWGN channel is the minimum Euclidean distance between
the two constellation symbols that differ in that one bit
[1], [3]. Thus, the asymptotic error floor of the bit error
probability is determined by the minimum Euclidean distance
De between constellation symbols that differ in a single bit
of their labels. The asymptotic error floor with its extremely
low bit error probability is unlikely to be reached by practical
communication systems. The error floor that is minimized by
a TV labeling map is reached when at least two decoded
bits are essentially known. However, within the class of TV
labeling maps for a constellation, maps with the largest value
of De are found to provide the lowest error floors for both the
AWGN and Rayleigh channels. Labeling maps that provide
low error floors for the AWGN channel are also well suited
for the Rayleigh channel [5].

A regular constellation is one in which all adjacent symbols
are separated by the same Euclidean distance de1 and there is

a path between any two symbols that passes through succes-
sive adjacent symbols. The MPSK, QAM, and noncoherent-
CPFSK constellations are regular constellations. Consider a
regular constellation with a TV labeling map and symbols
s1 and s2 with bit patterns that differ in a single bit and do
not differ in m − 1 identical bits. Let β denote the number
of branches in a path from s1 to s2 that passes through
successive adjacent symbols. For example, starting from the
symbol labeled 0 in Fig. 2, the symbol labeled 1, which differs
in a single bit of its label, can be reached by a path passing
through the 3 successive adjacent symbols labeled 13, 6, and
1, and β = 3 for this path.

Proposition 2: If a TV labeling map of a regular constel-
lation has some adjacent symbols that differ in m bits, then
β = 2 for some paths between symbols that differ in a single
bit. If m is an odd number, a TV labeling map of a regular
constellation must have some adjacent symbols that differ in
m bits, and β = 2 for some paths between symbols that differ
in a single bit. A TV labeling map of a QAM constellation
with an odd m or some adjacent symbols that differ in m bits
has De =

√
2 de1.

Proof: Suppose that symbol s2 has adjacent symbols s1

and s3. If s2 has m bits that differ from s1 and m − 1 bits
that differ from s3, then s3 has only a single bit that differs
from s1. Therefore, β = 2 for the path through s1, s2, and
s3, and the first statement of the proposition is proved. Each
of the identical bits must change an even number of times as
a path between symbols s1 and s2 that differ in a single bit is
traversed through successive adjacent symbols. Thus, the total
number of bit changes must be an odd number. If m is an odd
number and no adjacent symbols differ in m bits, then the total
number of bit changes also must equal (m − 1)β, which is an
even number. This contradiction proves the second statement
of the proposition. For a QAM constellation, the Pythagorean
theorem implies that De =

√
2 de1.

Proposition 3: If m is an even number and a TV labeling
map of a regular constellation has adjacent symbols that differ
in exactly m − 1 bits, then β ≥ m − 1. A TV labeling map
of a square QAM constellation with an even m and adjacent
symbols that differ in exactly m − 1 bits has

De ≥
(

m2

2
− m + 1

)1/2

de1. (4)

Proof: Each of the identical bits must change an even
number of times as a path between symbols s1 and s2 that
differ in a single bit is traversed through successive adjacent
symbols. If β is an odd number, each of the m − 1 identical
bits must be unchanged in traversing at least one branch of
the path. Since adjacent symbols separated by a branch have
at most one bit that is unchanged, β ≥ m − 1. Suppose that
m is an even number and the TV labeling map has adjacent
symbols that differ in exactly m−1 bits. The total number of
bit changes in a path from s1 to s2 must be an odd number
and also must equal (m − 1)β. Therefore, β must be an odd
number, and hence β ≥ m−1. For a square QAM constellation
with an even m, the minimum Euclidean distance for a path
with β = m − 1 occurs when there are m/2 branches in one
direction and m/2 − 1 branches in the orthogonal direction.
Since β ≥ m − 1, the Pythagorean theorem implies (4).
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Some TV labeling maps may have relatively low values of
β and De. However, if m is an even number, the constrained
labeling algorithm prevents the occurrence of this undesirable
feature by constraining each adjacent-channel table L(i) to
have labels only at Hamming distance m−1 from the symbol
i.

Simulation experiments indicate that within the class of
TV labeling maps for a constellation, those with the largest
value of De provide the lowest error floors. For the Rayleigh
channel, further distinctions within the class of TV labeling
maps with the largest value of De can be made by calculating
the harmonic mean of the squared Euclidian distances of
signals with labels that differ in just one bit position [1], [2],
[3]. The harmonic mean is an approximate measure of the
horizontal offset of a bit-error-rate curve. For the Rayleigh
channel and a q-ary constellation with a labeling map, the
harmonic mean is

ξ =

⎛
⎜⎝ 1

m2m

m∑
k=1

1∑
b=0

∑
si∈D(b)

k

1

‖si − z̃k(si)‖2

⎞
⎟⎠

−1

(5)

where m = log2 q and z̃k(si) is the symbol whose label
has the same bit pattern as si except at bit k. Although the
harmonic mean depends on De, the term involving De in the
summation over D(b)

k does not necessarily dominate the other
terms.

Example 4: Consider the 16-QAM constellation. The
SGHB labeling map proposed by Schreckenbach, Gortz, Ha-
genauer, and Bauch [5] and the HR labeling map proposed
by Huang and Ritcey [6] have De = 2de1 and ξ = 6.80d2

e1 ,
and the Gray labeling map has De = de1 and ξ = 1.29d2

e1.
For the TV labeling map, 1000 executions of the labeling
algorithm generated 806 maps with De =

√
2de1 and 194 with

De =
√

5de1, which is the lower bound of (4). For 421 of the
maps with De =

√
2de1, ξ = 3.66d2

e1, and for the remaining
385 maps, ξ = 4.26d2

e1. For the maps with De =
√

5de1,
ξ = 5.90d2

e1. Thus, the TV labeling map of Fig. 2, which has
De =

√
5de1 and ξ = 5.90d2

e1, provides a larger De but a
smaller harmonic mean for 16-QAM than the SGHB and HR
labeling maps. �

Example 5: For the 64-QAM constellation, 16,000 TV
labeling maps were generated by the constrained labeling
algorithm. The TV labeling map of Fig. 3 has De =

√
13de1,

which is the lower bound of (4), and ξ = 23.92d2
e1, which

are the largest values of De and the harmonic mean among
the generated TV maps. The HR labeling map for the 64-
QAM constellation has De =

√
17de1 and ξ = 30.18d2

e1.
For the 256-QAM constellation, 1300 TV labeling maps were
generated by the constrained labeling algorithm. The TV
labeling map of Fig. 4 has De =

√
73de1, which greatly

exceeds the lower bound of (4), and ξ = 102.37d2
e1, which

are the largest values of De and the harmonic mean among
the generated TV maps. The bit labels are expressed in a
decimal format, and the constellation points are not shown
for simplicity. �

V. SIMULATION EXAMPLES

The TV labeling maps are designed to increase the effective
Euclidean distance once at least two bits are essentially known.

Therefore, they are expected to be increasingly advantageous
as the number of bits per symbol increases. Simulation results
confirm this characteristic. A TV labeling map maximizes the
number of bits that differ between adjacent symbols. Thus, the
error floor will be low, but the onset of the waterfall region
will be adversely shifted relative to other labeling maps.

To illustrate the effects of the TV labeling maps, simulations
were conducted to generate plots of the bit error rate (BER)
of several BICM-ID systems as a function of Eb/N0, where
Eb is the bit energy. The transmitted symbols experience
independent and identically distributed Rayleigh fading. In
Figures 5 and 6, coherent QAM demodulation and a rate-
1/2 convolutional code with constraint length K = 3 and
octal generators (5,7) are used. The input to the convolutional
encoder comprises 1200 information bits followed by 2 tail
bits, and the resulting codeword of length 2404 code bits is
passed through the interleaver.

Figure 5 shows the results for 64-QAM with 5 or 10
iterations of the demodulator and decoder. The labeling maps
are the TV map of Fig. 3, the HR map, and the Gray map.
All but the Gray labeling map are designed to produce a low
error floor in a BICM-ID system. Although the Gray labeling
map is advantageous for BICM, it is distinctly inferior to the
other labeling maps for BICM-ID and bit error rates below
10−3. Despite its lower harmonic mean, the TV labeling map
provides a lower error floor and a better performance than
the HR labeling map when the bit error rate is below 10−7.
The error-free feedback (EFF) bounds [1], [2], which assume
that the demodulator is provided with ideal feedback from
the decoder, were computed by the method of residues. As
shown in the figure, the EFF bound provides a much more
accurate error-floor prediction for the TV map than for the
HR map. Thus, neither the harmonic mean nor the EFF bound
accurately predicts the relative error floors of labeling maps.

The cost of the lower error floor of the TV map in Fig. 5 is
a significant degradation in the waterfall region relative to the
performance of the HR map. This example indicates that the
labeling map that provides the lowest error floor may not be
as desirable as another map in terms of overall performance,
which may be more important than the error floor at high SNR.
Thus, in practical applications, a simulation of the waterfall
region is needed to assess the relative merits of labeling maps
with low error floors.

The heuristic searches required by the HR and SGHB
maps are very complex and inefficient to implement for 128-
QAM and larger constellations, whereas the TV map is easily
generated for large constellations and ensures a low error floor.
Figure 6 shows the results for 256-QAM, the TV map of
Fig. 4 and the Gray map, and BICM-ID with 5 iterations of
the demodulator and decoder; the results for 10 iterations are
nearly the same. The onset of the waterfall region for the TV
map is greatly delayed relative to the Gray map, but then the
plot for the TV map shows a steep descent that crosses the
plot for the Gray map and continues to fall rapidly toward
a very low error floor approximated by the EFF bound. A
simulation of a TV map with a lower harmonic mean exhibited
no detectable difference in the waterfall region.

Figure 7 shows the bit error rates for noncoherent CPFSK
with q = 16, h = 0.21, a rate-1/2 convolutional code with
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Fig. 4. Labeling map for 256-QAM constellation.

Fig. 5. Bit error rates for various 64-QAM systems with BICM-ID.

Fig. 6. Bit error rates for 256-QAM systems with BICM-ID and TV
and Gray labeling maps.

constraint length K = 4, and octal generators (13,15). The
input to the convolutional encoder comprises 2048 information
bits followed by 3 tail bits, and the resulting codeword of
length 4102 code bits is passed through the interleaver. The
BICM-ID system uses 5 or 10 demodulator and decoder

Fig. 7. Bit error rates for convolutionally coded CPFSK with BICM-
ID, q = 16, h = 0.21, and constraint length K = 4.

iterations and the Gray map, the natural map, or the TV map
of example 1. The TV map has β = 3, and the application of
(3) yields De = 1.036

√Es. The figure illustrates the dramatic
lowering of the error floor when the TV map is used with
BICM-ID. For bit error rates below 10−3, the TV map has
an expanding advantage that is nearly 4 dB and 6 dB relative
to the natural and Gray maps, respectively, when the bit error
rate is 10−5.

VI. CONCLUSIONS

The class of TV labeling maps for signal-set constellations
and iterative decoding and demodulation has been derived and
applied to a variety of specific communication systems that
operate in the presence of ergodic Rayleigh fading. Simulation
results indicate that the TV labeling maps are comparable to
or better than other proposed labeling maps in providing a
low error floor. The cost is an adverse shift in the onset of
the waterfall region of the bit error rate. A major advantage
of the TV labeling maps is that they are easily generated even
when the alphabet size is large.
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