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Coherent Continuous-Phase
Frequency-Shift Keying:
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Abstract—The symmetric information rate of a modulation-
constrained transmission system is the information-theoretic limit
on performance under the assumption that the inputs are inde-
pendent and uniformly distributed. The symmetric information
rate for continuous-phase frequency-shift keying (CPFSK) over
an AWGN channel may be estimated by considering the system
to be a finite-state Markov channel and executing a BCJR-like
algorithm. In this paper, the estimated symmetric information
rate is used along with the exact expression for the 99%
power bandwidth to determine the information-theoretic tradeoff
between energy and spectral efficiency for CPFSK modulation.
Using this tradeoff, the code rate and modulation index are
jointly optimized for a particular spectral efficiency and alphabet
size. Codes are then designed for the optimized system. The
codes are comprised of variable nodes (which represent irregular
repetition codes), check nodes (which represent single parity-
check codes), and an interleaver connecting the variable and
check nodes. The degree distributions of the code are optimized
from the system’s EXIT chart by using linear programming.
Additional details of the code design, including labeling and
interleaver design, are also discussed. Simulation results show
that the optimized coded systems achieve bit error rates within
0.4 dB of the information-theoretic limits at BER = 10−5.

Index Terms—Continuous-phase modulation, CPM, Capacity,
Channel coding.

I. INTRODUCTION

CONTINUOUS-PHASE modulation (CPM) is a general
class of constant-envelope modulation that achieves high

spectral efficiency with low spectral sidelobes by requiring
a smooth phase transition between adjacent symbols. CPM
is said to be full-response if the symbols at the input to the
frequency modulator are represented by pulses that are entirely
contained within one symbol interval. A simple form of
full-response CPM is continuous-phase frequency-shift keying
(CPFSK), which has a rectangular pulse shaping function that
spans the entire symbol, i.e. the 1REC pulse shape [1].

Coherent detection of CPFSK is discussed in [1]. Unlike
memoryless FSK, the phase of CPFSK is accumulated from
symbol to symbol to maintain a smooth phase transition. When

Manuscript received November 22, 2007; revised July 25, 2008 and Novem-
ber 3, 2008; accepted November 3, 2008. The associate editor coordinating
the review of this paper and approving it for publication was J. Andrews.

S. Cheng is with ArrayComm LLC, San Jose, CA (e-mail:
shi.cheng@gmail.com).

M. C. Valenti is with West Virginia University, Morgantown, WV (e-mail:
mvalenti@wvu.edu).

D. Torrieri is with the US Army Research Laboratory, Adelphi, MD (e-
mail: dtorr@arl.army.mil).

Digital Object Identifier 10.1109/TWC.2009.071311

the modulation index h is a rational number, the accumulated
phases take values from a finite set Φ ⊂ [0, 2π). In such a case,
the phase trajectory can be viewed as a finite-state Markov
random process, so that the modulator and additive white
Gaussian noise (AWGN) channel can together be considered
as a finite-state Markov channel (FSMC). This allows coherent
detection to be performed on a trellis.

It is difficult to compute the capacity of an FSMC in general,
and CPFSK in particular, since the computation requires a
maximization over the probability density function (pdf) of
a long input sequence. Shamai et al. [2] discuss bounds on
capacity for the discrete-time intersymbol interference (ISI)
channel, one type of FSMC. Fortunately in practice, the input
to the FSMC is usually preceded by an outer channel encoder,
which typically produces uniformly distributed outputs. Pfister
et al. [3] and Arnold et al. [4] use the forward recursion of
the BCJR algorithm [5] to compute the symmetric information
rate of the FSMC, which is the mutual information when the
inputs are independent and uniformly distributed. A similar
technique based on the BCJR algorithm was used by Ganesan
[6] and Padmanabham et al. [7] to estimate the symmetric
information rate of CPM.

The symmetric information rate of CPFSK depends on the
modulation index h and the alphabet size M . The bandwidth
of the system depends on both of these parameters as well
as the code rate r. For a given definition of bandwidth (e.g.
99% power bandwidth), there will be a tradeoff between the
energy and spectral efficiency embodied in the expressions
for bandwidth and symmetric information rate. As a result
of the tradeoff, there will be an optimal choice for the
combination of h and r which minimizes the Eb/N0 required
for a particular M and spectral efficiency. In this paper, we
discuss a methodology for optimizing h and r with respect to
the symmetric information rate, required spectral efficiency,
and constraints on M and coherent demodulator complexity
(number of states in the trellis demodulator).

Once the system parameters are optimized, the next step
in the design process is to develop coding schemes capable
of achieving the information-theoretic performance limits.
Iterative demodulation and decoding of CPM with binary
convolutional codes is considered in [8], [9] and with non-
binary convolutional codes in [10]. Narayanan et al. [11] con-
sider a low-density parity-check (LDPC) coded minimum-shift
keying (MSK) system. Ganesan [6] considers matched bit-
interleaved coded-modulation (BICM) systems consisting of
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an outer LDPC code that is matched to the CPM modulation.
Xiao and Aulin [12], [13] consider systems that cascade a set
of irregular repetition codes (represented by variable nodes),
an interleaver, a set of single parity-check codes (represented
by check nodes), and a CPM modulator. From one perspective
[12], the system is like an irregular repeat-accumulate (IRA)
code [14] except that the accumulator of the IRA code is
replaced by the continuous-phase encoder, which is recursive.
This perspective was also used by Guillén i Fàbregas et al.
[15] to design codes for noncoherent orthogonal FSK. From
another perspective [13], the system is a serial concatenation
of an outer low-density generator matrix (LDGM) code [16]
with an inner CPM modulator. Regardless of the perspective,
the code may be optimized by using a curve-matching tech-
nique [17], [18] that matches the EXIT curve of the variable
nodes with the EXIT curve of the combination of check
nodes and CPM modulator. For a given check-node degree
distribution, the variable-node degree distribution is optimized
to minimize the area between the two curves, which is a
linear-programming problem previously applied to the design
of LDPC codes [19], [20].

In this paper, we design codes with a structure similar to that
of [12], [13] for the proposed CPFSK systems with parameters
optimized using information-theoretic considerations. A dis-
cussion is provided regarding the choice of symbol mapping
when there are parallel transitions in the trellis and certain
aspects of interleaver design. The degrees of the variable and
check nodes are optimized using an EXIT curve-matching
technique, and results are given for spectral efficiencies of
0.5 bits per second per Hz (bps/Hz) and M = {2, 4, 8}. For
all three alphabet sizes, the coded system performs within 0.4
dB of the limit predicted by the symmetric information rate
at BER = 10−5.

The remainder of this paper is organized as follows. First,
the system model for CPFSK in AWGN is introduced in
Section II. Next, Section III provides a brief review of the
symmetric information rate of CPFSK in AWGN. Section
IV uses the symmetric information rate and the expression
for the 99% power bandwidth to determine the information-
theoretic tradeoff between energy and spectral efficiencies
and jointly optimizes h and r with respect to this tradeoff.
Section V presents the code structure, including the transmitter
and receiver decoding algorithm. The code optimization is
discussed in Section VI. Simulation results are shown in
Section VII, and finally the paper concludes in Section VIII.

II. SYSTEM MODEL

In the following discussion, bold lowercase letters will be
used to denote (column) vectors, e.g. x, and bold uppercase
letters will be used for matrices, e.g. X. The scalar value xi,j

is used to denote the (i, j)th entry of the matrix X, while
the scalar value xi is used to denote the ith element of the
vector x. All matrices and vectors are indexed starting at zero,
x = [x0, x1, ..., xM−1]T . The notation xj

i represents the set
{xi,xi+1, · · · ,xj}.

The input to the CPFSK modulator is a sequence b of bits.
During the ith signaling interval, a group of log2(M) bits is
used to select a symbol qi from the integers from 0 to M −1.

A symbol-labeling rule is used to determine which symbol is
selected. Two rules are considered: natural labeling and Gray
labeling. With a natural labeling, qi is merely the decimal
representation of the group of bits. With a Gray labeling, two
consecutive integers will be associated with groups of bits that
differ in just one bit position. The symbols are placed into the
sequence q and it is assumed that the elements are independent
and uniformly distributed over the integers from 0 to M − 1.

The CPFSK modulator may be decomposed into a
continuous-phase encoder (CPE) and a memoryless modulator
[21]. The CPE ensures that the continuous-phase constraint is
satisfied by accumulating the phase of each modulated symbol
according to

φi+1 = φi + 2qihπ, (1)

where φi is the accumulated phase at the start of the ith

symbol [1].
For every entry of q, the memoryless modulator chooses

a signal xi(t) as the qth
i signal of the set S = {sk(t), k =

0, 1, · · · ,M − 1}, where

sk(t) =
1√
Ts

exp
{
j2πkht
Ts

}
, t ∈ [0, Ts), (2)

and h is the modulation index.
The complex-baseband representation of the transmitted

continuous-time waveform is
√Ese

jφixi(t), and the corre-
sponding complex-baseband received signal is

yi(t) =
√
Ese

jφixi(t) + ni(t), (3)

where ni(t) is a circularly symmetric complex AWGN process
with noise-spectral density N0, and Es is the energy per
symbol [22].

Given the initial phase φi at the start of the ith interval, the
front end of the coherent receiver determines the likelihoods
of receiving yi(t) conditioned on each signal in S. Since this
process is the same for every received symbol, we drop the
index i for the remainder of this section. The received signal
y(t), 0 ≤ t ≤ Ts, is first passed through a bank of M pairs
of matched filters, with one pair matched to the in-phase and
quadrature components of each signal in S, and then sampled
at the symbol epoch. The sampled signal can be written in
vector form as

y = ejφ
√
Esx + n, (4)

where the complex elements of x and n are

xk =
∫ Ts

0

x(t)s∗k(t)dt (5)

nk =
∫ Ts

0

n(t)s∗k(t)dt, (6)

and k = {0, 1, ...,M − 1}. The noise vector n is complex
Gaussian with a covariance matrix R = E(nnH) with (k, i)th

element

rk,i = N0

∫ Ts

0

s∗k(t)si(t)dt

= N0
sin(π(i− k)h)
π(i− k)h

ejπ(i−k)h. (7)
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When conditioned on both x and φ, the vector y is complex
Gaussian with mean x and covariance R, and has conditional
pdf

p(y|x, φ) =
1

πMdet(R)
e−(y−ejφ

√Esx)HR−1(y−ejφ
√Esx).

(8)

The exponent can be simplified as

−(y − ejφ
√
Esx)HR−1(y − ejφ

√
Esx)

= −yHR−1y − EsxHR−1x + 2Re(e−jφ
√
EsxHR−1y).

(9)

Define K � 1
N0

R, i.e., a normalized version of R. Note that
when x(t) = sν(t), x is the νth column of K. Therefore,
given x(t) = sν(t), the exponent becomes

−yHK−1y + Es

N0
+ 2

√Es

N0
Re(e−jφyν). (10)

Taking the logarithm of (8) and discarding terms that are com-
mon to all hypothesis, the log-likelihood for coherent reception
can be expressed for each postulated ν = {0, ...,M − 1} as

log f(y|x = kν , φ) = 2
√Es

N0
Re(e−jφyν), (11)

where kν represents the νth column of K and f(y|x, φ) ∝
p(y|x, φ).

Trellis-based detection of CPFSK requires that the modu-
lation index h be a rational number so that the accumulated
phase φ takes values from a finite set. Suppose h = P/Q,
where P and Q are relatively-prime positive integers. The
total number of unambiguous values that φ can assume is Q.
Thus, demodulation can be performed over a trellis with Q
states and QM branches per trellis section.

III. SYMMETRIC INFORMATION RATE

The mutual information rate between the input processX =
(x1,x2, ...) and output process Y = (y1,y2, ...) is [4]

I(X ;Y ) = lim
N→∞

1
N
I(xN−1

0 ;yN−1
0 ) (12)

where I(xN−1
0 ;yN−1

0 ) is the mutual information between
xN−1

0 and yN−1
0 . The symmetric information rate is the

mutual information rate under the constraint that the xi are
independent and uniformly distributed. Since the {xi} are
independent, the chain rule of entropy gives

I(xN−1
0 ;yN−1

0 ) = H(xN−1
0 ) −H(xN−1

0 |yN−1
0 )

=
N−1∑
i=0

H(xi) −
N−1∑
i=0

H(xi|xi−1
0 ,yN−1

0 ).

(13)

Because xi is uniformly distributed over M constellation
points, H(xi) = log2M , and all that remains to be calculated
is H(xi|xi−1

0 ,yN−1
0 ) [7]. From the definition of conditional

entropy,

H(xi|xi−1
0 ,yN−1

0 ) = −E [
log2 p(xi|xi−1

0 ,yN−1
0 )

]
.

(14)

The above expectation can be found using Monte Carlo
integration [23], as described below.

To compute the probability p(xi|xi−1
0 ,yN−1

0 ), first apply
Bayes’ rule to obtain

p(xi|xi−1
0 ,yN−1

0 ) =
p(xi,xi−1

0 ,yN−1
0 )

p(xi−1
0 ,yN−1

0 )
. (15)

Rather than explicitly calculating the denominator in (15), its
value is found to ensure that∑

xi

p(xi|xi−1
0 ,yN−1

0 ) = 1. (16)

Similar to [4], [6], [7], a BCJR-like method can be used to
compute p(xi,xi−1

0 ,yN−1
0 ), which is described as follows.

Assume φ takes on values from the set Φ, whose cardinality
is Q. Define α, β, γ as

αi(φi) � p(φi,yi−1
0 ,xi−1

0 ) (17)

βi+1(φi+1) � p(yN−1
i+1 |φi+1) (18)

γ(φi → φi+1,yi,xi) � p(yi, φi+1|φi,xi). (19)

Note that γ(φi → φi+1,yi,xi) is nonzero only when xi

causes the state transition from φi to φi+1. Therefore, it may
be written as

γ(φi → φi+1,yi,xi = kν)
= p(φi+1|φi,xi = kν)p(yi|φi+1, φi,xi = kν)

=
{
p(yi|φi,xi = kν) φi+1 = φi + 2νhπ

0 φi+1 �= φi + 2νhπ. (20)

As with the BCJR algorithm, α can be calculated in a
forward recursion as

αi+1(φi+1) =
1
M

∑
φi∈Φ

αi(φi)γ(φi → φi+1,yi,xi).

(21)

Similarly, β can be calculated in a backward recursion as

βi(φi) =
1
M

∑
xi

∑
φi+1∈Φ

βi+1(φi+1)γ(φi → φi+1,yi,xi).

(22)

Note that xi is marginalized out of the summand since βi(φi)
does not depend on it.

In the absence of knowing the starting and ending states,
both α0 and βN can be initialized assuming equally likely
states, i.e. α0(φ) = βN (φ) = 1/Q, ∀φ ∈ Φ. Alternatively, if
the initial phase φ0 is known to the detector, α0 can be set to
all zeros except a one at the corresponding entry. Obviously,
the effect of the initial states of α0 and βN diminish as N
approaches infinity.

Given the above definitions, p(xi,xi−1
0 ,yN−1

0 ) is found
from

p(xi,xi−1
0 ,yN−1

0 )

=
1
M

∑
φi∈Φ

∑
φi+1∈Φ

αi(φi)βi+1(φi+1)γ(φi → φi+1,yi,xi).

(23)

Fig. 1 shows the symmetric information rate of MSK
(M = 2, h = 1/2) computed using the method highlighted
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Fig. 1. The symmetric information rate of MSK with coherent reception and
symbol-wise noncoherent reception.

above with N = 100 × 106. In addition to the coherent
capacity, the symmetric information rate of symbol-wise non-
coherent reception [24] is shown. From this curve, it is seen
that coherent reception offers a 7 dB gain over symbol-wise
noncoherent reception.

There are several ways to approach the symmetric informa-
tion rate in practice. One strategy is to use an iterative receiver
structure and a simple code optimized for the structure, which
is the topic of Section V. An alternative strategy is to use
BICM without any iteration between demodulator and decoder
[6], [25]. However, the loss in symmetric information rate due
to using BICM is rather severe when the modulator is left in
the recursive form given in Section II [6], [26]. One approach
to recover this loss is to use a nonrecursive modulator instead
of a recursive one [6]. Another approach is to use an adaptive
symbol-labeling rule such that the labeling depends on the
current state of the modulator [25]. While using BICM with
either of these modifications has the benefit of not requiring
iteration between demodulator and decoder, they require a
strong outer error correcting code, such as an LDPC code.
Thus there is a tradeoff between using a strong code in a
non-iterative receiver structure, as in [6], [25], versus using a
simple code in an iterative receiver structure, as we advocate
in Section V.

IV. ENERGY-SPECTRAL EFFICIENCY TRADEOFF

The symmetric information rate of CPFSK is a function
of the per-symbol SNR Es/N0 and depends on the choice of
modulation index h and alphabet size M . If one fixes the value
of h, M , and the information rate, then the corresponding
value of Es/N0 can be read from the symmetric information
rate curve. This value of Es/N0 represents the minimum
per-symbol SNR required to achieve an arbitrarily low BER
under the assumption of independent and uniformly distributed
inputs. The information rate is the code rate r required to
achieve the minimum per-symbol SNR. As can be seen from
Fig. 1, the minimum Es/N0 can be made arbitrarily small
by letting the rate approach zero. However, one does not
normally want to minimize the per-symbol SNR Es/N0, but

rather seeks to minimize the per-bit SNR Eb/N0, which is
related to the per-symbol SNR by Eb = Es/(r log2M). While
one can reduce the required Eb/N0 by lowering the code rate,
this comes at the expense of requiring a larger transmitted
bandwidth to accommodate the lower code rate. As the precise
relationship between code rate and required Eb/N0 depends on
the choice of h and M , one might ask if it is perhaps better to
adjust the values of h and M rather than arbitrarily lowering
the value of r.

The values of h, M , and r also contribute to the bandwidth
of the signal. In particular, the 99% power bandwidth B99

of uncoded CPFSK can be found by integrating the power-
spectral density of CPFSK given in Section 4.4.2 of [27].
This bandwidth is a function of M , h, and the symbol rate
Rs = 1/Ts. Given that s(t) with parameters M and h is
transmitted at a rate of Rs baud, we can define the normalized
bandwidth to be B(M,h) = B99Ts Hz/baud. We can then
define the spectral efficiency η = r log2M/B(M,h), which
has units of bits-per-second-per-Hz (bps/Hz). If one constrains
the spectral efficiency η, then there is a tradeoff among h, M ,
and r embodied by the expression for bandwidth. Once the
values of η, M , and h are fixed, there is a corresponding
minimum value of r; reducing the code rate below this value
would violate the bandwidth constraint.

The relationship among h, M , r, and η suggests a method
for optimizing these parameters for CPFSK modulation. One
would first constrain η based on the system requirements
for spectral efficiency. Next, one would constrain M based
on complexity and implementation considerations. Then, one
would constrain h = P/Q to be chosen from a set of
possibilities with denominator Q kept reasonably small in
order to limit the demodulator complexity. For each value of
h in the set of allowable values, the symmetric information
rate would be computed using the techniques given in the
last section. For that particular combination of h, M , and
η, there will be a minimum r. The required value of Es/N0

for that particular r would be read back from the symmetric
information rate curve and then used to find the required value
of Eb/N0. This would be repeated for each h in the set, and
the value of h that results in the smallest Eb/N0 would be
selected along with the corresponding rate r.

As an example, Fig. 2 shows the Eb/N0 required for several
different spectral efficiencies as a function of h for M = 2.
For comparison, the unconstrained AWGN capacity is also
shown for each spectral efficiency. To constrain complexity,
the denominator of h satisfies Q ≤ 5. For each value of h,
the value of r is set to its minimum allowable value. For
example, when η = 0.5 bps/Hz, the minimum values of r are
0.39, 0.55, 0.64, and 0.96 for h = 1

5 ,
2
5 ,

3
5 , and 4

5 , respectively.
For the loosest constraint (η = 0.02), the required Eb/N0

approaches −1.6 dB for every choice of h. As the bandwidth
constraint gets tighter, the required Eb/N0 becomes larger.
When η = 0.25, the minimum required Eb/N0 is about −1
dB, and it is achieved at h = 3

5 and code rate r = 0.32. When
η = 0.5, the minimum Eb/N0 = −0.1 dB is still achieved
at h = 3

5 , and the code rate is doubled to about 0.64. When
η = 0.75, the minimum Eb/N0 = 1.9 dB is achieved at h = 2

5 ,
and the optimal code rate is r = 0.83. Note that the curves are
not smooth functions of h because the amount of memory in
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Fig. 2. Eb/N0 required for binary CPFSK at different spectral efficiencies.
The modulation index h = P/Q is constrained to be rational with denomina-
tor Q ≤ 5. For comparison, the unconstrained AWGN capacity is also shown
for each spectral efficiency (indicated by dashed lines).
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Fig. 3. Eb/N0 required for CPFSK with different alphabet sizes M at
spectral efficiency η = 0.5 bps/Hz. The modulation index h = P/Q is
constrained to be rational with denominator Q ≤ 5. For comparison, the
unconstrained AWGN capacity is also shown.

the modulation varies significantly from one value of h to the
next. For instance, performance of h = 1/2 tends to be rather
poor because the modulation has only Q = 2 states. However,
because the modulation has Q = 5 states, performance for
h = 2/5 and h = 3/5 is better than it is for h = 1/2.

Fig. 3 shows the required Eb/N0 as a function of h for
several M at spectral efficiency η = 0.5, along with the
unconstrained AWGN capacity. Again, the denominator of
h is chosen to satisfy Q ≤ 5. The optimal choice of h for
each M can be easily found when Eb/N0 achieves its lowest
value. Table I lists the optimal choices of h and corresponding
code rate r for each M at this spectral efficiency. Notice that
performance is highly dependent on the number of states in
the modulator. For instance, when h = 1/2, Q = 2 and
performance is worse than for other values of h that have a
higher Q. Also note the relationship between Q and M . When

TABLE I
MODULATION AND CODE OPTIMIZATION RESULTS FOR SPECTRAL

EFFICIENCY η = 0.5 BPS/HZ AND RATIONAL h = P/Q CHOSEN SUCH
THAT Q ≤ 5. “BOUND” IS THE MINIMUM Eb/N0 REQUIRED TO ACHIEVE

THE SYMMETRIC INFORMATION RATE. THE ith ELEMENT OF THE

LABELING VECTOR IS THE OCTAL VALUE OF THE BIT PATTERN LABELING

SYMBOL qi . “SIMULATION” IS THE VALUE OF Eb/N0 FOR WHICH A
SYSTEM WITH Nu = 100, 000 MESSAGE BITS AND 200 DECODER

ITERATIONS REACHES A SIMULATED BER OF 10−5 .

M 2 4 8
h 3

5
2
5

1
4

r 0.6428 0.5410 0.4458
Bound (Eb/N0) −0.1 dB −0.31 dB −0.4 dB

Labeling Natural Natural Gray
[0,1] [0,1,2,3] [0,1,3,2,6,7,5,4]

λ2 = 0.3 λ2 = 0.2056 λ3 = 0.4947
Variable node λ3 = 0.3461 λ3 = 0.3937 λ4 = 0.0577

distribution {λd} λ6 = 0.2435 λ9 = 0.0152 λ10 = 0.3417
λ7 = 0.1104 λ11 = 0.3855 λ11 = 0.1059

Check node ρ1 = 0.001 ρ1 = 0.001 ρ1 = 0.001
distribution {ρd} ρ2 = 0.999 ρ2 = 0.999 ρ2 = 0.999

Threshold (Eb/N0) 0.03 dB −0.22 dB −0.19 dB
Simulation (Eb/N0) 0.31 dB 0.07 dB 0.02 dB

+=

= + Pa
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lle
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l

CPFSK

z
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m

Fig. 4. Coding structure with variable nodes indicated by ‘=” and check
nodes indicated by “+”. The dashed lines above and below indicate the flow
of extrinsic information through the corresponding decoder.

Q < M , there are fewer states than symbols and performance
tends to suffer. For instance, when h = 3/5, Q = 5 and
performance is much better withM = 4 than it is withM = 8.
However, if Q were allowed to be larger, then M = 8 may
outperform M = 4.

V. CODED SYSTEM IMPLEMENTATION

The structure of a coded system capable of approaching the
CPFSK capacity limits is shown in Fig. 4. The system is a
serial concatenation of two codes separated by an interleaver
Π. The outer code is a mixture of repetition codes represented
by variable nodes “=”. The degree d of a variable node is
the number of times that the corresponding message bit is
repeated. Since the code is irregular, the variable nodes do
not all have the same degree. The entire set of repeated bits
is interleaved and sent to the check nodes, represented by
“+”. Each check node forms a single party-check (SPC) on
a distinct subset of interleaved bits. The degree of a check
node is the number of edges that connect the check node to
variable nodes (i.e. the number of edges that enter the check
node from the left). The outputs of the SPC nodes are grouped
together and passed to the modulator. As in [15], the code is
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nonsystematic, and therefore unlike [18], the message bits are
not modulated.

At the transmitter, a binary-message vector u ∈ {0, 1}Nu is
encoded in parallel by Nu variable nodes, each generating
a repetition code. The degree distribution of the variable
nodes can be described by either the node-perspective degree
distribution λ̃d or the edge-perspective degree distribution λd.
In particular, λ̃d is the fraction of nodes that have degree d,
while the λd is the fraction of edges that touch degree d nodes.
The two perspectives are related by

λi =
λ̃ii∑dv

d=1 λ̃dd
(24)

where dv is the maximum variable-node degree.
The outputs from the Nu variable nodes form a vector c′

of length Nc =
∑dv

d=1 λ̃ddNu. c′ is then interleaved into c
and forwarded to Nb check nodes. The check-node degree
distributions may be represented in either node-perspective ρ̃d

or edge-perspective ρd. The variables Nb and Nc are related
by Nb = Nc/(

∑dc

d=1 ρ̃dd), where dc is the maximum check-
node degree. Each check node computes the single parity-
check of its inputs, and the check nodes form the vector b for
modulation. Therefore, the code rate r satisfies

r =
∑dc

d=1 ρ̃dd∑dv

d=1 λ̃dd
=

∑dv

d=1
λd

d∑dc

d=1
ρd

d

. (25)

Before it is modulated, the binary vector of bits b must be
transformed into the M-ary symbol vector q by an appropriate
symbol-labeling function g(·), which can be expressed as

qi = g

⎛
⎝μ−1∑

j=0

biμ+j2μ−1−j

⎞
⎠ , (26)

where μ = log2M . In this paper, we simply assume Nb

is divisible by μ. Otherwise, b can be padded to meet
this requirement. Therefore, q is an M-ary vector of length
N = Nb/μ. For the binary case, labeling is not important,
since the two frequency tones are interchangeable. However,
when M is greater than 2, the labeling can be very important
for certain values of h. This point will be discussed in the
next section.

At the receiver, decoders for each of the inner and outer
codes exchange extrinsic information using a turbo-like sched-
ule [18], or equivalently using the sum-product algorithm
[28]. Fig. 4 also shows the extrinsic information flow using
dashed arrows. During the first stage, based on the channel
observation yN−1

0 , the log-likelihood ratio z is found by using
the BCJR [5] or SISO [29] decoding algorithm. The jth

element of z is

zj = log
p(bj = 0|yN−1

0 ,v\vj)
p(bj = 1|yN−1

0 ,v\vj)
, (27)

where v is the extrinsic information from the check nodes, and
\vj indicates that vj is excluded, so that zj carries extrinsic
information only. In the first decoding half-iteration, v is all
zeros.

The check nodes then update the messages sent to the
variable nodes. The output information ri,j from jth check

node to ith variable node, assuming they are connected, can
be calculated as [28]

ri,j = sign(zj)
∏

i′:Rj\i

sign(mi′,j)

×ψ
⎛
⎝ψ(|zj |) +

∑
i′:Rj\i

ψ(|mi′,j |)
⎞
⎠ (28)

where

sign(z) =
{ −1 z < 0

1 z ≥ 0 (29)

ψ(|z|) = log
e|z| + 1
e|z| − 1

, (30)

Rj is the set of indices of the variable nodes connected to the
jth check node, and \i means excluding the element i. Here,
mi,j is the a priori information from the ith variable node to
the jth check node, which is zero for the first half-iteration.

The second half-iteration begins with every variable node
updating its output, which is forwarded to the check nodes.
When the ith variable node and jth check node are connected,
the output is

mi,j =
∑

j′:Mi

ri,j′ − ri,j , (31)

where Mi is the set of indices of the check nodes connected
to the ith variable node. Here, the first term

∑
j′ :Mi

ri,j′ is
used for the hard decision of the decoding output.

After all variable nodes update their outputs, the check
nodes calculate the extrinsic information forwarded to the
CPFSK SISO. Every check node processes the messages from
all the connected variable nodes, and the information on the
jth check node can be computed as

vj =
∏

i′:Rj

sign(mi′,j)ψ

⎛
⎝ ∑

i′:Rj

ψ(|mi′,j|)
⎞
⎠ (32)

The second half of the first iteration is finished once all check
nodes update their outputs v. The second iteration then starts
to compute (27) with the nonzero sequence v, and performs
(28), (31) and (32) accordingly. It is feasible that the variable
nodes and check nodes can perform several local iterations
within a single global iteration. That is, (28) and (31) are
evaluated more than once before (27) is executed in the next
global iteration. But in this paper, in order to exploit the most
information from the CPFSK trellis, we only perform (28) and
(31) once per global iteration.

VI. CODE OPTIMIZATION

EXIT charts are often used to analyze the convergence be-
havior of iterative decoding systems. In [17], a curve-matching
technique was applied that allows EXIT charts to be directly
used as a code design methodology. This technique was later
applied to the design of IRA codes in [18] and systems
using orthogonal FSK with symbol-by-symbol noncoherent
detection in [15]. Here, we apply the EXIT curve-matching
technique to design codes for CPFSK with coherent detection.

An EXIT chart is created for a particular SNR by drawing
the information-transfer functions for the inner and outer
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codes on the same plot. The information-transfer function for
an outer repetition code of degree d is [30]

I
(o)
E,d(I

(o)
A ) = J

(√
d− 1J−1(I(o)

A )
)
, (33)

where the superscript (o) denotes the outer code, and the
subscripts A and E represent the a priori input information
and the extrinsic output information. The function J(·) is
defined in [30] as

J(σ) =
∫

1
2πσ

e−
(x−σ2)2

2σ2 log2

(
1 + e−x

)
dx, (34)

and can be predetermined by numerical or Monte Carlo
integration.

The overall information-transfer function for the irregu-
lar outer code can be approximated by using the edge-
perspective degree distribution to linearly combine the com-
ponent information-transfer functions according to [30]

I
(o)
E (I(o)

A ) =
dv∑

d=2

λdI
(o)
E,d(I

(o)
A ). (35)

Note that d = 1 does not appear in the above summation
because I(o)

E,1(I
(o)
A ) = J (0) = 0. This implies that degree-one

variable nodes do not help the iterative decoding, and so in
our code design we always set λ1 = 0.

As with the outer code, the overall information-transfer
function of the inner code can be approximated by using the
corresponding edge-perspective degree distribution to linearly
combine the component information-transfer functions I(i)

E,d,
resulting in

I
(i)
E (I(i)

A ) =
dc∑

d=1

ρdI
(i)
E,d(I

(i)
A ). (36)

What remains is the calculation of the function I
(i)
E,d(·) for

each d. Unlike the outer code, the component information-
transfer functions I(i)

E,d(·) cannot be easily expressed in integral
form like (33)-(34), and therefore must be found via Monte
Carlo simulation for each d as follows. A length-Nc vector
c of independent and uniformly distributed binary symbols is
randomly generated and encoded into the length-Nb vector b
by the check nodes. Typically, Nc is chosen to be large in
order to reduce the influence of the initial and final states of
the CPFSK modulator trellis. The symbol-labeling function
(26) transforms b into the length-N symbol vector q which
is then passed into the CPFSK modulator to produce the
modulated waveform x(t). The modulated signal is passed
through an AWGN channel and a bank of matched filters to
produce the sequence yN−1

0 . The actual received sequence
yN−1

0 and a simulated a priori input sequence v are input to
the trellis-based CPFSK decoder, which produces the extrinsic
output z given by (27). The sequence v is created using
(32), where each mi,j corresponds to the simulated message
received by the jth check node from the ith variable node.
The mi,j’s are assumed to be conditionally Gaussian and
consistent, with variance σ2 and mean (−1)ckσ2/2, where
ck is the corresponding simulated bit of c. The variance σ2

is found from the information-transfer function’s argument
I
(i)
A by inverting (34). Once z is generated, (28) is used to

generate the messages ri,j sent from the check nodes to the
variable nodes. Finally, an estimate of I(i)

E,d(·) is found for
the given codeword and channel realization by measuring the
mutual information between c and the corresponding ri,j ’s.
The process is repeated for many simulated codewords and
channel realizations, and the sample mean is computed.

Once the information-transfer functions for the inner and
outer codes have been found, they are drawn on the same
plot. The inner-code’s information-transfer function is drawn
with I

(i)
A as its horizontal axis and I

(i)
E as its vertical axis,

while the outer-code’s information-transfer function is drawn
with I

(o)
E as its horizontal axis and I

(o)
A as its vertical axis.

The plot showing both of these curves constitutes the system’s
EXIT chart. The code is said to converge if there is a gap
between the two curves, and the convergence threshold is the
minimum SNR for which the two curves just barely touch.
The design objective is to minimize this threshold through the
proper selection of the degree distributions.

A. Degree Distribution Optimization

The convergence threshold can generally be minimized by
minimizing the area between the inner and outer EXIT curves.
This property was used in [15] and [31] to design capacity-
approaching codes. We apply the same principle by first fixing
the degree distribution of the inner code {ρd} and the channel
SNR Es/N0, and then finding the degree distribution of the
outer code {λd} that minimizes the area between the curves.
This can be done by using linear programming. We sample
the outer-code’s EXIT curve I(o)

E (·) along the I(o)
A axis and

the inner-code’s inverse EXIT curve I(i)
A (·) = I

(i)−1
E (·) along

the I(o)
A axis. Let Ii ∈ (0, 1) denote the ith sampling point

and I denote the indices of the sampling points. Convergence
requires the two curves do not intersect, which implies that
I
(i)
A (Ii) < I

(o)
E (Ii) for all i ∈ I. When there are a large

number of uniformly spaced sampling points, the area between
the two curves can be approximated as

A ∝
∑
i∈I

(
I
(o)
E (Ii) − I

(i)
A (Ii)

)
. (37)

Given that the maximum variable-node degree is dv, the area
A in (37) can be minimized subject to the following con-
straints: (1) I(i)

A (Ii) < I
(o)
E (Ii) for all i ∈ I; (2)

∑dv

d=2 λd = 1;
and (3) The desired code rate r in (25) is attained. If a solution
to the linear-programming problem is found for a particular
channel SNR Es/No, then the SNR is lowered and the process
repeated until a solution can no longer be found. The final
design and the convergence threshold is found from the last
successful solution to the linear-programming problem. If
desired, the check-node and variable-node distributions could
be iteratively optimized by fixing one while solving the cor-
responding linear-programming problem required to optimize
the other. However, the convergence threshold is much more
strongly influenced by the variable-node distribution than the
check-node distribution.

B. Symbol Labeling Issues

The way that edges in the demodulator trellis are labeled
with symbols has a significant impact on performance. If one
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Gray Labeling

0 0

Natural Labeling

0 0

Fig. 5. Two symbol labelings for M = 8, h = 1/4, and φi = 0. In this
example, there are two parallel edges connecting the starting state with each
of the four possible ending states. This trellis is labeled by labeling the first
edge from top to bottom followed by labeling the second edge from top to
bottom.

were designing an uncoded or non-iterative system, the labels
of all edges would need to be jointly optimized in order
to minimize the BER. However, for an iterative system, the
extrinsic information from the decoder helps to resolve the
starting and ending states. As the corresponding EXIT chart
is driven to the upper-right region of operation, the starting
and ending states become essentially known. For such iterative
systems, the most important symbol-labeling consideration is
how parallel edges are labeled.

Parallel edges occur when M > Q, in which case there are
more edges leaving each starting state than there are possible
ending states. As an example, Fig. 5 shows the trellis for M =
8, h = 1/4, and starting state φi = 0. In this case, there
are two parallel edges connecting the starting state with each
of the four possible ending states. When there are parallel
edges, several alternative labelings are possible. For instance,
the right side of Fig. 5 shows a natural labeling while the left
side shows a Gray labeling. The symbol-labeling function has
a profound effect on the shape of the inner-code’s EXIT curve.
Fig. 6 shows the EXIT curves forM = 8, h = 1/4 at Es/N0 =
0 dB with Gray and natural labelings. The effect of the symbol
labeling is most pronounced on the right side of the EXIT
curves. With Gray labeling, the EXIT curves for codes with
degree one and two terminate in the upper-right corner, i.e. the
(1, 1) point. However, with natural labeling, when the input a
priori information is perfect, the output extrinsic information
is only about 7/8. This means that even when all other bits
are perfectly known, there is still some uncertainty about the
current bit. The reason for this behavior can be seen in the
example trellis of Fig. 5. Suppose that the decoder wants to
make a decision on the first bit and it knows the identity of the
last two bits and that the starting and ending states are zero.
With the natural labeling, the last two bits are both labeled
by “00” and thus knowing their identity does not uniquely
determine the value of the first bit. However, with the Gray
labeling, the last two bits have different labels (“00’ and “10”)
and so knowing their values is enough to discriminate the first
bit.

When the inner-code’s EXIT curve does not terminate in

I

I

d=1

d=2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Natural labeling
Gray labeling

Fig. 6. Inner-code EXIT curves for M = 8 and h = 1/4 with Gray and
natural symbol labelings. Es/N0 = 0 dB.

the upper-right corner, the optimization technique described
in the previous section will not work for the class of codes
considered because I(i)

A (Ii) < I
(o)
E (Ii) will not be satisfied

as Ii approaches unity. In addition to violating the linear-
programming constraint, the code will have a high error floor
due to the early crossing of the inner-code and outer-code
EXIT curves. To prevent these issues, the symbol labeling
should be chosen to ensure that the inner-code EXIT curve
extends to the (1, 1) point. Thus, for the example of M = 8
and h = 1/4, Gray labeling is more desirable than natural
labeling. However, Gray labeling is not universally preferred.
For instance, we found that when M = 4 and h = 1/3 that
natural labeling is better than Gray lableing. As a general rule,
a suitable labeling is one that ensures that parallel transition
pairs are labeled with at least two distinct bits. This rule is
sufficient and necessary to force the inner-code EXIT curve
to the (1, 1) point.

C. Interleaver Design Issues

Because the system may be viewed from the perspective
of having an outer nonsystematic LDGM code [13], the
interleaver must be designed to avoid a many-to-one mapping
of message sequences u to codewords b. Such a mapping
could occur, for instance, when a variable node is connected
to a single check node by an even number of parallel edges. In
such a case, the bit associated with the variable node will be
added an even number of times, always resulting in a value of
zero being passed to the check node. A similar problem occurs
when a pair of degree-2 variable nodes is connected to a pair of
check nodes in a “butterfly” fashion. If the two variable nodes
are associated with the same bit value, then a value of zero will
always be passed to both check nodes regardless of whether
both bits were zeros or both were ones. Similarly, if the two
variable nodes are associated with different bit values, then a
value of one will be passed to both check nodes regardless
of which variable node was set to one and which was set to
zero.
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In light of these examples, the likelihood of randomly
drawing an interleaver with a many-to-one mapping can be
greatly diminished by not allowing degree-2 variable nodes
[17]. While higher-degree variable nodes could result in a
many-to-one mapping, the probability of randomly drawing a
many-to-one design with degree-3 nodes or higher decreases
with order N−α

c , α ≥ 1, and is therefore inconsequential for
sufficiently largeNc. However, degree-2 variable nodes can be
allowed as long as the interleaver is designed to avoid many-
to-one mappings. For instance, one good design procedure is
to associate all the degree-two variable nodes with degree-one
check nodes, similar to the doping method of system I in [13].
However, this procedure requires a large ρ1, which leads to
high SNR convergence threshold. In our design methodology,
degree-two variable nodes are permitted, and ρ1 is set to a very
small value just for the purpose of decoding initialization. The
interleaver is designed by first randomly linking the 2Nuλ̃2

outputs of the degree-two variable nodes to distinct check
nodes. Afterwards, the edges of the variable nodes of degree
higher than two are placed at random. Since there must be
at least 2Nuλ̃2 check nodes, this requires 2Nuλ̃2 ≤ Nb

which implies that λ̃2 ≤ 1/(2r). Generally, this constraint
is not restrictive except at very high code rates and was easily
satisfied for all the designs presented in this paper.

A guideline given in [12] is that when the check nodes have
degrees of either one or dc, then the doping rate ρ̃1 should
satisfy

ρ̃1 ≥ dc − 1
dv + dc − 1

. (38)

This bound is suitable if only one iteration is performed.
However, if multiple iterations are permitted, ρ̃1 does not have
to satisfy this criteria. This is illustrated by the interleaver
shown in Fig. 7 which serves as a counter-example. In the
counter-example, all variable nodes have degree two and the
check nodes may have degree one or two. The bound (38)
would imply that at least 1/3 of the check nodes should have
degree one in order to permit successful decoding. However,
in Fig. 7, there are only two check nodes of degree one, and
therefore ρ̃1 could be quite small. During each iteration of
decoding, the information from the degree-one nodes at the
top and bottom will propagate towards the center of the graph.
Thus, the system is decodable given a sufficient number of
iterations, despite not adhering to to (38).

This result also implies that with a large maximum number
of iterations allowed, ρ̃1 could be made to a very small
number. In this paper, our code designs are all based on
the check nodes with degree distribution ρ1 = 0.001 and
ρ2 = 0.999, because a fairly early waterfall can be achieved
using this distribution, while the decoding is still manageable
in 200 iterations.

VII. OPTIMIZATION AND SIMULATION RESULTS

Code optimizations were performed for the three systems
listed in Table I which achieve spectral efficiency η = 0.5
bps/Hz using M = {2, 4, 8}. In each case, the inner-code’s
degree distribution was set to ρ1 = 0.001 and ρ2 = 0.999.
A very small number of degree-one check nodes are needed
to allow the iterative decoding process to start properly.

+
=

=
+

+
=

+
=

=

+

+
=

Fig. 7. Counter-example showing that the bound given by (38) is not
necessary when there is more than one decoding iteration.

Otherwise, the decoding process always stays at the origin
of the EXIT chart [12]. Setting a smaller ρ1 could help the
decoder converge in fewer iterations, but the required Eb/N0

tends to be higher.
Having fixed the inner-code’s degree distribution, the outer-

code’s degree distribution was found using linear program-
ming under the constraint that the maximum outer-code degree
is dv = 20. Gray labeling was used for the M = 8 system,
and natural labeling for the M = 4 system. EXIT curves
for the optimized system with parameters M = 8, h = 1/4,
and r = 0.4458 are shown in Fig. 8. From the EXIT curves,
the convergence threshold is found to be Eb/N0 = −0.19 dB.
The convergence thresholds and optimized degree distributions
are as shown in the table for each of the three systems. Fig.
9 shows BER curves for all three systems after 100 and
200 decoder iterations with Nu = 100, 000 message bits.
Using the results from the figure, Table I shows the Eb/N0

required for the actual coded system to achieve a simulated
bit error probability of 10−5 after 200 decoding iterations are
performed. For all three systems, the simulation results are
about 0.4 dB from the capacity limit.

VIII. CONCLUSION

Before engaging in the design of capacity-approaching
codes for CPFSK modulation, it is useful to compute the
information-theoretic limits for a given alphabet size M and
modulation index h. This computation is facilitated by treating
CPFSK over AWGN channels as a finite-state Markov channel
and then computing the symmetric information rate using a
BCJR-like algorithm. In addition to serving as a benchmark
to measure the effectiveness of actual coded systems, the
information-theoretic analysis provides useful insight into the
optimal selection of the parameters M and h. This selection is
especially important when bandwidth is constrained, for there
will be a lower limit on the allowable code rate r that depends
on the choice of M and h. Usually, complexity concerns
require that h = P/Q be rational with a small denominatorQ.
Thus, for any particular spectral efficiency, alphabet size M ,
and complexity limit, there will be an optimal combination
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Fig. 8. EXIT chart for the optimized system with M = 8, h = 1/4, and
Gray labeling.
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Fig. 9. BER of the three optimized systems listed in Table I. The message
length is Nu = 100, 000 bits. For each system, performance after 100 and
200 decoder iterations is shown.

of r and h that can be found through information-theoretic
analysis.

Once the system parameters and information-theoretic lim-
its are determined, the next step in the system design is to
optimize the code, which may be done with the aid of the
EXIT chart. First the EXIT curve for the inner code is drawn
for a particular target-channel SNR, where the inner code
is implemented by combining check nodes with the CPFSK
modulator. The outer-code degree distribution is determined
through linear programming with the objective of minimizing
the area between the inner-code and outer-code EXIT curves.
The optimal design is the one that minimizes this area at the
lowest channel SNR without allowing the two curves to cross.
Results show that this threshold SNR is between 0.1 and 0.2
dB from the value predicted by the corresponding capacity
limit. Certain care must be taken to avoid bad interleavers and
symbol labelings. Simulation results using the actual coded
system achieve a BER of 10−5 at only about 0.4 dB from

the capacity with a message length of 105 and 200 decoder
iterations. Because the system performed remarkably close to
capacity, we made no particular attempt to optimize the inner
code. The whole process could be repeated for different inner
code designs, which could result in a design that is even closer
to the corresponding capacity limits.

REFERENCES

[1] J. B. Anderson, T. Aulin, and C. E. Sundberg, Digital Phase Modulation
(Applications of Communications Theory). Springer, 1986.

[2] S. Shamai, L. H. Ozarow, and A. D. Wyner, “Information rates for
a discrete-time Gaussian channel with intersymbol interference and
stationary inputs,” IEEE Trans. Inform. Theory, vol. 37, pp. 1527–1539,
Nov. 1991.

[3] H. Pfister, J. Soriaga, and P. Siegel, “On the achievable information rates
of finite state ISI channels,” in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM), San Anotonio, TX, Nov. 2001.

[4] D. Arnold, H.-A. Loeliger, P. Vontobel, A. Kavcic, and W. Zeng,
“Simulation-based computation of information rates for channels with
memory,” IEEE Trans. Inform. Theory, vol. 52, pp. 3498–3508, Aug.
2006.

[5] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory,
vol. 20, pp. 284–287, Mar. 1974.

[6] A. Ganesan, “Capacity estimation and code design principles for contin-
uous phase modulation (CPM),” Master’s thesis, Texas A&M University,
College Station, TX, May 2003.

[7] K. Padmanabhan, S. Ranganathan, S. P. Sundaravaradham, and O. M.
Collins, “General CPM and its capacity,” in Proc. IEEE Int. Symp. on
Inform. Theory (ISIT), Adelaide, Australia, pp. 750–754, Sept. 2005.

[8] P. Moqvist and T. Aulin, “Serially concatenated continuous phase
modulation with iterative decoding,” IEEE Trans. Commun., vol. 49,
pp. 1901–1915, Nov. 2001.
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