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Efficiently Decoded Full-Rate
Space-Time Block Codes

Don Torrieri, Senior Member, IEEE, and Matthew C. Valenti, Senior Member, IEEE

Abstract—Space-time block codes with orthogonal structures
typically provide full-diversity reception and simple receiver
processing. However, rate-1 orthogonal codes for complex constel-
lations have not been found for more than two transmit antennas.
By using a genetic algorithm, rate-1 space-time block codes
that accommodate very simple receiver processing at the cost of
reduced diversity are designed in this paper for more than two
transmit antennas. Simulation results show that evolved codes
combined with efficient outer codes provide better performance
over fading channels than minimum-decoding-complexity quasi-
orthogonal codes at typical operating signal-to-noise ratios. When
the fading is more severe than Rayleigh fading, the spectral
efficiency is specified, and an efficient outer code is used, evolved
codes outperform orthogonal space-time block codes.

Index Terms—Space-time block codes, genetic algorithm, di-
versity, quasi-orthogonal codes.

I. INTRODUCTION

SPACE-TIME codes transmitted by multiple antennas im-
prove the performance of a communication system in

a fading environment without the need for multiple receive
antennas or channel-state information at the transmitter [1],
[2]. An orthogonal space-time block code (STBC), such as
the Alamouti code, provides full diversity at full transmission
rate and maximum-likelihood decoding that entails only linear
processing. However, rate-1 orthogonal STBCs for complex
constellations exist only for two transmit antennas. Orthogonal
STBCs for more than two transmit antennas require a code rate
that is less than unity [2], which implies a reduced spectral
efficiency.

When used with rotated constellations, quasi-orthogonal
(QO) [3], [4], minimum-decoding-complexity quasi-
orthogonal (MDC-QO) [5], [6] and coordinate-interleaved
[7] STBCs can provide full diversity at full rate but require
more complex decoding than the decoupled decoding of each
real-valued symbol that is possible with orthogonal STBCs.
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In this paper, rate-1 linear dispersion codes [8] that are nearly
orthogonal STBCs are generated by a genetic algorithm
[9]. Since the evolved codes are nearly orthogonal, simple
suboptimal decoupled decoding that would be optimal for
orthogonal codes causes only a minor increase in intersymbol
interference and reduction of diversity gain and, hence, a
performance loss only at high signal-to-noise ratios. The
MDC-QO STBCs [6] offer full diversity when used with
a maximum-likelihood decoder that can decouple complex
symbols. Compared with these codes, the evolved codes
presented in this paper have a simplified implementation
in both the decoder (decoupling of real symbols) and the
modulator (no constellation rotation). As shown subsequently,
when the spectral efficiency is specified, an efficient outer
code is used, and the fading is severe, the evolved codes
provide better performance than both rate-1 MDC-QO and
orthogonal STBCs. Other applications of genetic algorithms
to the design of different types of space-time block codes
may be found in the literature [10]–[13].

Section II defines linear dispersion STBCs and the re-
quirements of decoupled decoding. Section III describes the
details and the options of the genetic algorithm. In Section IV,
the algorithm optimization and the performance comparisons
of various STBCs are presented. The Appendix lists the
dispersion matrices of several discrete-alphabet evolved codes.

II. STBC REQUIREMENTS

Let 𝑁𝑇 denote the number of transmit antennas, 𝑁 denote
the number of distinct transmitted constellation symbols, and
𝐿 denote the length of a space-time codeword. The space-
time code rate is 𝑁/𝐿, the number of information symbols
conveyed per signaling interval. A transmitted symbol that
belongs to a complex signal constellation is represented as

𝑥𝑛 = 𝑥𝑟
𝑛 + 𝑗𝑥𝑖

𝑛, 1 ≤ 𝑛 ≤ 𝑁 (1)

where 𝑥𝑟
𝑛 and 𝑥𝑖

𝑛 are the real and imaginary components
of the symbol, respectively, and 𝑗 =

√−1. The 𝐿 × 𝑁𝑇

transmission matrix representing a transmitted codeword of a
linear dispersion STBC may be expanded as

G =

𝑁∑
𝑛=1

𝑎𝑛A𝑛 + 𝑗

𝑁∑
𝑛=1

𝑏𝑛B𝑛 (2)

where each 𝑎𝑛 and 𝑏𝑛 is a real or imaginary component
of the symbols and the dispersion matrices A𝑛 and B𝑛
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have real-valued elements. Each space-time encoder linearly
combines weighted real and imaginary components of N
symbols and produces a sequence of L complex numbers.
Each real and imaginary component of each of these complex
numbers becomes a separate in-phase and quadrature compo-
nent, respectively, of a modulated carrier. In contrast to most
orthogonal STBCs, linear dispersion codes have transmission
matrices that are not restricted to complex symbols and their
complex conjugates with the same magnitudes.

Example 1: Consider the MDC-QO rate-1 STBC that maps
𝑁 = 4 information symbols into 𝑁𝑇 = 4 antenna outputs
over 𝐿 = 4 signaling intervals [6]. The coefficients in (2) are
𝑎1 = 𝑥𝑟

1, 𝑎2 = 𝑥𝑟
2, 𝑎3 = 𝑥𝑖

1, 𝑎4 = 𝑥𝑖
2, 𝑏1 = 𝑥𝑟

3, 𝑏2 = 𝑥𝑟
4,

𝑏3 = 𝑥𝑖
3, and 𝑏4 = 𝑥𝑖

4. The transmission matrix is

G =

⎡
⎢⎢⎣

𝑥𝑟
1 + 𝑗𝑥𝑟

3 𝑥𝑟
2 + 𝑗𝑥𝑟

4 −𝑥𝑖
1 + 𝑗𝑥𝑖

3 −𝑥𝑖
2 + 𝑗𝑥𝑖

4

−𝑥𝑟
2 + 𝑗𝑥𝑟

4 𝑥𝑟
1 − 𝑗𝑥𝑟

3 𝑥𝑖
2 + 𝑗𝑥𝑖

4 −𝑥𝑖
1 − 𝑗𝑥𝑖

3

−𝑥𝑖
1 + 𝑗𝑥𝑖

3 −𝑥𝑖
2 + 𝑗𝑥𝑖

4 𝑥𝑟
1 + 𝑗𝑥𝑟

3 𝑥𝑟
2 + 𝑗𝑥𝑟

4

𝑥𝑖
2 + 𝑗𝑥𝑖

4 −𝑥𝑖
1 − 𝑗𝑥𝑖

3 −𝑥𝑟
2 + 𝑗𝑥𝑟

4 𝑥𝑟
1 − 𝑗𝑥𝑟

3

⎤
⎥⎥⎦.

The dispersion matrices are

A1 =

⎡
⎢⎢⎣

+1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1

⎤
⎥⎥⎦,

A2 =

⎡
⎢⎢⎣

0 +1 0 0

−1 0 0 0

0 0 0 +1

0 0 −1 0

⎤
⎥⎥⎦,

A3 =

⎡
⎢⎢⎣

0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0

⎤
⎥⎥⎦,

A4 =

⎡
⎢⎢⎣

0 0 0 −1

0 0 +1 0

0 −1 0 0

+1 0 0 0

⎤
⎥⎥⎦,

B1 =

⎡
⎢⎢⎣

+1 0 0 0

0 −1 0 0

0 0 +1 0

0 0 0 −1

⎤
⎥⎥⎦

B2 =

⎡
⎢⎢⎣

0 +1 0 0

+1 0 0 0

0 0 0 +1

0 0 +1 0

⎤
⎥⎥⎦

B3 =

⎡
⎢⎢⎣

0 0 +1 0

0 0 0 −1

+1 0 0 0

0 −1 0 0

⎤
⎥⎥⎦

B4 =

⎡
⎢⎢⎣

0 0 0 +1

0 0 +1 0

0 +1 0 0

+1 0 0 0

⎤
⎥⎥⎦.

■
Only one receive antenna is assumed for simplicity, and

the extension of the analysis to multiple receive antennas is
straightforward. The complex channel response to transmit
antenna ℓ at the sampled demodulator output is

ℎℓ = ℎ𝑟
ℓ + 𝑗ℎ𝑖

ℓ, 1 ≤ ℓ ≤ 𝑁𝑇 (3)

where ℎ𝑟
ℓ and ℎ𝑖

ℓ are the real and imaginary components of ℎℓ,
respectively. The channel responses are assumed to be known
at the receiver and constant for 𝐿 symbol periods. Let z𝑛
denote the 2𝐿 × 1 vector with its first 𝐿 elements equal to
the real–parts of the responses to 𝑎𝑛, 1 ≤ 𝑛 ≤ 𝑁 , or 𝑏𝑛−𝑁 ,
𝑁 + 1 ≤ 𝑛 ≤ 2𝑁, and its second 𝐿 elements equal to the
imaginary-parts of the responses to 𝑎𝑛, 1 ≤ 𝑛 ≤ 𝑁 , or 𝑏𝑛−𝑁 ,
𝑁 + 1 ≤ 𝑛 ≤ 2𝑁 . Thus,

z𝑛 = 𝑎𝑛𝒜𝑛h, 1 ≤ 𝑛 ≤ 𝑁 (4)

z𝑛 = 𝑏𝑛−𝑁ℬ𝑛−𝑁h, 𝑁 + 1 ≤ 𝑛 ≤ 2𝑁 (5)

where h = [ℎ𝑟
1 ℎ𝑟

2 ⋅ ⋅ ⋅ℎ𝑟
𝑁𝑇

ℎ𝑖
1 ℎ𝑖

2 ⋅ ⋅ ⋅ℎ𝑖
𝑁𝑇

]𝑇 and 𝒜𝑛 and ℬ𝑛

are 2𝐿× 2𝑁𝑇 matrices. They have the forms

𝒜𝑛 =

[
A𝑛 0𝐿×𝑁𝑇

0𝐿×𝑁𝑇 A𝑛

]
, ℬ𝑛 =

[
0𝐿×𝑁𝑇 −B𝑛

B𝑛 0𝐿×𝑁𝑇

]
.

(6)
where 0𝐿×𝑁𝑇 is the 𝐿 × 𝑁𝑇 matrix of zeros. Let d = [𝑎1
𝑎2 ⋅ ⋅ ⋅ 𝑎𝑁 𝑏1 𝑏2 . . . 𝑏𝑁 ]𝑇 . The 2𝐿 × 1 vector of received
symbols in the absence of noise is

y𝑠 =

2𝑁∑
𝑛=1

z𝑛 = Hd (7)

where

H = [𝒜1h 𝒜2h ⋅ ⋅ ⋅ 𝒜𝑁h ℬ1h ℬ2h ⋅ ⋅ ⋅ ℬ𝑁h] (8)

is the 2𝐿× 2𝑁 channel matrix.
For full-diversity reception and simple (decoupled)

maximum-likelihood processing in the receiver, an orthogo-
nality condition must be satisfied:

H𝑇H = ∣∣h∣∣2I2𝑁×2𝑁 (9)

for any vector h with real-valued components, where ∣∣h∣∣
denotes the Euclidean norm of h and I2𝑁×2𝑁 is the 2𝑁×2𝑁
identity matrix. The orthogonality condition is satisfied if and
only if

A𝑇
𝑛A𝑛 = B𝑇

𝑛B𝑛 = I𝑁𝑇×𝑁𝑇 , 1 ≤ 𝑛 ≤ 𝑁 (10)

A𝑇
𝑛Aℓ +A𝑇

ℓ A𝑛 = B𝑇
𝑛Bℓ +B𝑇

ℓ B𝑛 = 0𝑁𝑇×𝑁𝑇 ,

𝑛 ∕= ℓ, 1 ≤ 𝑛, ℓ ≤ 𝑁 (11)

A𝑇
𝑛Bℓ = B𝑇

ℓ A𝑛, 𝑛, ℓ ≤ 𝑁. (12)

A compact proof using linear algebra that (10) − (12) are
both necessary and sufficient for the orthogonality condition
can be found in [14]. An alternative, much more complicated
proof, can be derived from the theory of amicable orthogonal
designs [2], [15]. Equation (10) also ensures that the total
power transmitted for symbol-component 𝑎𝑛 or 𝑏𝑛 by each
transmit antenna is equal to 𝑎2𝑛 or 𝑏2𝑛, respectively. Thus,
the total power transmitted by each antenna is equal. The
dispersion matrices of Example 1 do not satisfy (11) and are
therefore not orthogonal.

Let ℰ𝑠 denote the average energy per symbol transmitted by
all the transmit antennas and ℰ𝑏 the average energy per data
bit transmitted by all the antennas. In the presence of additive
white Gaussian noise with spectral-density 𝑁0, the vector of
received symbols is

y𝑟 = Hd+ n (13)

where n is the zero-mean noise with covariance matrix
𝐸
[
nn𝑇

]
= 𝑁0I, 𝐸

[
∣𝑑𝑛∣2

]
= ℰ𝑠/𝑁𝑇 for each component 𝑑𝑛

of d, and E[⋅] denotes the expected value. If the orthogonality
condition is satisfied, then the receiver computes the 2𝑁 × 1
vector

y = ∣∣h∣∣−2H𝑇y𝑟 = d+ n1 (14)

where 𝐸
[
n1n

𝑇
1

]
= 𝑁0∣∣h∣∣−2I. The maximum-likelihood

decision for 𝑑𝑛 is separately obtained by finding the value

Authorized licensed use limited to: West Virginia University. Downloaded on February 13, 2010 at 10:03 from IEEE Xplore.  Restrictions apply. 



482 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 2, FEBRUARY 2010

of 𝑑𝑛 that minimizes ∣𝑦𝑛 − 𝑑𝑛∣ , 𝑛 = 1, 2, . . . , 2𝑁, and hence
is decoupled from the other component decisions.

For decoupled decoding whether or not the orthogonality
condition is satisfied, the receiver computes y = H𝑇y𝑟

and then separately finds the value of 𝑑𝑛 that minimizes
∣𝑦𝑛 −𝐷𝑛,𝑛𝑑𝑛∣ , 𝑛 = 1, 2, . . . , 2𝑁, where D = H𝑇H. Equiv-
alently, if 𝐷𝑛,𝑛 ∕= 0, for all 𝑛, the receiver computes the
2𝑁 × 1 vector y = ΔH𝑇y𝑟 = d + z + n1, where Δ
denotes a diagonal matrix with diagonal elements equal to
1/𝐷𝑛,𝑛, 𝑛 = 1, 2, . . . , 2𝑁, 𝐸

[
n1n

𝑇
1

]
= 𝑁0ΔD Δ𝑇 , and

z is the intersymbol interference that reduces the diversity
gain. The decision for 𝑑𝑛 is separately obtained by finding
the value of 𝑑𝑛 that minimizes ∣𝑦𝑛 − 𝑑𝑛∣ , 𝑛 = 1, 2, . . . , 2𝑁.
The intersymbol interference diminishes as H approaches
orthogonality.

The evolved codes are decoded using the same decoupled
decoder used with orthogonal codes, and therefore enjoy the
same low complexity, as the burden of calculating and multi-
plying by each 𝐷𝑛 is minor. As an example, consider a rate-
1 code for 𝑁𝑇 antennas using square quadrature amplitude
modulation (QAM) with 𝑀 symbols. The decoupled decoder
independently detects each of the 2𝐿 real-valued symbols, and
each decision requires the comparison of a real value against√
𝑀 hypotheses. The decoder for a quasi-orthogonal code [3],

[4] independently detects two pairs of complex symbols, and
each decision requires the comparison of a pair of complex
values against 𝑀2 hypothesis. Thus, quasi-orthogonal codes
requires a factor of 𝑀

√
𝑀 more real-valued comparisons than

the proposed evolved codes. The MDC-QO codes [5], [6]
allow the 𝐿 complex symbols to be independently detected,
and each decision requires the comparison of a complex value
against 𝑀 hypothesis. Thus, the MDC-QO code requires a
factor of

√
𝑀 more real-valued comparisons than the evolved

codes.

III. DESCRIPTION OF THE GENETIC ALGORITHM

In a genetic algorithm, a population of individuals, each
containing a collection of genes, evolves through the process
of breeding and mutation [9]. The definition of an individual
and its genes is application specific. When evolving linear
dispersion codes, each individual corresponds to the set of 2𝑁
dispersion matrices associated with a particular code design.
We consider linear dispersion codes with entries drawn from
a finite alphabet and require that the columns of all dispersion
matrices have unit norms1. Although the genetic algorithm was
run with several different discrete alphabets, the best results
were generated using ternary alphabets with either entries
{0,±1} or entries {0,±1/

√
2}. For such codes, the number

of permissible unit-norm columns is a finite value 𝐽 . For the
alphabet {0,±1}, 𝐽 = 2𝐿, and for the alphabet {0,±1/

√
2},

𝐽 = 2𝐿(𝐿 − 1). The palette of columns can be represented
as 𝒵 = {b𝑛, 1 ≤ 𝑛 ≤ 𝐽} where b𝑛 is the 𝑛𝑡ℎ possible
column. In our algorithm, each gene represents one column
of a dispersion matrix. As the 2𝑁 dispersion matrices each
have 𝑁𝑇 columns, each individual has 𝑁𝐺 = 2𝑁𝑇𝑁 genes,

1We also evolved linear dispersion codes with entries drawn from a
continuous alphabet [14] but did not discover any such codes that performed
better than the best discrete-alphabet codes.

Initialize random
population 𝒢

Sort population
by ascending cost

Select parents
{v1,v2} from 𝒢

Breed children
{c1, c2} from parents

Mutate {m𝑗,1, ...m𝑗,𝑄}
from c𝑗 , 𝑗 = {1, 2}

Update 𝒢 using
replacement policy Continue?

Stop

yes

no

Fig. 1. Flowchart describing the genetic algorithm.

and the number of distinct individuals is 𝐽𝑁𝐺 . The vector
g𝑘 = [𝑔𝑘,1, ..., 𝑔𝑘,𝑁𝐺 ] contains the genes of the 𝑘𝑡ℎ individual.
Gene 𝑔𝑘,𝑗 can represent column b𝑛 ∈ 𝒵 by simply setting
𝑔𝑘,𝑗 = 𝑛, i.e. the index of the column within set 𝒵 .

Each individual is assigned a cost, and the objective of
the genetic algorithm is to evolve individuals with low cost.
For our goal of near-orthogonality, the cost of individual g is
defined as

𝐶(g) = 𝑤1

𝑁∑
𝑛=1

[∥∥A𝑇
𝑛A𝑛 − 𝐼

∥∥2 + ∥∥B𝑇
𝑛B𝑛 − 𝐼

∥∥2]

+ 𝑤2

𝑁∑
𝑛=1

𝑁∑
ℓ=1
ℓ ∕=𝑛

[∥∥A𝑇
𝑛Aℓ +A𝑇

ℓ A𝑛

∥∥2 + ∥∥B𝑇
𝑛Bℓ +B𝑇

ℓ B𝑛

∥∥2]

+ 𝑤3

𝑁∑
𝑛=1

𝑁∑
ℓ=1

∥∥A𝑇
𝑛Bℓ −B𝑇

ℓ A𝑛

∥∥2 (15)

where {A𝑛,B𝑛, 1 ≤ 𝑛 ≤ 𝑁} is the set of dispersion matrices
represented by the vector g, ∥ ⋅ ∥ denotes the Frobenius norm,
and 𝒲 = {𝑤1, 𝑤2, 𝑤3} is a set of weights. This cost function
penalizes STBC designs with matrices that do not satisfy the
orthogonality conditions of (10) − (12). The values of 𝒲
allow some constraints to be emphasized more than others.
We considered several different values for 𝒲 but found that
𝒲 = {1, 1, 1} produced the most effective designs. Note that
the ordering of the matrices A𝑛 or the ordering of the matrices
B𝑛 may be changed without changing the cost.

Fig. 1 is a flowchart describing the operation of the genetic
algorithm. The first step of the algorithm is to create an
initial population of 𝐾 individuals, 𝒢 = {g1, ...,g𝐾}, where
𝐾 << 𝐽𝑁𝐺 . The initial g𝑘’s are generated by randomly se-
lecting each entry from the integers 1 through 𝐽 with uniform
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probability. This is equivalent to selecting each column of
the corresponding dispersion matrices from the set 𝒵 with
equal probability. In the very unlikely event that the popula-
tion contains a pair of identical individuals, the duplicate is
discarded and a new individual is randomly generated. For
each individual in the population, its cost is calculated using
(15). The population is sorted in ascending order of cost, so
that 𝐶(g𝑘) ≥ 𝐶(g𝑗) when 𝑘 > 𝑗.

Once the initial population is seeded, the algorithm runs
recursively. Each recursion is called a generation. During
each generation, two individuals are picked at random from
the population. These two individuals are parents and breed
two children. Next, the children mutate by having some of
their genes changed at random. Finally, the population is
updated by replacing up to two individuals with children or
mutated children. The whole process continues until a fixed
number of generations has been run or some convergence
criteria satisfied, such as the population not changing for a
certain number of generations. The details of the algorithm
are embodied in the application-specific policies for parent
selection, breeding, mutation, and replacement, as described
below.

Let {v1,v2} be the parents. We considered four parent-
selection strategies: (1) random selection, (2) preferred par-
enting, (3) eugenic selection, and (4) alpha-male selection.
With random selection, two distinct individuals are picked at
random from the population. With preferred parenting, v2 is
picked at random from the entire population excluding the
best individual: v2 ∈ {g𝑘, 2 ≤ 𝑘 ≤ 𝐾}, while v1 is selected
at random from those individuals that are better than the first:
v1 ∈ {g𝑗, 1 ≤ 𝑗 < 𝑘}. With eugenic selection, the best two
individuals are selected: v1 = g1 and v2 = g2. With alpha-
male selection, the first parent is the best individual v1 = g1,
while the second parent is selected at random from the rest of
the population: v2 ∈ {g𝑘, 2 ≤ 𝑘 ≤ 𝐾}. In our experiments,
we found that preferred parenting provided the most effective
combination of rapid convergence and low final cost.

The two selected parents breed a pair of children {c1, c2}.
Together, the two children have the same genes as the two
parents. However, each child contains some genes from one
parent and the remaining genes from the other parent. The
genes are selected by first generating a cross-over mask
e = [𝑒1, ..., 𝑒𝑁𝐺 ] with binary elements, 𝑒𝑛 ∈ {0, 1}. The
vector e is generated at random such that its entries are
i.i.d. Bernoulli variables with 𝑃 [𝑒𝑛 = 1] = 𝑝𝑥. The value
𝑝𝑥 is called the crossover probability. The two children are
generated according to

𝑐1,𝑘 = (1− 𝑒𝑘)𝑣1,𝑘 + 𝑒𝑘𝑣2,𝑘

𝑐2,𝑘 = 𝑒𝑘𝑣1,𝑘 + (1 − 𝑒𝑘)𝑣2,𝑘. (16)

Thus, child c𝑗 , 𝑗 ∈ {1, 2}, will contain the genes of parent v𝑗

in those positions that e is a zero, and will contain the genes
of the other parent in those positions that e is a one.

After breeding, the children are mutated. Each child c𝑗
is transformed into a set of 𝑄 mutants, {m𝑗,1, ...,m𝑗,𝑄}.
Mutant m𝑗,𝑞 is derived from c𝑗 by replacing a few entries
of c𝑗 with new genes selected randomly from the set of
possibilities. The choice of which genes to replace is also

random, with each gene being mutated with probability 𝑝𝑚.
The value 𝑝𝑚 is called the mutation probability, and genes
mutate independently.

The last step of the generation is to update the popu-
lation by replacing individuals. The number of individuals
that are replaced is either zero, one, or two, and the size
of the population remains at the fixed value of 𝐾 after
each generation. Two replacement strategies may be used:
normal replacement or culling. With normal replacement, a set
𝒳𝑗 = {v𝑗 , c𝑗 ,m𝑗,1, ...,m𝑗,𝑄} is formed containing a parent
and its offspring (its child and the child’s 𝑄 mutants). Let
g𝑗 = v𝑗 be the individual in the population that was selected
to be the parent. This individual is replaced by

g𝑗 = arg min
x∈𝒳𝑗

𝐶(x). (17)

With this replacement policy, a parent will be replaced by its
offspring that has the lowest cost. However, if the parent has
a cost lower than its offspring, then it will not be replaced.
Equation (17) is run for both individuals that were selected as
parents.

With the culling replacement strategy, a set 𝒳 =
{g𝐾 , c1,m1,1, ...,m1,𝑄, c2,m2,1, ...,m2,𝑄} is formed con-
taining the worst member of the population (g𝐾) and all the
offspring of both parents. The worst element of the population
is replaced by

g𝐾 = argmin
x∈𝒳

𝐶(x). (18)

With this replacement strategy, both parents remain in the
population, and the best of their offspring is used to replace
the worst member of the population (if the best offspring has
the lowest cost). Culling after some (but not all) generations is
beneficial because it allows unfit individuals to be periodically
purged from the population. Rather than always using one
policy or the other, our algorithm randomly picks between
the two at the conclusion of each generation, with 𝑝𝑐 defined
to be the probability of using the culling strategy. The value
of 𝑝𝑐 should be small so that most generations use normal
replacement.

After the population has been updated, it is resorted in
ascending order of cost. The algorithm then either moves on
to the next generation or terminates if the halting condition
has been achieved.

IV. OPTIMIZATION RESULTS

The genetic algorithm described in Section III was used
to produce rate-1 designs for 𝑁𝑇 = 3, 4, and 5 antennas.
We experimented with a wide range of parameters for the
genetic algorithm and found that the most effective designs
were achieved using the following parameters and conditions.

∙ Alphabet: One of two discrete alphabets was used:
{0,±1} or {0,±1/

√
2}.

∙ Weights: The set of weights used in (15) was 𝒲 =
[1, 1, 1].

∙ Population size: The population contained 𝐾 = 400
individuals.

∙ Parent selection: The preferred parenting selection pol-
icy was used.
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Fig. 2. Cost as a function of generation of evolved (4,3,4) and (4,4,4) codes
defined over two discrete alphabets.

∙ Number of mutants: 𝑄 = 2 mutants were generated per
child.

∙ Crossover probability: 𝑝𝑥 = 1/𝑁𝐺.
∙ Mutation probability: 𝑝𝑚 = 1/𝑁𝐺.
∙ Culling probability: 𝑝𝑐 = 0.01.

The Appendix lists the dispersion matrices of the best
designs found for each of 𝑁𝑇 = 3, 4, and 5 antennas. For
all evolved codes, we use the mapping with each 𝑎𝑛 = 𝑥𝑟

𝑛

and each 𝑏𝑛 = 𝑥𝑖
𝑛 in (2). The notation “(𝑎, 𝑏, 𝑐)” denotes a

code with the parameter values 𝑎 = 𝑁, 𝑏 = 𝑁𝑇 , and 𝑐 = 𝐿.
The codes for 3 and 4 antennas have 𝑁 = 𝐿 = 4. For each
of the two alphabets, Fig. 2 shows the cost per generation of
the best design in the population. After 1 million generations,
the cost of the (4, 3, 4) code converges to 12 with alphabet
{0,±1/

√
2}, and 16 with alphabet {0,±1}, while cost of the

(4, 4, 4) code converges to 32 with both alphabets. The code
for 5 antennas has 𝑁 = 𝐿 = 8 and converges to a cost of 128
after 1.7 million generations. Simulation results confirm that
the bit error rate (BER) always improves as the cost decreases.

Fig. 3 shows the BER versus ℰ𝑏/𝑁0 of the (4, 3, 4) code
with alphabet {0,±1/

√
2} that is obtained by a simulation

over a Rayleigh fading channel with quadriphase-shift keying
(QPSK). The simulated fading coefficients are constant for
blocks of 𝐿 symbols, but independent from block to block
and have zero-mean, unit-variance, complex Gaussian distribu-
tions. The figure shows the BER of both maximum-likelihood
and decoupled decoding for the best designs obtained after 10
thousand and 1 million generations.

Also shown in Fig. 3 is the performance of the (4, 3, 4)
linear dispersion code presented in [8]. As can be seen, the
reference code outperforms the evolved code when maximum-
likelihood decoding is used. The reason is that the cost func-
tion of (15) is not designed to optimize maximum-likelihood
performance. However, when the reference code is detected
with the simple decoupled decoder, performance is poor and
exhibits a relatively high error floor. The reason is that the
cost of the reference code is 64𝑤2, which is significantly

Reference code with decoupled detection

Evolved code with decoupled detection

Evolved code with ML detection

Reference code with ML detection
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Fig. 3. BERs over a Rayleigh fading channel of maximum-likelihood and
decoupled decoding of evolved and reference (4, 3, 4) codes. The evolved
code is defined over the discrete alphabet {0,±1/

√
2}, and evolved for 10

thousand and 1 million generations. The “reference code” is the (4, 3, 4) code
from [8]. QPSK modulation is used.
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Fig. 4. BERs over a Rayleigh fading channel of (4, 3, 4) codes evolved over
the alphabet {0,±1/

√
2} and the alphabet {0,±1}, the (4, 3, 4) MDCQO

code, and the (3, 3, 4) orthogonal code. 8-PSK modulation is used with the
(4, 3, 4) codes, and 16-QAM is used with the (3, 3, 4) code.

higher than the cost of the evolved code. The designs obtained
during early generations of the genetic algorithm exhibit an
error floor with decoupled decoding. However, as the design
becomes more highly evolved, the decoupled-decoding error
floor is lowered. After 1 million generations, the performances
of maximum-likelihood and decoupled decoding are identical
down to at least a BER of 10−6. While the decoupled-
decoding performance improves as the design becomes more
highly evolved, the maximum-likelihood performance actually
degrades as the design evolves.

Fig. 4 compares the BERs over a Rayleigh fading channel
of both evolved (4, 3, 4) codes against a rate-3/4 orthogonal
(3, 3, 4) code [2] and the MDC-QO (4, 3, 4) code created by
deleting the last columns of the dispersion matrices given
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Fig. 5. BERs over a Rayleigh fading channel of the (4, 4, 4) code evolved
over the alphabet {0,±1}, the (4, 4, 4) QO code, the (4, 4, 4) MDC-QO
code, and the (3, 4, 4) orthogonal code. 8-PSK modulation is used with the
(4, 4, 4) codes and 16-QAM is used with the (3, 4, 4) code.

in Example 1. In order to provide a fair comparison, the
spectral efficiency is maintained at 3 bits/s/Hz by using 8-
phase-shift keying (8-PSK) for the rate-1 codes and 16-QAM
for the rate-3/4 orthogonal code. For the MDC-QO code, the
8-PSK constellation is rotated by 4.9 degrees, which provides
full diversity [6]. As can be seen, the evolved rate-1 codes
with 8-PSK are better than both MDC-QO with 8-PSK and
the orthogonal code with 16-QAM for ℰ𝑏/𝑁0 < 20 dB and
𝐵𝐸𝑅 > 10−4. Beyond this point, the evolved codes do not
perform as well as the other two codes at high ℰ𝑏/𝑁0, the
signal-to-noise ratio (SNR), indicating that full diversity is
advantageous primarily for high SNRs.

Fig. 5 shows the performance over a Rayleigh fading
channel of the evolved (4, 4, 4) code with 8-PSK and alphabet
{0,±1}, the (4, 4, 4) quasi-orthogonal (QO) code of [3] with
8-PSK and the 𝜋/8 radian constellation rotation described in
[4], the (4, 4, 4) MDC-QO code from Example 1 with 4.9-
degree rotated 8-PSK, and the rate-3/4 (3, 4, 4) orthogonal
code from [2] with 16-QAM. The evolved code shows a loss
relative to the QO and MDC-QO codes for ℰ𝑏/𝑁0 > 5 dB and
𝐵𝐸𝑅 < 10−1. However, the evolved codes are still beneficial
even with four transmit antennas for two reasons: First, the
evolved code is less complex because, after linear processing,
each of the real and imaginary components of each symbol
may be demodulated independently (single-component decod-
able), whereas the MDC-QO code requires joint detection of
the real and imaginary components of each symbol (single-
symbol decodable) and the QO code requires joint decoding
of two (pairwise decodable). Second, the error performance of
the evolved code is actually slightly better than MDC-QO code
at very low SNR and BERs above 10−1 and therefore, as we
demonstrate next, will actually perform better than MDC-QO
code when both are concatenated with a strong outer channel
code.

An MDC-QO code has a special structure that causes a
specific constellation rotation to improve its BER at the cost of
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Fig. 6. BERs of the turbo-coded (4, 4, 4) code evolved over the alphabet
{0,±1}, (4, 4, 4) MDC-QO code, (2, 2, 2) Alamouti code, and (3, 4, 4)
orthogonal code. 8-PSK modulation is used with the full-rate codes and 16-
QAM is used with the (3, 4, 4) code. The turbo code’s rate is 1/2, and message
length is 4500 bits. The fading is Rayleigh.

an increased transmitted peak-to-average power ratio (PAPR)
[16]. The evolved codes lack structures that would suggest
that rotations would be useful. Simulation results confirm
that the best constellation rotations only slightly improve
the BERs of the evolved codes at high SNRs and have a
negligible effect when outer channel codes are used. Since
rotated constellations tend to increase the PAPR, they are not
considered further for evolved codes. For constellations in
which the symbol components range over the same values,
such as PSK and square QAM constellations, the PAPR is the
same for all one-to-one coefficient mappings.

When an outer channel code is used, the decoder must be
given proper soft input values. Prior to outer decoding, the
vector y = D−1H𝑇y𝑟 is computed and may be expressed
as y = [𝑦𝑟1 , ..., 𝑦

𝑟
𝑁 , 𝑦𝑖1, ..., 𝑦

𝑖
𝑁 ]. For orthogonal and MDC-QO

codes, a log-likelihood is produced for each hypothetical group
of 2𝑁 symbols by using the conditional pdf of y given d,
which is Gaussian and given by

log 𝑝[y∣d] ∝ − 1

2𝑁0
(y − d)𝑇D(y − d). (19)

For orthogonal codes, D is diagonal, and therefore each
component of d may be independently detected. For MDC-QO
codes, each real component is correlated with the correspond-
ing imaginary component, and therefore the two components
must be jointly detected. For the evolved codes, D is not
diagonal but is almost so. The soft-output demodulator for
the evolved codes neglects the correlation among components
caused by the nondiagonal D and detects each component of
the vector d independently. Once the log-likelihoods of the
symbols are computed, then they are transformed into the bit
log-likelihood ratios that are required by the decoder (see, for
instance, equation (6) in [17]).

Fig. 6 shows the performance when an outer code is
combined with the evolved full-rate (4, 4, 4) STBC with 8-
PSK modulation and alphabet {0,±1}, the (4, 4, 4) MDC-QO
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Fig. 7. BERs of the turbo-coded space-time codes described in the caption
of Fig. 6 but in Nakagami fading with m = 1/2.

code with 4.9-degree rotated 8-PSK, the rate-3/4 orthogonal
(3, 4, 4) STBC with 16-QAM, and the full-rate orthogonal
Alamouti (2, 2, 2) STBC with 8-PSK modulation. The outer
code is the turbo code specified by the UMTS third-generation
cellular standard [18]. The code rate is set to 1/2, and the
message length is set to 4500 bits. The fading is Rayleigh
and the channel gains are held constant for blocks of 4
consecutive signaling intervals, corresponding to a single
(4, 4, 4) or (3, 4, 4) space-time codeword or a pair of Alamouti
space-time codewords, but independent from one block to the
next. The turbo code is decoded using 14 iterations of the
log-MAP algorithm [1]. In the waterfall region, the evolved
code provides a gain of 0.1 dB over the MDC-QO and
1.5 dB over the (3, 4, 4) code. The improved performance
relative to MDC-QO can be attributed to the evolved code’s
superior performance at low SNR and the degradation caused
by correlated real and imaginary components. Interestingly,
the Alamouti code has approximately the same turbo-coded
performance as the evolved code in Rayleigh fading.

It has been shown in [19] that often fading is more
severe than Rayleigh. While the evolved space-time codes
cannot exploit the potential added diversity when the fading is
Rayleigh and a turbo code is used, they are able to outperform
the Alamouti code when the fading is more severe than
Rayleigh. To simulate severe fading, each fading coefficient
is assumed to have a uniform phase distribution and a fading
amplitude 𝛼 with a Nakagami-𝑚 density [1], 𝐸

[
𝛼2

]
= 1, and

1/2 ≤ 𝑚 ≤ 1, where 𝑚 = 1 corresponds to Rayleigh fading.
Fig. 7 repeats the simulations used to generate Fig. 6, but
instead using a Nakagami-𝑚 fading channel with 𝑚 = 1/2.
As in the Rayleigh fading case, the evolved code is about 0.1
dB better than MDC-QO and 1.5 dB better than orthogonal in
the waterfall region. However, now the evolved code is better
than the Alamouti code by about 0.7 dB, suggesting that the
additional levels of diversity are exploited in fast Nakagami-m
fading.

Evolved (4,4,4)

Evolved (8,5,8)

Solid line: Rayleigh

Dashed line: m = 1/2
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Fig. 8. BERs over Rayleigh and Nakagami-1/2 fading channels of the evolved
(8, 5, 8) and (4, 4, 4) codes with 8-PSK. Both codes are evolved over the
alphabet {0,±1}.

Fig. 8 shows BER curves for the (8, 5, 8) code listed in
the Appendix with 8-PSK modulation and no outer code in
both Rayleigh fading and Nakagami-m fading with 𝑚 = 1/2.
The performance of the (4, 4, 4) code listed in the Appendix is
also shown for comparison. It is apparent that the fifth antenna
can provide a diversity benefit when the (8, 5, 8) code is used.
Because of the greatly increased search space, the (8, 5, 8)
code was evolved in parallel on multiple computers. Each
computer was seeded with a different initial population and
was allowed to evolve using its own gene pool. Periodically,
the populations were compared, and if there was one indi-
vidual that was superior to the best designs attained on the
other computers, then that individual was copied to the other
computers to become part of the other gene pools. This process
of cloning and immigration from one gene pool to another was
a key to attaining a low cost when 𝐿 ≥ 6.

The genetic algorithm failed to generate (3,3,3) and (5,5,5)
codes that performed well, probably because they do not
exist. Evolved (4,5,4) and (6,5,6) codes do not perform as
well as the evolved (8,5,8) code. Evolved (6,3,6), (6,4,6), and
(8,4,8) codes perform as well as but no better than shorter
evolved codes, and thus the shorter evolved codes are deemed
more practical because they require less processing, incur less
latency, and can be used over a more rapidly fading channel.

V. CONCLUSIONS

A genetic algorithm has been designed to produce rate-
1 space-time block codes with decoupled decoding in the
receiver. Although the evolved codes do not have orthogonal
transmission matrices and the decoding is simple and sub-
optimal, good performance at practical signal-to-noise ratios
is obtained in a fading environment. Simulation results show
that evolved codes combined with efficient outer codes pro-
vide better performance over fading channels than minimum-
decoding-complexity quasi-orthogonal codes at typical oper-
ating signal-to-noise ratios. When the fading is more severe
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than Rayleigh fading, the spectral efficiency is specified, and
an efficient outer code is used, evolved codes outperform
orthogonal space-time block codes.

APPENDIX

The dispersion matrices for the (4, 3, 4) code evolved over
the alphabet {0,±1/

√
2} are

A1 =
1√
2

⎡
⎢⎢⎣

0 +1 +1
0 0 0
+1 0 +1
+1 −1 0

⎤
⎥⎥⎦,

A2 =
1√
2

⎡
⎢⎢⎣

−1 0 −1
−1 +1 0
0 +1 +1
0 0 0

⎤
⎥⎥⎦,

A3 =
1√
2

⎡
⎢⎢⎣

0 0 0
0 +1 +1
+1 −1 0
−1 0 −1

⎤
⎥⎥⎦,

A4 =
1√
2

⎡
⎢⎢⎣

+1 −1 0
−1 0 −1
0 0 0
0 −1 −1

⎤
⎥⎥⎦,

B1 =
1√
2

⎡
⎢⎢⎣

0 0 0
0 +1 +1
−1 0 −1
+1 −1 0

⎤
⎥⎥⎦

B2 =
1√
2

⎡
⎢⎢⎣

+1 −1 0
+1 0 +1
0 +1 +1
0 0 0

⎤
⎥⎥⎦

B3 =
1√
2

⎡
⎢⎢⎣

0 +1 +1
0 0 0
−1 +1 0
−1 0 −1

⎤
⎥⎥⎦

B4 =
1√
2

⎡
⎢⎢⎣

+1 0 +1
−1 +1 0
0 0 0
0 +1 +1

⎤
⎥⎥⎦.

The best (4, 4, 4) and (8, 5, 8) codes were evolved over the
discrete alphabet {0,±1}. With this alphabet, an opportunity
exists for a more compact notation based on the fact that each
column will have a single non-zero entry of either +1 or −1.
In the compact notation, the set of matrices {A1, ...A𝑁} are
represented by a single 𝑁 by 𝑁𝑇 matrix A. The magnitude of
the (𝑖, 𝑗)𝑡ℎ entry of A indicates the row index of the nonzero
entry in the 𝑗𝑡ℎ column of matrix A𝑖, while the sign indicates
whether the entry is positive or negative. The set of matrices
{B1, ...B𝑁} are similarly represented by a 𝑁 by 𝑁𝑇 matrix
B. As an example of this notation, the dispersion matrices of
Example 1 may be expressed as

A =

⎡
⎢⎢⎣

+1 +2 +3 +4
−2 +1 −4 +3
−3 −4 −1 −2
+4 −3 +2 −1

⎤
⎥⎥⎦

and

B =

⎡
⎢⎢⎣

+1 −2 +3 −4
+2 +1 +4 +3
+3 −4 +1 −2
+4 +3 +2 +1

⎤
⎥⎥⎦.

The consolidated dispersion matrices for the (4, 4, 4) code
evolved over alphabet {0,±1} are

A =

⎡
⎢⎢⎣

−2 +1 −1 +2
−1 −2 +2 +1
+4 −3 −4 +3
+3 +4 −3 −4

⎤
⎥⎥⎦

and

B =

⎡
⎢⎢⎣

−2 −1 +1 +2
+1 −2 +2 −1
−4 −3 +4 +3
−3 +4 +3 −4

⎤
⎥⎥⎦.

The consolidated dispersion matrices for the (8, 5, 8) code
evolved over alphabet {0,±1} are

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 −1 +5 −1 −1
−4 +7 −7 +7 −4
−1 +5 +1 +5 +5
+3 +3 −2 −2 −2
+2 +2 +3 +3 +3
−8 −6 −8 −8 +6
−7 −4 +4 −4 −7
+6 −8 +6 +6 +8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8 +6 −8 −8 −6
+4 +7 −7 +7 +4
−2 −2 +3 +3 +3
−1 −5 +1 −5 −5
−6 −8 −6 −6 +8
+7 −4 +4 −4 +7
+5 −1 −5 −1 −1
+3 +3 +2 +2 +2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

REFERENCES

[1] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York:
McGraw-Hill, 2008.

[2] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless
Communications. New York: Cambridge Univ. Press, 2003.

[3] H. Jafarkhani, “A quasi-orthogonal space–time block code," IEEE Trans.
Commun., vol. 49, pp. 1-4, Jan. 2001.

[4] W. Su and X.-G. Xia, “Signal constellations for quasi-orthogonal space-
time block codes with full diversity," IEEE Trans. Inf. Theory, vol. 50,
pp. 2331-2347, Oct. 2004.

[5] D. N. Dao and C. Tellambura, “Quasi-orthogonal STBC with minimum
decoding complexity: performance analysis, optimal signal transforma-
tions, and antenna selection diversity," IEEE Trans. Commun., vol. 56,
pp. 849-853, June 2008.

[6] C. Yuen, Y. L. Guan, and T. T. Tjhung, “Quasi-orthogonal STBC with
minimum decoding complexity," IEEE Trans. Wireless Commun., vol.
4, pp. 2089-2094, Sept. 2005.

[7] D. N. Dao and C. Tellambura, “Decoding, performance analysis, and
optimal signal designs for coordinate interleaved orthogonal designs,"
IEEE Trans. Wireless Commun., vol. 7, pp. 48-53, Jan. 2008.

[8] B. Hassibi and B. M. Hochwald, “High-rate codes that are linear in
space and time," IEEE Trans. Inf. Theory, vol. 48, pp. 1804-1824, July
2002.

[9] K. A. DeJong, Evolutionary Computation: A Unified Approach. Cam-
bridge, MA: MIT Press, 2006.

[10] A. Ghaderipoor, M. Hajiaghayi, and C. Tellambura, “Unitary matrix
design via genetic search for differential space-time modulation and
limited feedback precoding," IEEE Intern. Symp. Personal, Indoor
Mobile Radio Commun., Sept. 2006.

[11] A. Ghaderipoor, M. Hajiaghayi, and C. Tellambura, “On the design
of 2x2 full-rate full-diversity space-time block codes," pp. 3406-3410,
IEEE Global Telecommun. Conf., Nov. 2007.

[12] S. Qinghua and Q. T. Zhang, “Simple nonorthogonal 4× 4 space-time
block codes with rate one and full diversity," in Proc. IEEE Veh. Technol.
Conf., vol. 4, pp. 2449-2452, Sept. 2004.

[13] T. Koike and S. Yoshida, “Genetic designing of near-optimal training
sequences for spatial multiplexing transmissions," in Proc. IEEE Intern.
Symp. Multi-Dimensional Mobile Commun., vol. 1, pp. 474-478, Aug.
2004.

[14] D. Torrieri and M. C. Valenti, “Efficient space-time block codes designed
by a genetic algorithm," IEEE MILCOM Conf., Nov. 2008.

[15] C. Yuen, Y. L. Guan, and T. T. Tjhung, “Algebraic relationship between
amicable orthogonal designs and quasi-orthogonal STBC with minimum
decoding complexity," in Proc. IEEE Intern. Conf. on Commun., pp.
4882-4887, June 2006.

[16] M. O. Sinnokrot and J. R. Barry, “A single-symbol-decodable space-
time block code with full rate and low peak-to-average power ratio,"
IEEE Trans. Wireless Commun., vol. 8, pp. 2242-2246, May 2009.

Authorized licensed use limited to: West Virginia University. Downloaded on February 13, 2010 at 10:03 from IEEE Xplore.  Restrictions apply. 



488 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 2, FEBRUARY 2010

[17] M. C. Valenti and S. Cheng, “Iterative demodulation and decoding of
turbo coded M-ary noncoherent orthogonal modulation," IEEE J. Sel.
Areas Commun., vol. 23, pp. 1738-1747, Sept. 2005.

[18] European Telecommunications Standards Institute, “Universal mobile
telecommunications system (UMTS): Multiplexing and channel coding
(FDD)," ETSI TS 25.212 version 6.6.0, Sept. 2005.

[19] J. Frolik, “On appropriate models for characterizing hyper-Rayleigh
fading," IEEE Trans. Wireless Commun., vol. 7, pp. 5202-5207, Dec.
2008.

Don Torrieri is a research engineer and Fellow
of the US Army Research Laboratory. His primary
research interests are communication systems, adap-
tive arrays, and signal processing. He received the
Ph. D. degree from the University of Maryland. He
is the author of many articles and several books
including Principles of Spread-Spectrum Communi-
cation Systems (Springer, 2005). He teaches grad-
uate courses at Johns Hopkins University and has
taught many short courses. In 2004, he received the
Military Communications Conference achievement

award for sustained contributions to the field.

Matthew C. Valenti has been with West Virginia
University since 1999, where he is currently an
Associate Professor in the Lane Department of Com-
puter Science and Electrical Engineering. He holds
BS and Ph.D. degrees in Electrical Engineering from
Virginia Tech and a MS in Electrical Engineering
from the Johns Hopkins University. From 1992 to
1995 he was an electronics engineer at the US Naval
Research Laboratory. He serves as an associate
editor for IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, and has served as a co-chair for
the Wireless Communications Symposium at ICC-2009 (Dresden, Germany)
and as co-chair for the Communication Theory Symposium at ICC-2011
(Kyoto, Japan). His research interests are in the areas of communication
theory, error correction coding, applied information theory, wireless networks,
simulation, and grid computing. His research has been funded by the National
Research Foundation and the Department of Defense.

Authorized licensed use limited to: West Virginia University. Downloaded on February 13, 2010 at 10:03 from IEEE Xplore.  Restrictions apply. 


