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Coding and the BEC Coding

Error Control Codes

Consider a data transmission system whereby binary data is
segmented into messages u of length k bits.

Each message is mapped to a unique codeword c of length n bits,
where n > k.

The ratio R = k/n is called the code rate.

Simple examples:

Repetition code: k = 1; Repeat bit n times; R = 1/n.
Single parity-check code: Codeword is the message and an additional
“parity bit”; n = k + 1; R = k/(k + 1).
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Coding and the BEC The BEC

The Binary Erasure Channel

The BEC has two inputs (data 0 and data 1) and three outputs (data
0, data 1, and erasure e).

A bit is erased with probability �.

A bit is correctly received with probability 1− �.

0 0
1 − �

e
�

1 1
1 − �

�

Example applications:

Buffer overflows in network routers.
Fading in wireless channels.
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Coding and the BEC The BEC

Capacity of the BEC

According to information theory, it is possible to reliably communicate
over the BEC by using a rate R = 1− � code.

Can be easily achieved if the transmitter knows the location of the
erasures.

Example: Transmit u = [1 0 1 1] with a rate R = 4/6 code:

c = [ 1︸ ︷︷ ︸
c1=u1

e︸ ︷︷ ︸
c2=X

0︸ ︷︷ ︸
c3=u2

e︸ ︷︷ ︸
c4=X

1︸ ︷︷ ︸
c5=u3

1︸ ︷︷ ︸
c6=u4

]

where X can be anything (does not matter, since erased).

This scheme is not practical, since normally the transmitter won’t
know where the erasures are located, and therefore doesn’t know
where to place the message bits.

Finding practical codes which require only the receiver to know the
location of the erasures is a challenging problem.
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Coding and the BEC SPC Codes

Single Parity-Check Codes

Consider the following rate R = 5/6 parity-check code:

c = [1 0 1 0 1︸ ︷︷ ︸
u

1︸ ︷︷ ︸
parity bit

]

One erasure in any position may be corrected:

c =
[
1 0 e 0 1 1

]

Problem with using SPC’s is that it can only correct a single erasure.
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Coding and the BEC Product Codes

Product Codes: Encoding

Place data into a k by k rectangular array.

Encode each row with a SPC.
Encode each column with a SPC.
Result is a rate R = k2/(k + 1)2 code.

Example k = 2.

c1 = u1 c2 = u2 c3 = c1 ⊕ c2
c4 = u3 c5 = u4 c6 = c4 ⊕ c5

c7 = c1 ⊕ c4 c8 = c2 ⊕ c5 c9 = c3 ⊕ c6
=

1 0 1

1 1 0

0 1 1
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Coding and the BEC Product Codes

Product Codes: Decoding

Decoding may be performed by iteratively decoding the SPC on each
row and column.

e e 1

1 e 0

0 e e

Received
word

⇒
e e 1

1 1 0

0 e e

Row
decoding

⇒
1 e 1

1 1 0

0 e 1

Column
decoding

⇒
1 0 1

1 1 0

0 1 1

Row
decoding

Does not achieve capacity. Try decoding:

e e 1

e e 0

0 1 1
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Coding and the BEC Linear Codes

Linear Codes

c1 = u1 c2 = u2 c3 = c1 ⊕ c2
c4 = u3 c5 = u4 c6 = c4 ⊕ c5

c7 = c1 ⊕ c4 c8 = c2 ⊕ c5 c9 = c3 ⊕ c6

The example product code is characterized by the set of five
linearly-independent equations:

c3 = c1 ⊕ c2 ⇒ c1 ⊕ c2 ⊕ c3 = 0

c6 = c4 ⊕ c5 ⇒ c4 ⊕ c5 ⊕ c6 = 0

c7 = c1 ⊕ c4 ⇒ c1 ⊕ c4 ⊕ c7 = 0

c8 = c2 ⊕ c5 ⇒ c2 ⊕ c4 ⊕ c8 = 0

c9 = c3 ⊕ c6 ⇒ c3 ⊕ c6 ⊕ c9 = 0

In general, it takes (n− k) linearly-independent equations to specify a
linear code.
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Coding and the BEC Linear Codes

Parity-check Matrices

The system of equations may be expressed in matrix form as:

cHT = 0

where H is a parity-check matrix.

Example:

c1 ⊕ c2 ⊕ c3 = 0
c4 ⊕ c5 ⊕ c6 = 0
c1 ⊕ c4 ⊕ c7 = 0
c2 ⊕ c4 ⊕ c8 = 0
c3 ⊕ c6 ⊕ c9 = 0
System of equations

⇔ H =

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0
0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎦

Parity-check matrix
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Coding and the BEC Linear Codes

Tanner Graphs

The parity-check matrix may be represented by a Tanner graph.
Bipartite graph:

Check nodes: Represent the n− k parity-check equations.
Variable nodes: Represent the n code bits.

If Hi,j = 1, then itℎ check node is connected to jtℎ variable node.
Example: For the parity-check matrix:

H =

⎡⎢⎢⎢⎢⎣
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0
0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1

⎤⎥⎥⎥⎥⎦
The Tanner Graph is:
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Coding and the BEC Linear Codes

Decoding on the Tanner Graph

Decoding can be performed on the Tanner graph.

Load the variable nodes with the observed code bits.

Each check node j sends a message to each of its connected variable
nodes i.

The message is the modulo two sum of the bits associated with the
connected variable nodes other than i (if none are erased).
If a check node touches a single erasure, then it will become corrected.

Iterate until all erasures corrected or no more corrections possible.

e e 1 1 e 0 0 e e
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Coding and the BEC Linear Codes

Stopping sets

A stopping set V is a set of erased variable nodes that cannot be
corrected, regardless of the state of the other variable nodes.

e e 1 e e 0 0 1 1

Let G be the neighbors of V.
Every check node in G touches at least two variable nodes in V.
The minimimum stopping set Vmin is the stopping set containing the
fewest variable nodes.
Let dmin = ∣Vmin∣ be the size of the minimum stopping set.

There exists at least one pattern of dmin erasures that cannot be
corrected.
The erasure correcting capability of the code is dmin − 1, which is the
maximum number of erasures that can always be corrected.
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LDPC Codes

LDPC Codes

Observations:

The decoder’s complexity depends on the degree of the check nodes.
The degree of a check node is equal to the Hamming weight of the
corresponding row of the parity-check matrix.
To achieve capacity, a long code is needed.
It is desirable to have a code that is long, yet with small row weight.

Low-density parity-check codes:

An LDPC code is characterized by a sparse parity-check matrix.
The row/column weights are independent of length.
Decoder complexity grows only linear with block length.

Historical note:

LDPC codes were the subject of Robert Gallager’s 1960 dissertation.
Were forgotten because the decoder could not be implemented.
Were “rediscovered” in the mid-1990’s after turbo codes were
developed.
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LDPC Codes

Example LDPC Code

A code from MacKay and Neal (1996):

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The code is regular because:
The rows have constant weight (check-nodes constant degree).
The columns have constant weight (variable-nodes constant degree).

This is called a (3, 4) regular code because the variable nodes have
degree 3 and the check nodes have degree 4.
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Density Evolution

Density Evolution

For a (dv, dc) regular code, the probability that a variable-node
remains erased after the ℓtℎ iteration is

�ℓ = �0

(
1− (1− �ℓ−1)dc−1

)dv−1
(1)

where dv is the variable-node degree, dc is the check-node degree,
and the initial condition is �0 = �.

The above result assumes independent messages, which is achieved
when the girth of the Tanner graph is sufficiently large.

If �ℓ → 0 as ℓ→∞ for a particular channel erasure probability �, then
a code drawn from the ensemble of all such (dv, dc) regular LDPC
codes will be able to correctly decode.

The threshold �∗ is the maximum � for which �ℓ → 0 as ℓ→∞.

For the (3, 6) regular code, the threshold is �∗ = 0.4294
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Density Evolution

Proof of (1), Part I/II

Decoding involves the exchange of messages between variable nodes
and check nodes.

Let p↑ denote the probability of an erased message going up from the
variable nodes to the check nodes.
Let p↓ denote the probability of an erased message going down from
the check nodes to the variable nodes.

Consider the degree dc check node.

An outgoing message sent over a particular edge is a function of the
incoming messages arriving over the other dc − 1 edges.
For the outgoing message to be correct, all dc − 1 incoming messages
must be correct.
The outgoing message will be an erasure if any of the dc − 1 incoming
messages is an erasure.
The probability of the check node sending an erasure is:

p↓ = 1− (1− p↑)dc−1 (2)
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Density Evolution

Proof of (1), Part II/II

Consider the degree dv check node.

An outgoing message sent over a particular edge is a function of the
incoming messages arriving over the other dv − 1 edges.
An outgoing message will be an erasure if the variable node was
initially erased and all of the arriving messages are erasures.
The probability of the variable node sending an erasure is:

p↑ = �0p
dv−1
↓ (3)

Letting �ℓ equal the value of p↑ after the ℓtℎ iteration, and
substituting (2) into (3) yields the recursion given by (1):

�ℓ = �0

(
1− (1− �ℓ−1)dc−1

)dv−1
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Density Evolution

DE Example 15

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration number

E
ra

su
re

 P
ro

ba
bi

lit
y

Density Evolution result for (3,6) LDPC code over BEC

 

 

ε = 0.7
ε = 0.6
ε = 0.5
ε = 0.4
ε = 0.3

Fig. 5. Density Evolution result for regular (3,6) LDPC code over BEC

the edges in an irregular Tanner graph gives the average erasure probability of the message:

ql = 1−
∑

i

ρi(1− pl)i−1 (16)

pl = ε
∑

i

λi(ql−1)
(i−1) (17)

Substituting for ql−1:

pl = ε λ(1− ρ(1− pl−1)) (18)

recursion equation (18) is the DE for irregular LDPC codes.

D. Threshold

The object of density evolution is to determine which channel parameters (e.g. ε in BEC)

the message-passing decoder is likely to correct all of the error bits. We can find the maximum

ε for one LDPC ensemble over BEC by Equation (18) with the iteration l approximating ∞,

assuming that the graphs are cycle free.
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Density Evolution

Code Realization

Density evolution only describes the asymptotic performance of the
ensemble of LDPC codes.

Implementation requires that an H matrix be generated by drawing
from the ensemble of all (dv, dc) LDPC codes.
Goals of good H design:

High girth.
Full rank.
Large minimum stopping set.

If the girth is too low, the short cycles invalidate the iterative decoder.

High girth achieved through girth conditioning algorithms such as
progressive edge growth (PEG).

If H is not full rank, then the rate will be reduced according to the
number of dependent equations.

Small stopping sets give rise to an error floor.

A database of good regular LDPC codes can be found on MacKay’s
website.
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Density Evolution

Performance of an Actual Code 23
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Fig. 8. Simulation results for length 8000 regular (3,6) code

Through the results in Fig. 10, irregular code has better threshold while yields more complexity

decode complexity. Generally speaking, regular code has smaller threshold but also smaller gap

between the simulation results and theoretical result. Other algorithms or longer code length

may result in better result for irregular LDPC code.

IX. CONCLUSION

In this report we introduced one kind of error correcting code: LDPC code, and some of

the encoding and decoding algorithms. My work is mainly about finding the optimum degree

distribution code ensembles using the judgement of Density Evolution, then tried to generate the

actual code and test its performance over BEC. The PEG algorithm is a well-known algorithm

which can maximize the girth of the parity-check matrix, but through the simulation result, it

is not the best one. First, the algorithm involves lots of searching computation to find suitable

position of 1’s, so it takes long time to run the program; Second, the PEG algorithm cannot

guarantee the parity check matrix is full rank, so the actual code rate may be smaller than the

designed code rate; PEG only average 1’s in different rows so that it cannot handle other cases
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Irregular LDPC Codes

Irregular LDPC Codes

Although regular LDPC codes perform well, they are not capable of
achieving capacity.

Properly designed irregular LDPC codes are capable of achieving
capacity.

The degree distribution of the variable nodes is not constant.
The check-node degrees are often still constant (or close to it).
Here “designing” means picking the proper degree distribution.
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Irregular LDPC Codes

Degree Distribution

Edge-perspective degree distributions:

�i is the fraction of edges touching degree i check nodes.
�i is the fraction of edges touching degree i variable nodes.

For example, consider the Tanner graph:

15 edges.
All are connected to degree-3 check nodes, so �3 = 15/15 = 1.
Four are connected to degree-1 variable nodes, so �1 = 4/15.
Eight are connected to degree-2 variable nodes, so �2 = 8/15.
Three are connected to the degree-3 variable node, so �3 = 3/15.
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Irregular LDPC Codes

DE for Irregular LDPC

The degree distributions are described in polynomial form:
�(x) =

∑
i �ix

i−1 for check nodes.
�(x) =

∑
i �ix

i−1 for variable nodes.

For an irregular code, the probability that a variable-node remains
erased after the ℓtℎ iteration is

�ℓ = �0� (1− � (1− �ℓ−1))

The proof follows from the Theorem on Total Probability.

Convergence:
Error-free decoding requires that the erasure probability goes down
from one iteration to the next.
Define the related function:

f(�, x) = �� (1− � (1− x))

Error-free decoding is possible iff f(�, x) ≤ x for all 0 ≤ x ≤ �.
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Irregular LDPC Codes
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Fig. 6. Recursive of erasure probability in different channel parameter ε

For a regular LDPC code ensemble (dv, dc), the minimum of equation (24) can be solved by

considering the derivative of ε(x). Omitting the algebra process, the threshold is:

ε∗ =
1− s

(1− sdc−1)dv−1 (26)

s is the positive real root of following equation:

[(dv − 1)(dc − 1)− 1]ydc−2 −
dc−3∑

i=0

yi = 0 (27)

The threshold of the (3,6) regular ensemble over BEC is ε∗ = 0.4294, which can be approxi-

mately seen from Figure 5, 6. This code has the rate R = 0.5. The capacity limit for the BEC

is 1− r, which is 0.5 in this case.

The general methodology of density evolution is outlined here again as follows:

Step 1: The channel is specified by a single parameter σ, and the decoding algorithm is

specified.

Step 2: Assume the corresponding code graph is cycle-free; that is, every neighborhood can

be represented by a tree graph, in which case we can assume that the messages are independent
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Irregular LDPC Codes

Optimization

The threshold is

�∗ = sup{� : f(�, x) < x,∀x, 0 < x ≤ �}

Solving f(�, x) = x for �

x = f(�, x)

= �� (1− � (1− x))
� =

x

� (1− � (1− x))

which is a function of x, and henceforth expressed as �(x).

This allows the threshold to be rewritten as:

�∗ = min{�(x) : �(x) ≥ x}
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Irregular LDPC Codes

Optimization with Linear Programming

Our goal is to find the degree distribution which yields maximum
threshold

max"∗ {"∗ = min("(x) : "(x) ≥ x)};

Several Constraints
∫ 1
0 �(x)dx∫ 1
0 �(x)dx

= 1−R
∑

i≥2
�i = 1;

∑

i≥2
�i = 1;

x ∈ [0, 1]

Which can be modeled as a optimization problem using linear
programming

Can use Matlab’s Optimization Toolbox.
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Irregular LDPC Codes

Optimization Results (�∗ = 0.49596) 22
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Fig. 7. Density Evolution for LDPC codes with code rate 1/2

the independence among each bits, which will achieve a closer value to the theoretically case.

Figure 9 is the decode results for length 2048 irregular LDPC code generated by PEG

algorithms. The maximum column weight or the maximum variable node degree is 15, check

nodes have degrees of 8 or 7. The specific degree distribution is:

λ(x) = 0.218x14 + 0.0312x13 + 0.0871x6 + 0.1587x5 + 0.24x2 + 0.2648x,

ρ(x) = 0.4453x7 + 0.5547x6

The threshold for the code ensemble is 0.47786, and the generated 2048 PEG code in 9 has the

threshold near 0.45. The distance may be decrease with the increasing of code length or using

other methods to generate the parity-check matrix.

The decode results of both regular and irregular LDPC code with the same length are compared

in Fig. 10, the irregular code has the following degree distribution with the theoretical threshold

0.4694:

λ(x) = 0.3793x14 + 0.0156x6 + 0.1215x4 + 0.0347x3 + 0.2104x2 + 0.2385x,

ρ(x) = x7
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Conclusion

Conclusions:

Irregular LDPC codes can achieve the capacity of the BEC channel.
Density evolution predicts asymptotic performance.
Key to design is picking the degree distributions.

Related Issues:

Predicting performance of finite-length codes (and designing them).
Dealing with unknown � (rateless coding).
Dealing with other channels (AWGN, etc.).

A plug:

EE 567: Coding Theory.
T/H 5:00-6:15 PM on Evansdale Campus.
Will cover linear codes in general and LDPC codes in particular.
All you need is graduate-level mathematical maturity and a sense of
inquisitiveness.
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Thank You.
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