LDPC Codes:

Achieving the Capacity of the Binary Erasure Channel

Matthew C. Valenti

Lane Department of Computer Science and Electrical Engineering
West Virginia University
U.S.A.

Nov. 30, 2009

Outline

- Coding and the BEC
- 2 LDPC Codes
- Oensity Evolution
- 4 Irregular LDPC Codes
- **5** Conclusion

Outline

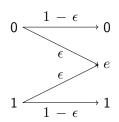
- Coding and the BEC
- 2 LDPC Codes
- 3 Density Evolution
- 4 Irregular LDPC Codes
- Conclusion

- Consider a data transmission system whereby binary data is segmented into *messages* \mathbf{u} of length k bits.
- Each message is mapped to a unique codeword c of length n bits, where n > k.
- The ratio R = k/n is called the *code rate*.
- Simple examples:
 - Repetition code: k=1; Repeat bit n times; R=1/n.
 - Single parity-check code: Codeword is the message and an additional "parity bit"; n = k + 1; R = k/(k + 1).

M.C. Valenti LDPC Codes Nov. 30, 2009

The Binary Erasure Channel

- The BEC has two inputs (data 0 and data 1) and three outputs (data 0, data 1, and erasure e).
- A bit is erased with probability ϵ .
- A bit is correctly received with probability 1ϵ .



- Example applications:
 - Buffer overflows in network routers.
 - Fading in wireless channels.

LDPC Codes Nov. 30, 2009

Capacity of the BEC

- According to information theory, it is possible to reliably communicate over the BEC by using a rate $R=1-\epsilon$ code.
- Can be easily achieved if the transmitter knows the location of the erasures.
- Example: Transmit $\mathbf{u} = \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}$ with a rate R = 4/6 code:

$$\mathbf{c} = \left[\underbrace{1}_{c_1=u_1}\underbrace{e}_{c_2=X}\underbrace{0}_{c_3=u_2}\underbrace{e}_{c_4=X}\underbrace{c_5=u_3}_{c_5=u_4}\underbrace{1}_{c_6=u_4}\right]$$

where X can be anything (does not matter, since erased).

- This scheme is not practical, since normally the transmitter won't know where the erasures are located, and therefore doesn't know where to place the message bits.
- Finding practical codes which require only the *receiver* to know the location of the erasures is a challenging problem.

Single Parity-Check Codes

• Consider the following rate R=5/6 parity-check code:

$$\mathbf{c} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ & \mathbf{u} & & & \end{bmatrix}$$
 parity bit

• One erasure in *any* position may be corrected:

$$\mathbf{c} = \begin{bmatrix} 1 & 0 & e & 0 & 1 & 1 \end{bmatrix}$$

• Problem with using SPC's is that it can only correct a single erasure.

Product Codes: Encoding

- Place data into a k by k rectangular array.
 - Encode each row with a SPC.
 - Encode each column with a SPC.
 - Result is a rate $R = k^2/(k+1)^2$ code.
- Example k=2.

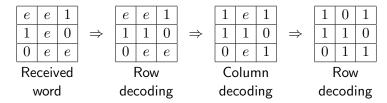
$c_1 = u_1$	$c_2 = u_2$	$c_3 = c_1 \oplus c_2$	
$c_4 = u_3$	$c_5 = u_4$	$c_6 = c_4 \oplus c_5$	= [
$c_7 = c_1 \oplus c_4$	$c_8 = c_2 \oplus c_5$	$c_9 = c_3 \oplus c_6$	

1	0	1
1	1	0
0	1	1

M.C. Valenti LDPC Codes Nov. 30, 2009

Product Codes: Decoding

 Decoding may be performed by iteratively decoding the SPC on each row and column.



• Does not achieve capacity. Try decoding:

e	e	1
e	e	0
0	1	1

Linear Codes

$c_1 = u_1$	$c_2 = u_2$	$c_3 = c_1 \oplus c_2$
$c_4 = u_3$	$c_5 = u_4$	$c_6 = c_4 \oplus c_5$
$c_7 = c_1 \oplus c_4$	$c_8 = c_2 \oplus c_5$	$c_9 = c_3 \oplus c_6$

 The example product code is characterized by the set of five linearly-independent equations:

$$c_{3} = c_{1} \oplus c_{2} \quad \Rightarrow \quad c_{1} \oplus c_{2} \oplus c_{3} = 0$$

$$c_{6} = c_{4} \oplus c_{5} \quad \Rightarrow \quad c_{4} \oplus c_{5} \oplus c_{6} = 0$$

$$c_{7} = c_{1} \oplus c_{4} \quad \Rightarrow \quad c_{1} \oplus c_{4} \oplus c_{7} = 0$$

$$c_{8} = c_{2} \oplus c_{5} \quad \Rightarrow \quad c_{2} \oplus c_{4} \oplus c_{8} = 0$$

$$c_{9} = c_{3} \oplus c_{6} \quad \Rightarrow \quad c_{3} \oplus c_{6} \oplus c_{9} = 0$$

• In general, it takes (n-k) linearly-independent equations to specify a linear code.

Parity-check Matrices

• The system of equations may be expressed in matrix form as:

$$\mathbf{c}H^T = \mathbf{0}$$

where H is a parity-check matrix.

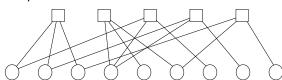
• Example:

Tanner Graphs

- The parity-check matrix may be represented by a *Tanner* graph.
- Bipartite graph:
 - Check nodes: Represent the n-k parity-check equations.
 - Variable nodes: Represent the *n* code bits.
- If $H_{i,j} = 1$, then i^{th} check node is connected to j^{th} variable node.
- Example: For the parity-check matrix:

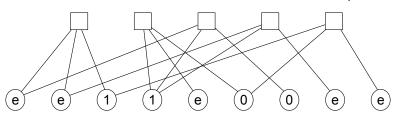
$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

The Tanner Graph is:



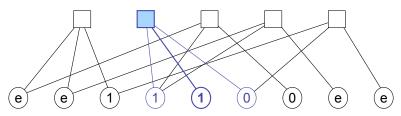
Decoding can be performed on the Tanner graph.

- Load the variable nodes with the observed code bits.
- Each check node j sends a message to each of its connected variable nodes i.
 - The message is the modulo two sum of the bits associated with the connected variable nodes *other* than i (if none are erased).
 - If a check node touches a *single* erasure, then it will become corrected.
- Iterate until all erasures corrected or no more corrections possible.



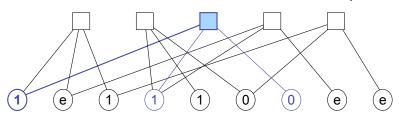
Decoding can be performed on the Tanner graph.

- Load the variable nodes with the observed code bits.
- Each check node j sends a message to each of its connected variable nodes i.
 - The message is the modulo two sum of the bits associated with the connected variable nodes *other* than i (if none are erased).
 - If a check node touches a *single* erasure, then it will become corrected.
- Iterate until all erasures corrected or no more corrections possible.



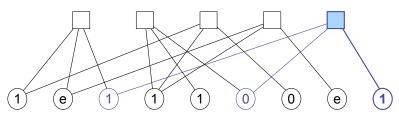
Decoding can be performed on the Tanner graph.

- Load the variable nodes with the observed code bits.
- Each check node j sends a message to each of its connected variable nodes i.
 - The message is the modulo two sum of the bits associated with the connected variable nodes *other* than i (if none are erased).
 - If a check node touches a *single* erasure, then it will become corrected.
- Iterate until all erasures corrected or no more corrections possible.



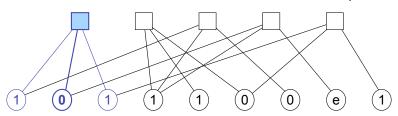
Decoding can be performed on the Tanner graph.

- Load the variable nodes with the observed code bits.
- Each check node j sends a message to each of its connected variable nodes i.
 - The message is the modulo two sum of the bits associated with the connected variable nodes *other* than i (if none are erased).
 - If a check node touches a *single* erasure, then it will become corrected.
- Iterate until all erasures corrected or no more corrections possible.



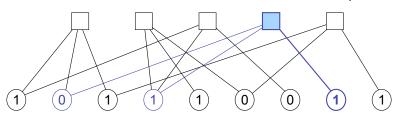
Decoding can be performed on the Tanner graph.

- Load the variable nodes with the observed code bits.
- Each check node j sends a message to each of its connected variable nodes i.
 - The message is the modulo two sum of the bits associated with the connected variable nodes *other* than i (if none are erased).
 - If a check node touches a *single* erasure, then it will become corrected.
- Iterate until all erasures corrected or no more corrections possible.



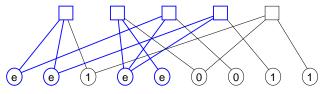
Decoding can be performed on the Tanner graph.

- Load the variable nodes with the observed code bits.
- Each check node j sends a message to each of its connected variable nodes i.
 - The message is the modulo two sum of the bits associated with the connected variable nodes *other* than i (if none are erased).
 - If a check node touches a *single* erasure, then it will become corrected.
- Iterate until all erasures corrected or no more corrections possible.



Stopping sets

• A stopping set \mathcal{V} is a set of erased variable nodes that cannot be corrected, regardless of the state of the other variable nodes.



- Let \mathcal{G} be the neighbors of \mathcal{V} .
- Every check node in \mathcal{G} touches at least two variable nodes in \mathcal{V} .
- ullet The minimimum stopping set \mathcal{V}_{min} is the stopping set containing the fewest variable nodes
- Let $d_{min} = |\mathcal{V}_{min}|$ be the size of the minimum stopping set.
 - There exists at least one pattern of d_{min} erasures that cannot be corrected
 - The erasure correcting capability of the code is $d_{min} 1$, which is the maximum number of erasures that can always be corrected.

Outline

- Coding and the BEC
- 2 LDPC Codes
- 3 Density Evolution
- 4 Irregular LDPC Codes
- Conclusion

LDPC Codes

Observations:

- The decoder's complexity depends on the degree of the check nodes.
- The degree of a check node is equal to the Hamming weight of the corresponding row of the parity-check matrix.
- To achieve capacity, a long code is needed.
- It is desirable to have a code that is long, yet with small row weight.
- Low-density parity-check codes:
 - An LDPC code is characterized by a sparse parity-check matrix.
 - The row/column weights are independent of length.
 - Decoder complexity grows only linear with block length.
- Historical note:
 - LDPC codes were the subject of Robert Gallager's 1960 dissertation.
 - Were forgotten because the decoder could not be implemented.
 - Were "rediscovered" in the mid-1990's after turbo codes were developed.

Example LDPC Code

A code from MacKay and Neal (1996):

- The code is regular because:
 - The rows have constant weight (check-nodes constant degree).
 - The columns have constant weight (variable-nodes constant degree).
- ullet This is called a (3,4) regular code because the variable nodes have degree 3 and the check nodes have degree 4.

Outline

- Coding and the BEC
- 2 LDPC Codes
- Oensity Evolution
- 4 Irregular LDPC Codes
- Conclusion

Density Evolution

• For a (d_v,d_c) regular code, the probability that a variable-node remains erased after the ℓ^{th} iteration is

$$\epsilon_{\ell} = \epsilon_0 \left(1 - (1 - \epsilon_{\ell-1})^{d_c - 1} \right)^{d_v - 1} \tag{1}$$

where d_v is the variable-node degree, d_c is the check-node degree, and the initial condition is $\epsilon_0 = \epsilon$.

- The above result assumes independent messages, which is achieved when the girth of the Tanner graph is sufficiently large.
- If $\epsilon_\ell \to 0$ as $\ell \to \infty$ for a particular channel erasure probability ϵ , then a code drawn from the ensemble of all such (d_v, d_c) regular LDPC codes will be able to correctly decode.
- The threshold ϵ^* is the maximum ϵ for which $\epsilon_\ell \to 0$ as $\ell \to \infty$.
- For the (3,6) regular code, the threshold is $\epsilon^* = 0.4294$

Proof of (1), Part I/II

- Decoding involves the exchange of messages between variable nodes and check nodes.
 - Let p_↑ denote the probability of an erased message going up from the variable nodes to the check nodes.
 - Let p_{\downarrow} denote the probability of an erased message going *down* from the check nodes to the variable nodes.
- Consider the degree d_c check node.
 - An outgoing message sent over a particular edge is a function of the incoming messages arriving over the other d_c-1 edges.
 - \bullet For the outgoing message to be correct, all d_c-1 incoming messages must be correct.
 - \bullet The outgoing message will be an erasure if any of the d_c-1 incoming messages is an erasure.
 - The probability of the check node sending an erasure is:

$$p_{\downarrow} = 1 - (1 - p_{\uparrow})^{d_c - 1} \tag{2}$$

Proof of (1), Part II/II

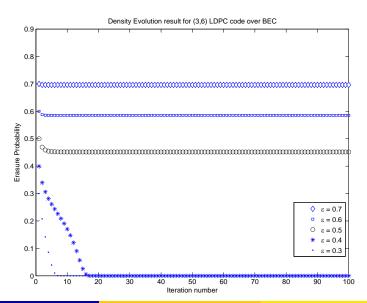
- Consider the degree d_v check node.
 - An outgoing message sent over a particular edge is a function of the incoming messages arriving over the other d_v-1 edges.
 - An outgoing message will be an erasure if the variable node was initially erased and all of the arriving messages are erasures.
 - The probability of the variable node sending an erasure is:

$$p_{\uparrow} = \epsilon_0 p_{\downarrow}^{d_v - 1} \tag{3}$$

• Letting ϵ_{ℓ} equal the value of p_{\uparrow} after the ℓ^{th} iteration, and substituting (2) into (3) yields the recursion given by (1):

$$\epsilon_{\ell} = \epsilon_0 \left(1 - (1 - \epsilon_{\ell-1})^{d_c - 1} \right)^{d_v - 1}$$

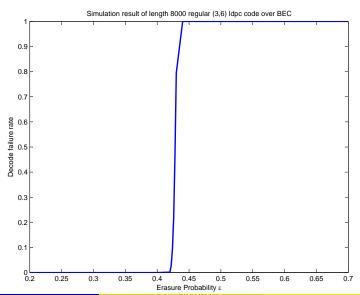
DE Example



Code Realization

- Density evolution only describes the asymptotic performance of the ensemble of LDPC codes.
- Implementation requires that an H matrix be generated by drawing from the ensemble of all (d_v, d_c) LDPC codes.
- ullet Goals of good H design:
 - High girth.
 - Full rank.
 - Large minimum stopping set.
- If the girth is too low, the short cycles invalidate the iterative decoder.
- High girth achieved through girth conditioning algorithms such as progressive edge growth (PEG).
- If H is not full rank, then the rate will be reduced according to the number of dependent equations.
- Small stopping sets give rise to an error floor.
- A database of good regular LDPC codes can be found on MacKay's website.

Performance of an Actual Code



Outline

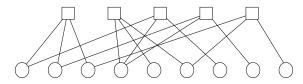
- Coding and the BEC
- 2 LDPC Codes
- 3 Density Evolution
- 4 Irregular LDPC Codes
- Conclusion

Irregular LDPC Codes

- Although regular LDPC codes perform well, they are not capable of achieving capacity.
- Properly designed irregular LDPC codes are capable of achieving capacity.
 - The degree distribution of the variable nodes is not constant.
 - The check-node degrees are often still constant (or close to it).
 - Here "designing" means picking the proper degree distribution.

Degree Distribution

- Edge-perspective degree distributions:
 - ρ_i is the fraction of *edges* touching degree i check nodes.
 - λ_i is the fraction of *edges* touching degree i variable nodes.
- For example, consider the Tanner graph:



- 15 edges.
- All are connected to degree-3 check nodes, so $\rho_3 = 15/15 = 1$.
- Four are connected to degree-1 variable nodes, so $\lambda_1 = 4/15$.
- Eight are connected to degree-2 variable nodes, so $\lambda_2 = 8/15$.
- Three are connected to the degree-3 variable node, so $\lambda_3 = 3/15$.

DE for Irregular LDPC

- The degree distributions are described in polynomial form:
 - $\rho(x) = \sum_{i} \rho_{i} x^{i-1}$ for check nodes.
 - $\lambda(x) = \sum_{i=1}^{n} \lambda_i x^{i-1}$ for variable nodes.
- ullet For an irregular code, the probability that a variable-node remains erased after the ℓ^{th} iteration is

$$\epsilon_{\ell} = \epsilon_0 \lambda \left(1 - \rho \left(1 - \epsilon_{\ell-1} \right) \right)$$

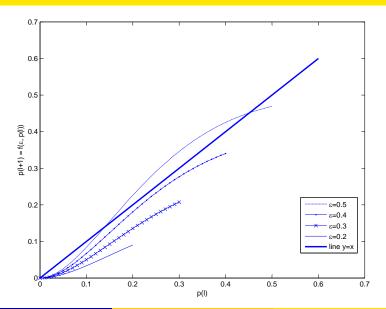
The proof follows from the Theorem on Total Probability.

- Convergence:
 - Error-free decoding requires that the erasure probability goes down from one iteration to the next.
 - Define the related function:

$$f(\epsilon, x) = \epsilon \lambda (1 - \rho (1 - x))$$

• Error-free decoding is possible iff $f(\epsilon, x) \leq x$ for all $0 \leq x \leq \epsilon$.

Convergence



Optimization

The threshold is

$$\epsilon^* = \sup\{\epsilon : f(\epsilon, x) < x, \forall x, 0 < x \le \epsilon\}$$

• Solving $f(\epsilon, x) = x$ for ϵ

$$x = f(\epsilon, x)$$

$$= \epsilon \lambda (1 - \rho (1 - x))$$

$$\epsilon = \frac{x}{\lambda (1 - \rho (1 - x))}$$

which is a function of x, and henceforth expressed as $\epsilon(x)$.

• This allows the threshold to be rewritten as:

$$\epsilon^* = \min\{\epsilon(x) : \epsilon(x) \ge x\}$$

Optimization with Linear Programming

 Our goal is to find the degree distribution which yields maximum threshold

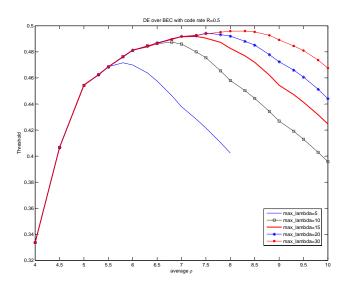
$$\max_{\varepsilon^*} \{ \varepsilon^* = \min(\varepsilon(x) : \varepsilon(x) \ge x) \};$$

Several Constraints

$$\begin{split} \frac{\int_0^1 \rho(x) dx}{\int_0^1 \lambda(x) dx} &= 1 - R \\ \sum_{i \geq 2} \lambda_i &= 1; \sum_{i \geq 2} \rho_i &= 1; \\ x \in [0, 1] \end{split}$$

- Which can be modeled as a optimization problem using linear programming
 - Can use Matlab's Optimization Toolbox.

Optimization Results ($\epsilon^* = 0.49596$)



Outline

- Coding and the BEC
- 2 LDPC Codes
- 3 Density Evolution
- 4 Irregular LDPC Codes
- **5** Conclusion

Conclusion

- Conclusions:
 - Irregular LDPC codes can achieve the capacity of the BEC channel.
 - Density evolution predicts asymptotic performance.
 - Key to design is picking the degree distributions.
- Related Issues:
 - Predicting performance of finite-length codes (and designing them).
 - Dealing with unknown ϵ (rateless coding).
 - Dealing with other channels (AWGN, etc.).
- A plug:
 - EE 567: Coding Theory.
 - T/H 5:00-6:15 PM on Evansdale Campus.
 - Will cover linear codes in general and LDPC codes in particular.
 - All you need is graduate-level mathematical maturity and a sense of inquisitiveness.

Thank You.