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Stz
Error Control Codes

@ Consider a data transmission system whereby binary data is
segmented into messages u of length k bits.
@ Each message is mapped to a unique codeword c of length n bits,
where n > k.
@ The ratio R = k/n is called the code rate.
@ Simple examples:
o Repetition code: k = 1; Repeat bit n times; R = 1/n.

e Single parity-check code: Codeword is the message and an additional
“parity bit"; n =k+1; R=k/(k+1).
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Tie BEE
The Binary Erasure Channel

e The BEC has two inputs (data 0 and data 1) and three outputs (data

0, data 1, and erasure ¢).
@ A bit is erased with probability e.
@ A bit is correctly received with probability 1 — e.

1 —c¢
0 0
€
e
€
1 1
1 — ¢

@ Example applications:
o Buffer overflows in network routers.
e Fading in wireless channels.
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Tie BEE
Capacity of the BEC

@ According to information theory, it is possible to reliably communicate
over the BEC by using a rate R =1 — € code.

@ Can be easily achieved if the transmitter knows the location of the
erasures.

e Example: Transmitu=[1 0 1 1] with arate R =4/6 code:

c = [ 1 e 0 e 1 1 ]
e N N N N N~

c1=u1 cag=X €3=U2 c4=X C5=U3 C6=U4
where X can be anything (does not matter, since erased).

@ This scheme is not practical, since normally the transmitter won't
know where the erasures are located, and therefore doesn't know
where to place the message bits.

o Finding practical codes which require only the receiver to know the
location of the erasures is a challenging problem.
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Coding and the BEC SPC Codes

Single Parity-Check Codes

o Consider the following rate R = 5/6 parity-check code:

c =[10101 1]
—— N~
u parity bit

@ One erasure in any position may be corrected:

c = [10e0 1 1]

@ Problem with using SPC's is that it can only correct a single erasure.
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Coding and the BEC Product Codes

Product Codes: Encoding

@ Place data into a k by k rectangular array.

o Encode each row with a SPC.
e Encode each column with a SPC.
o Result is a rate R = k%/(k + 1)? code.

@ Example k£ = 2.

c1 = Uy Co = U c3 =c1 Do 1101
C4 = U3 C5 = Uq cg = C4 D cy = 111
cr=c1®Pcyg|cg=caDcy | cg=1c3Dcg 0Oj1|1
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Coding and the BEC Product Codes

Product Codes: Decoding

@ Decoding may be performed by iteratively decoding the SPC on each
row and column.

ele|l ele|l lle]|l 1101
1je|0] = |1 = |1]1]0| = |1|1]0
Olele Ojele Ojel|l 0111
Received Row Column Row
word decoding decoding decoding

@ Does not achieve capacity. Try decoding:

ele|l
ele
0111
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Coding and the BEC Linear Codes

Linear Codes

c1 = U Co = U2

c3=cC1Bc

Cq4 = U3 C5 = Ugq

e = 4D cCy

cr=c1Dcyg|cg=cobes | cg=c3Dcs

@ The example product code is charac
linearly-independent equations:

cg3=c1Dcy =
g =C4Dcs =
cr=c1Pcy =
cg =codces =

cg=c3Dcg =

terized by the set of five

c1Pcobe3=0
c1®cs Beg=0

c1PcyPecy=0
co@cyDeg=0
c3®cgDeg=0

@ In general, it takes (n — k) linearly-independent equations to specify a

linear code.
LDPC Codes
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Coding and the BEC Linear Codes

Parity-check Matrices

@ The system of equations may be expressed in matrix form as:

cHT =

where H is a parity-check matrix.

o Example:

c1DcaDes

c4DesDeg =
c1dcyPer =
coDcygDeg =
c3DcgDeyg =
System of equations

coocoo
T
=
Il

M.C. Valenti

LDPC Codes

OO = O =

0

SO = O O =

o O O =

1

_= == O

0

o O = O

0

_ o o = O

o= OO
o= O O O

0
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Coding and the BEC

Tanner Graphs

Linear Codes

O oo~ O

—_ o O = O

OO OO

o= O OO

The parity-check matrix may be represented by a Tanner graph.

If H; ; =1, then i" check node is connected to jth variable node.

— o O o O

°
@ Bipartite graph:
o Check nodes: Represent the n — k parity-check equations.
e Variable nodes: Represent the n code bits.
°
@ Example: For the parity-check matrix:
1 1 1 0
0 0 0 1
H = 1 0 0 1
01 0 1
0 0 1 0
The Tanner Graph is:
LDPC Codes
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Coding and the BEC Linear Codes

Decoding on the Tanner Graph

Decoding can be performed on the Tanner graph.

@ Load the variable nodes with the observed code bits.

@ Each check node j sends a message to each of its connected variable
nodes 7.
e The message is the modulo two sum of the bits associated with the
connected variable nodes other than i (if none are erased).
e If a check node touches a single erasure, then it will become corrected.

@ lterate until all erasures corrected or no more corrections possible.
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Coding and the BEC Linear Codes
Stopping sets

o A stopping set V is a set of erased variable nodes that cannot be
corrected, regardless of the state of the other variable nodes.

Let G be the neighbors of V.
Every check node in G touches at least two variable nodes in V.
The minimimum stopping set Vy,;, is the stopping set containing the
fewest variable nodes.
Let diin = |Vimin| be the size of the minimum stopping set.
o There exists at least one pattern of d,,;, erasures that cannot be
corrected.
e The erasure correcting capability of the code is d,,;, — 1, which is the
maximum number of erasures that can always be corrected.
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LDPC Codes

@ Observations:

e The decoder’s complexity depends on the degree of the check nodes.

e The degree of a check node is equal to the Hamming weight of the
corresponding row of the parity-check matrix.

e To achieve capacity, a long code is needed.

o It is desirable to have a code that is long, yet with small row weight.

@ Low-density parity-check codes:

e An LDPC code is characterized by a sparse parity-check matrix.
e The row/column weights are independent of length.
o Decoder complexity grows only linear with block length.

@ Historical note:

o LDPC codes were the subject of Robert Gallager's 1960 dissertation.

o Were forgotten because the decoder could not be implemented.

o Were “rediscovered” in the mid-1990's after turbo codes were
developed.
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Example LDPC Code

@ A code from MacKay and Neal (1996):

r 1 1 1 1 T
1 11 1
1 1 1 1
1 1 11
H = 1 11 1
1 1 1 1
1 1 1 1
1 1 1 1
I 11 1 1

@ The code is regular because:
o The rows have constant weight (check-nodes constant degree).
e The columns have constant weight (variable-nodes constant degree).
e This is called a (3,4) regular code because the variable nodes have
degree 3 and the check nodes have degree 4.
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Density Evolution

e For a (dy,d.) regular code, the probability that a variable-node
remains erased after the ¢*" iteration is

€ = € (1 - (1- Eefl)dc_l)dv_l (1)

where d,, is the variable-node degree, d. is the check-node degree,
and the initial condition is €5 = €.

@ The above result assumes independent messages, which is achieved
when the girth of the Tanner graph is sufficiently large.

o If ¢, — 0 as £ — oo for a particular channel erasure probability €, then
a code drawn from the ensemble of all such (d,,d.) regular LDPC
codes will be able to correctly decode.

@ The threshold €* is the maximum e for which ¢, — 0 as £ — oc.
@ For the (3,6) regular code, the threshold is €* = 0.4294
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Proof of (1), Part I/II

@ Decoding involves the exchange of messages between variable nodes
and check nodes.
o Let py denote the probability of an erased message going up from the
variable nodes to the check nodes.
o Let p; denote the probability of an erased message going down from
the check nodes to the variable nodes.
@ Consider the degree d. check node.
e An outgoing message sent over a particular edge is a function of the
incoming messages arriving over the other d. — 1 edges.
e For the outgoing message to be correct, all d. — 1 incoming messages
must be correct.
e The outgoing message will be an erasure if any of the d. — 1 incoming
messages is an erasure.
e The probability of the check node sending an erasure is:

ppo= 1=(1—py)* (2)
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Proof of (1), Part II/II

@ Consider the degree d, check node.

e An outgoing message sent over a particular edge is a function of the
incoming messages arriving over the other d,, — 1 edges.

e An outgoing message will be an erasure if the variable node was
initially erased and all of the arriving messages are erasures.

e The probability of the variable node sending an erasure is:

pT = Eopi“ -1 (3)

@ Letting ¢, equal the value of p; after the ¢t iteration, and
substituting (2) into (3) yields the recursion given by (1):

dy—1
€ = €0 (1 - (1 - Eg_l)d‘:il)
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Density Evolution

DE Example

Density Evolutiol
T

n result for (3,6) LDPC code over BEC
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Code Realization

@ Density evolution only describes the asymptotic performance of the
ensemble of LDPC codes.
@ Implementation requires that an H matrix be generated by drawing
from the ensemble of all (d,,d.) LDPC codes.
@ Goals of good H design:
o High girth.
o Full rank.
e Large minimum stopping set.

@ If the girth is too low, the short cycles invalidate the iterative decoder.

o High girth achieved through girth conditioning algorithms such as
progressive edge growth (PEG).

o If H is not full rank, then the rate will be reduced according to the
number of dependent equations.

@ Small stopping sets give rise to an error floor.

@ A database of good regular LDPC codes can be found on MacKay's
website.
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Performance of an Actual Code

Simulation result of length 8000 regular (3,6) Idpc code over BEC
1 T T T T T T T

0.8 q
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0.5 q

Decode failure rate
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0.1 B
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Erasure Probability &
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Irregular LDPC Codes

@ Although regular LDPC codes perform well, they are not capable of
achieving capacity.
@ Properly designed irregular LDPC codes are capable of achieving
capacity.
e The degree distribution of the variable nodes is not constant.
o The check-node degrees are often still constant (or close to it).
o Here “designing” means picking the proper degree distribution.
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Degree Distribution

o Edge-perspective degree distributions:

e p; is the fraction of edges touching degree ¢ check nodes.
e J; is the fraction of edges touching degree i variable nodes.

@ For example, consider the Tanner graph:

15 edges.

All are connected to degree-3 check nodes, so p3 = 15/15 = 1.
Four are connected to degree-1 variable nodes, so A\; = 4/15.
Eight are connected to degree-2 variable nodes, so A2 = 8/15.
Three are connected to the degree-3 variable node, so A3 = 3/15.
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Irregular LDPC Codes

DE for Irregular LDPC

@ The degree distributions are described in polynomial form:

o p(x) =Y, piz"~! for check nodes.
o A(z) =", \iz'~! for variable nodes.
@ For an irregular code, the probability that a variable-node remains

erased after the ¢ iteration is
= Al —p(l—€-1))

€ =
The proof follows from the Theorem on Total Probability.

o Convergence:
e Error-free decoding requires that the erasure probability goes down

from one iteration to the next.
o Define the related function:

flex) = ex(1-p(l-a)

o Error-free decoding is possible iff f(e,z) <z forall 0 <z <e.
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gular LDPC Codes

Convergence
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Optimization

@ The threshold is

*

€ = sup{e: fe,z) < z,Vr,0 < x < €}

e Solving f(e,x) = x for €

r = f(ex)
— A(l-p(l-2)
C T X1—p(i-2)

which is a function of z, and henceforth expressed as €(z).
@ This allows the threshold to be rewritten as:

*

¢ = min{e(x) : e(z) >z}
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Irregular LDPC Codes

Optimization with Linear Programming

@ Our goal is to find the degree distribution which yields maximum
threshold

max+ {¢* = min(e(x) : e(x) > x)};

@ Several Constraints

fol p(z)dx —1_-R

fol Az)dx
DAN=L> p = 1
i>2 i>2
xz € [0,1]

@ Which can be modeled as a optimization problem using linear

programming
e Can use Matlab’s Optimization Toolbox.
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Optimization Results (¢ = 0.49596)

DE over BEC with code rate R=0.5
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Conclusion

@ Conclusions:

o Irregular LDPC codes can achieve the capacity of the BEC channel.
e Density evolution predicts asymptotic performance.
o Key to design is picking the degree distributions.

o Related lIssues:
o Predicting performance of finite-length codes (and designing them).

o Dealing with unknown e (rateless coding).
o Dealing with other channels (AWGN, etc.).
o A plug:
EE 567: Coding Theory.
T/H 5:00-6:15 PM on Evansdale Campus.
Will cover linear codes in general and LDPC codes in particular.
All you need is graduate-level mathematical maturity and a sense of
inquisitiveness.
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Conclusion

Thank You.
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