Coherent and Multi-symbol Noncoherent CPFSK: Capacity and Code Design

Shi Cheng¹ Matthew C. Valenti¹ Don Torrieri²

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

²US Army Research Lab

October 31, 2007

Outline

Coherent CPFSK

- System Model and Trellis Decoding
- Capacity of Coherent CPFSK
- Capacity Approaching Code Design

2 Multi-symbol Noncoherent CPFSK

- Capacity of Multi-symbol Noncoherent CPFSK
- Code Design

Discrete Time Model

$$\mathbf{y} = e^{j\phi}\sqrt{\mathcal{E}_s}\mathbf{x} + \mathbf{n}$$

- y is the output from M complex filters matched to the tones,
- \boldsymbol{x} is chosen from columns of $\boldsymbol{\mathsf{K}}=[\boldsymbol{\mathsf{k}}_0,\boldsymbol{\mathsf{k}}_1,\cdots,\boldsymbol{\mathsf{k}}_{M-1}]$
- **n** is colored noise, with $E(\mathbf{nn}^H) = N_0 \mathbf{K}$.
- Decoding metric

$$\log p(\mathbf{y}|\mathbf{x} = \mathbf{k}_{\nu}, \phi) = 2 \frac{\sqrt{\mathcal{E}_s}}{N_0} \operatorname{Re}(e^{-j\phi} y_{\nu}) + \operatorname{Constant.}$$

CPFSK Trellis

- $h = \frac{P}{Q}$, which means the trellis has Q states
- Suppose the initial phase is 0,

$$\phi_i \in \Phi = \{ \frac{2k\pi}{Q}, k = 0, 1, \cdots, Q - 1 \}$$

• Example of MSK: M = 2, h = 1/2

Capacity of Coherent CPFSK Detection

• i.u.d. capacity calculation through trellis

$$C^{(c)} = \lim_{N \to \infty} \frac{1}{N} I(\mathbf{x}_0^{N-1}, \mathbf{y}_0^{N-1})$$

=
$$\lim_{N \to \infty} \frac{1}{N} \left[\sum_{i=0}^{N-1} H(\mathbf{x}_i) - \sum_{i=0}^{N-1} H(\mathbf{x}_i | \mathbf{x}_0^{i-1}, \mathbf{y}_0^{N-1}) \right]$$

• Treating CPFSK as a finite state markov channel (FSMC)

• Using Monte Carlo simulation to find $E\left[-\log p(\mathbf{x}_i|\mathbf{x}_0^{i-1},\mathbf{y}_0^{N-1})\right]$

Capacity of Coherent CPFSK Detection

• i.u.d. capacity calculation through trellis

$$C^{(c)} = \lim_{N \to \infty} \frac{1}{N} I(\mathbf{x}_{0}^{N-1}, \mathbf{y}_{0}^{N-1})$$

=
$$\lim_{N \to \infty} \frac{1}{N} \left[\sum_{i=0}^{N-1} H(\mathbf{x}_{i}) - \sum_{i=0}^{N-1} H(\mathbf{x}_{i} | \mathbf{x}_{0}^{i-1}, \mathbf{y}_{0}^{N-1}) \right]$$

- Treating CPFSK as a finite state markov channel (FSMC)
- Using Monte Carlo simulation to find $E\left[-\log p(\mathbf{x}_i|\mathbf{x}_0^{i-1},\mathbf{y}_0^{N-1})\right]$

Capacity of Coherent CPFSK Detection

• i.u.d. capacity calculation through trellis

$$C^{(c)} = \lim_{N \to \infty} \frac{1}{N} I(\mathbf{x}_{0}^{N-1}, \mathbf{y}_{0}^{N-1})$$

=
$$\lim_{N \to \infty} \frac{1}{N} \left[\sum_{i=0}^{N-1} H(\mathbf{x}_{i}) - \sum_{i=0}^{N-1} H(\mathbf{x}_{i} | \mathbf{x}_{0}^{i-1}, \mathbf{y}_{0}^{N-1}) \right]$$

- Treating CPFSK as a finite state markov channel (FSMC)
- Using Monte Carlo simulation to find $E\left[-\log p(\mathbf{x}_i|\mathbf{x}_0^{i-1},\mathbf{y}_0^{N-1})\right]$

BCJR Algorithm

- Finding $p(\mathbf{x}_i | \mathbf{y}_0^{N-1})$
- $\bullet~{\rm Define}~\alpha{\rm ,}~\beta{\rm ~and}~\gamma{\rm ~as}$

$$\begin{array}{rcl} \alpha_i(\phi_i) &\triangleq & p(\phi_i, \mathbf{y}_0^{i-1}) \\ \beta_{i+1}(\phi_{i+1}) &\triangleq & p(\mathbf{y}_{i+1}^{N-1} | \phi_{i+1}) \\ \gamma(\phi_i \to \phi_{i+1}, \mathbf{y}_i) &\triangleq & p(\mathbf{y}_i, \phi_{i+1} | \phi_i). \end{array}$$

< A >

Modification to BCJR Algorithm

- Finding $p(\mathbf{x}_i | \mathbf{x}_0^{i-1}, \mathbf{y}_0^{N-1})$
- $\bullet~$ Define $\alpha \text{, }\beta$ and γ as

$$\begin{aligned} \alpha_i(\phi_i) &\triangleq p(\phi_i, \mathbf{y}_0^{i-1}, \mathbf{x}_0^{i-1}) \\ \beta_{i+1}(\phi_{i+1}) &\triangleq p(\mathbf{y}_{i+1}^{N-1} | \phi_{i+1}) \\ \gamma(\phi_i \to \phi_{i+1}, \mathbf{y}_i, \mathbf{x}_i) &\triangleq p(\mathbf{y}_i, \phi_{i+1} | \phi_i, \mathbf{x}_i). \end{aligned}$$

Capacity Curves: MSK

8 / 20

Coherent Capacity Curves

Code Design

• Irregular repeat-accumulate (IRA) code structure

• Using linear programming to design capacity approaching code

Code Design

- Irregular repeat-accumulate (IRA) code structure
- Using linear programming to design capacity approaching code

EXIT Curves

Multi-symbol Noncoherent Detector

- Noncoherent detector over *L* symbols
- Approach capacity of coherent detector when L is large enough
- Detector structure

Multi-symbol Noncoherent Detector vs Coherent (MSK)

Shi Cheng et al.

October 31, 2007 13 / 20

IRA Coded System

• Irregular repeat-accumulate (IRA) code structure

• Using differential encoder

IRA Coded System

- Irregular repeat-accumulate (IRA) code structure
- Using differential encoder

Without Accumulator

With Accumulator

A New Design

Shi Cheng et al.

October 31, 2007 17 / 20

BER Curves

Shi Cheng et al.

October 31, 2007 18 / 20

- The i.u.d. capacity of coherent detected CPFSK in AWGN channel is found by treating CPFSK as a finite-state Markov channel.
- The capacity of multi-symbol noncoherent detected CPFSK is studied. When the block size *L* increases, this capacity gets closer to the coherent capacity. For example, at coding rate r = 0.5, the L = 4 noncoherent MSK detector is 3.5dB worse than the coherent one, but 5dB better than the symbol-by-symbol noncoherent detector.
- Capacity approaching codes are designed for both detectors. IRA code structure is utilized, and the degree distribution is optimized through the linear programming EXIT curve fitting approach.

Thank you

æ