The Impact of Correlated Blocking on Millimeter-Wave Personal Networks

Enass Hriba, Matthew C. Valenti, West Virginia University
PANs, Wearables, and Virtual Reality

- Multiple devices in and around human body
 - Low-rate fitness monitors to high-rate virtual reality devices.
 - Such devices arranged into personal-area networks (PANs).
 - Military applications include training (VR) and situational awareness (AR).
- Critical challenge
 - Supporting Gbps per user in dense environments.
 - Effective operation in confined areas like VR rooms, ships, aircraft.

[1] Photo by David Paul Morris/Bloomberg via Getty Images
High bandwidth and reasonable isolation

Compact antenna arrays to provide array gains via beamforming

Commercial products already available: IEEE 802.11ad, WirelessHD

1 47 CFR 15.255; 2 ARIB STD-T69, ARIB STD-T74; 3 Radiocommunications Class License 2000; 4 CEPT : Official journal of the EU;
Challenges and Opportunities of mmWave for D2D

- **Antenna Directivity**
 - To compensate for path-loss, mmWave antennas are directional.
 - Can model as sectorized antenna.
 - Interference tends to be “pointy”.

- **Blockage**
 - mmWave subject to blocking.
 - Propagation primarily LOS.
 - At mmwave, human bodies are a main source of blockage.
 - Blockage isolates interference.
Modeling Blockage

- Blockage can be modeled as a point process.
 - Here, a binomial point process.
- Here, each source of blockage represented by a blue circle.
 - Constant width “W”
 - Its shadow is shown
- Transmitters are:
 - If in shadow = blocked/NLOS
 - Otherwise LOS
Correlated Blockage

- Previous work has assumed that blocking is independent.
- However, blocking can be correlated.
 - One object could block more than one interferer
 - Correlation arises even if the blockage process is independent
- Goal of this paper is to characterize the impact of correlated blocking.
Computing Blockage Probability

- An interferer at distance r from the receiver will be blocked if a blocking object lies in its blocking zone.
- Probability that a given object lies in a given blocking zone can be found using geometric arguments:

\[
p_z(r) = \frac{\text{Zone Area}}{\text{Network Area}}
\]

- If there are K objects in the network, then the interferer is blocked if any of them are in its blocking zone:

\[
p_b(r) = 1 - (1 - p_z(r))^K
\]
Blockage Probability (An Example)

- Network topology
 - Radius-6 disc
 - $A = 6^2 \pi$
- Blockages
 - $W = 1$ or 2
 - $K = 1$, 5, or 20
Outage Probability

- Assuming that LOS paths are AWGN and NLOS paths are completely attenuated, the SINR at the receiver is:

\[
\text{SINR} = \frac{1}{\text{SNR}^{-1} + \sum_{i=1}^{2} (1 - B_i) \left(\frac{R_i}{R_o} \right)^{-\alpha}}
\]

- An outage occurs whenever SINR < \(\beta\)
- The outage probability is the CDF of the SINR:

\[
F_{\text{SINR}}(\beta) = P[\text{SINR} \leq \beta]
\]

- The CDF depends on the statistics of \((B_1, B_2)\), which is a pair of correlated Bernoulli random variables with correlation coefficient \(\rho\).
How Blocking Correlation Impacts Outage

- **Example:**
 - 2 interferers at same distance
 - $R_1 = R_2 = 5$
 - $p_b(r) = 0.6$, corresponding to $W=1$, $K = 20$, $A=6^2\pi$, $r = 5$.
 - SNR = 15 dB and $\alpha = 2$.

- **Variable correlation coefficient ρ**
 - ρ varies in increments of 0.1

- **SINR values:**
 - 9.5 dB = **both** interferers LOS
 - 11.4 dB = **one** LOS (one blocked)
 - 15 dB = **zero** LOS (both blocked)
The probability that both interferers are LOS (not blocked) is:

\[p_{B_1,B_2}(0,0) = \left(1 - \frac{a_1 + a_2 - v}{A}\right)^K \]

The correlation coefficient is:

\[\rho = \frac{p_{B_1,B_2}(0,0) - q_1q_2}{\sqrt{p_1p_2q_1q_2}} \]

- \(q_i = 1 - p_i \)
- \(p_i = p_b(R_i) \)
- \(i = \{1, 2\} \)

\(v \) = Intersecting area
The Correlation Coefficient

- ρ depends on the angular separation θ between the interferers.
- Example network:
 - $R_1 = R_2 = 5$
 - $A = 6^2 \pi$

- Variable blockage width W
- Variable number of interferers K.
- Simulation shown by dots.
Outage vs. β

- CDF of the SINR
- Network:
 - $R_1 = R_2 = 5$
 - $\theta = 25^\circ$
 - $A = 6^2 \pi$
 - SNR = 15 dB and $\alpha = 2$
 - Variable K & W
- Comparison:
 - Considering the correlation (solid blue line)
 - Ignoring the correlation (dashed red line)
 - Gap = ρpq

Solid line accounts for correlation
Dashed line assumes $\rho = 0$
Outage vs. θ

- Outage vs. angular separation
- Network:
 - $R_1 = R_2 = 5$
 - Variable θ
 - $A = 6^2\pi$
 - $\text{SNR} = 15 \text{ dB and } \alpha = 2$
 - Variable K & W
- Outage at two thresholds:
 - $\beta = 10 \text{ dB (both LOS)}$
 - $\beta = 13 \text{ dB (at least one LOS)}$
- Curves account for correlation
Antenna Directivity

- Previous results assumed the use of omnidirectional antennas.
 - mmWave systems typically employ directional antennas to overcome path loss.
- Here, we consider a 4-element antenna.
 - Each interferer points in random direction.
 - Both actual and sectorized approximation considered.
- Key parameters:
 - $K=5, W=2$
 - $R_1 = 4, R_2 = 5, \theta = 25^\circ$
Randomly Located Interferers

- In previous slides, interferers are in fixed locations.
- Here, we vary their location by drawing them from a BPP
 - Binominal point process
 - Independently and uniformly placed on the radius-6 circle
- Assumes 4-element antenna array
- Spatial averaging done via MC simulation.
 - Each trial corresponds to one network realization
 - 1000 trials
Concluding Remarks

-blocking may be correlated, even when the blockages themselves are independently placed.
 - Correlation more pronounced when there are only a few blockages or when the blockages are large.
 - The outage probability is more accurately computed if it accounts for blockage correlation.

- Outage also depends on antenna directivity.
 - Antenna patterns need to be taken into account.

- Future work:
 - Considering more than 2 interferers.
 - More sophisticated channel models: Fading, reflection, variable path loss.
 - Analytical approach to handling randomly located interferers.
QUESTIONS?