
AN ANALOG TURBO DECODER FOR AN (8,4) PRODUCT CODE

Neiyer Correal and Joe Heck

Florida Communications Research Labs
Motorola Labs

Plantation, FL 33322
[N.Correal,Joe.Heck]@Motorola.com

Matthew Valenti

Lane Dept. of Comp. Sci. & Elect. Eng.
West Virginia University

Morgantown, WV 26506-6109
mvalenti@wvu.edu

ABSTRACT
This paper illustrates how analog circuitry can be used
to decode turbo and turbo-like codes. For ease of expo-
sition, the focus is on a simple two dimensional product
code comprised of a 2 by 2 array of (3,2) single parity
check codes. It is shown that the heart of the decoder
is a soft exclusive-or operation which is easily imple-
mented in analog as a modified Gilbert multiplier. Fi-
nally, a complete decoder design is presented which is
capable of achieving throughput on the order of hun-
dreds of Mbps.

1. INTRODUCTION

Iteratively decodable codes, such as turbo [1] and low
density parity check (LDPC) [2] codes, are capable
of performing within a decibel of the Shannon limit.
These sophisticated codes are constructed by concate-
nating multiple simple codes. Rather than performing
maximal-likelihood decoding of the entire code, each
simple code is decoded individually. The result of each
simple decoding is bit reliability information which is
exchanged with the other decoders and used as side
information during the next iteration. This iterative
process of exchanging the results of multiple simple de-
codings is called turbo decoding.
Turbo decoders are typically implemented in digital

hardware. However, digital hardware has its limita-
tions. The clock rate sets an upper limit on achiev-
able throughput and a large portion of the power con-
sumed by the circuit is associated with clock functions
[3]. Furthermore, turbo decoding algorithms have non-
linearities that are awkward and expensive to imple-
ment with digital logic but lend themselves naturally
to analog circuitry. For these reasons and others, there
has been a growing interest in analog decoding archi-
tectures [4—7]. It has been found that analog decoder
implementations can operate at higher data rates, con-
sume less power, and have a smaller footprint than their
digital counterparts [6].

This paper presents an illustrative example of a
turbo decoder implemented with analog circuitry. For
ease of exposition, the example is a simple product
code comprised of a 2 by 2 array of single parity check
(SPC) codes. The remainder of this paper is organized
as follows: Section 2 discusses SPC codes and a suit-
able a posteriori probability (APP) decoder, Section 3
presents the 2 by 2 product code built from the SPC
and the corresponding turbo decoder, Section 4 dis-
cusses the implementation details of this decoder, and
Section 5 gives some concluding remarks.

2. APP DECODING OF SPC CODES

A SPC encoder produces an output of length n which
is formed by appending a single parity bit to the end
of the k = n − 1 bit input. The parity bit is found
by xor-ing all the input bits, and thus the code word
will always have even parity. Such a code is capable of
detecting a single error, but can also be used to correct
errors when used as the constituent code of a product
code. In this paper we focus on the simple (n,k) =
(3,2) SPC. The two input bits are denoted uj and uk
while the parity bit is denoted uj,k = uj ⊕ uk. The
code word u = {uj, uk, uj,k} is BPSK modulated ac-
cording to x = 1− 2u, i.e. 0 → +1 and 1 → −1. The
modulated word x = {xj , xk, xj,k} is transmitted over
an arbitrary channel and the received word is denoted
y = {yj , yk, yj,k}.
Rather than operating on y directly, the decoder re-

quires that the observations first be normalized in an
appropriate fashion. Define the a priori log-likelihood
ratio (LLR) of the transmitted BPSK symbol to be:

L(x) = ln

µ
P [x = +1]

P [x = −1]
¶
, (1)

where P [.] denotes probability. Likewise, the condi-
tional LLR of the received symbol is:

L(y|x) = ln

µ
f(y|x = +1)
f(y|x = −1)

¶
, (2)

where f(y|x) denotes the conditional pdf of y given
that symbol x was transmitted. Then, the input to
the decoder is r = {L(yj |xj), L(yk|xk), L(yj,k|xj,k} =
{rj , rk, rj,k}. The implication of (2) is that the de-
coder operates on soft-decisions, which generally pro-
vides more coding gain than hard-decision decoding.
The exact nature of (2) depends on the type of channel.
For an additive white Gaussian noise (AWGN) chan-
nel, r = 4yEs/No where Es/No is the symbol signal-
to-noise ratio (SNR), while for a flat fading channel,
r = 4ayEs/No, where a is the fading amplitude.
The decoder input accepts the scaled channel obser-

vations r, while its output produces the a posteriori
probability (APP) LLRs of the two data-bearing BPSK
symbols, L(x|y) = {L(xj |y), L(xk|y)}. Because the
goal of the decoder is to produce APP estimates (rather
than hard bit decisions), it is called an APP decoder.
Since there is a one-to-one mapping from u to x, u can
be estimated by making hard decisions on L(x|y), i.e.
û = 1 when L(x|y) < 0 and û = 0 when L(x|y) > 0.
When the decoder is used in an iterative architecture,

it also needs to take into account information computed
by the other constituent decoders during the previous
iteration. Thus, the decoder input must also accept the
a priori LLRs {L(xj), L(xk)} which are computed by
the other decoders. Likewise, the decoder must pro-
duce information which can be used as the a priori
LLRs by the other decoders during subsequent itera-
tions. These values are called the extrinsic information
[1] and are denoted {Le(xj), Le(xk)}. The extrinsic in-
formation of a data-bearing BPSK symbol represents
an estimate of the probability of that symbol given all
channel observations other than that of the data sym-
bol itself. In other words, the extrinsic information is
obtained by exploiting the structure of the code, rather
than by using a direct observation of the symbol.
The equations used to describe the input-output re-

lationship of the decoder are based on the BCJR algo-
rithm of [8] and are derived in [7]. The basic building
block of the analog decoder is a soft-xor operation, also
called the “box-plus” operator [5]:

w ¢ z ≡ 2 tanh−1
h
tanh

³w
2

´
tanh

³z
2

´i
(3)

Using this operator, the extrinsic information can then
be concisely expressed as:

Le(xj) = rj,k ¢ [rk + L(xk)] (4)

Le(xk) = rj,k ¢ [rj + L(xj)] (5)

and the APP output of the decoder is:

L(xj |y) = rj + L(xj) + Le(xj) (6)

L(xk|y) = rk + L(xk) + Le(xk) (7)

Figure 1: Circuit realization of the ¢ operator [6].

Vgp

rk/VT L(xk)/VT

Vdda

Vdda Vdda

Vbn

rj,k/VT

Le(xj)/VT

Q10Q13

R12

Q0
Q1L(xk)

Le(xj)

rk

rj,k
50 µA

50 µA

+

+

+

+

Figure 2: Circuit for computing extrinsic information.

While the implementation of the soft-xor operator is
awkward in digital hardware, it is simple in analog. In
particular, the soft-xor can be implemented using the
modified Gilbert multiplier shown in Fig. 1 [6]. The
differential voltages are related by:

∆Vo
VT

= 2 tanh−1
∙
tanh

µ
∆V1
2VT

¶
tanh

µ
∆V2
2VT

¶
(̧8)

Thus (3) can be implemented by simply setting the
first input to w = ∆V1/VT , the second input to z =
∆V2/VT , and the output to w ¢ z = ∆V0/VT .
Equation (4) can then be implemented by first

adding rk with L(xk) and then soft-xoring this sum
with rj,k. A circuit capable of this operation is shown
in Fig. 2. A more detailed description of this circuit is
given in Section 4.
The only other major operation is the addition of

three values to compute the a posteriori LLR. The cir-
cuit implementation of (6) is shown in Fig. 3.

+
rj/VT

Vdda

+
L(xj)/VT

+
Le(xj)/VT

R8

R6 R7

Vbn

L(xj|y)/VT

+

L(xj|y)

rj

L(xj)

Le(xj)

Figure 3: Circuit for computing a posteriori LLR.

L(xj)

L(xk)

Le(xj)

Le(xk)

rj

rk

L(xj|y)

rj,k

L(xk|y)

Figure 4: SISO decoder for (3,2) SPC code.

A soft-input/soft-output (SISO) module for decod-
ing the (3,2) SPC is formed by combining a pair of
the circuit shown in Fig. 2 with a pair of the circuit
shown in Fig. 3. A block diagram representation of the
decoder is given in Fig. 4.

3. TURBO PRODUCT CODES

The (3,2) SPC code discussed in the previous sec-
tion is not particularly useful when used just by it-
self. However, it can be used as the building block of a
more powerful multidimensional product code. A two-
dimensional (8,4) product code which uses (3,2) SPC
codes is shown in Fig. 5. Four data bits, {u1, u2, u3, u4}
are placed into a 2 by 2 array. Each row and column
of the array is encoded by the (3,2) SPC, resulting in
a total of 4 parity bits. The entire 8-bit code word is
transmitted over the channel and the resulting set of
observations is used as the input to the decoder.

⊕

⊕
⊕

=

=

=

=

⊕
u1 u2 u1,2

u3 u4 u3,4

u1,3 u2,4

Figure 5: An (8,4) product code.

L(u1|y)

L(u2|y)

L(u3|y)

L(u4|y)

horiz.
dec.
#1

horiz.
dec.
#2

vertical
dec. #1

vertical
dec. #2

r1 r2
r1,2

r3,4

r3

r4

r1,3 r2,4

Figure 6: Turbo decoder for the (8,4) code.

A hard-decision decoder could correct a single error
in the received 8-bit code word. An erroneous data bit
will cause the parity check to fail along the correspond-
ing row and column. Alternatively, the error could be
amongst the parity bits, in which case the parity check
will only fail along either a single row or a single col-
umn. However, such a decoder fails to exploit the soft-
information available if the code is transmitted over an
AWGN or flat-fading channel. For such channels, a
soft-input decoder will offer superior performance.

The soft-input decoder for the product code is based
upon the turbo decoding principle, and for this reason
this type of code is called a turbo product or block turbo
code [9]. Each row and column of the product code is
decoded using the structure shown in Fig. 4. For the
first iteration of decoding, the a priori inputs L(x) are
simply set to zero. The extrinsic information gener-
ated from each horizontal decoding is used as a priori
information by the vertical decodings during the next
iteration (and vice-versa). The entire process runs for a
specified amount of time, or until some convergence cri-
teria is met, at which point hard decisions can be made
on the a posteriori LLRs computed by the horizontal
decoding (or the LLRs from the vertical decoding could
be used instead).

A block diagram description of the decoder is shown
by Fig. 6. Note that since only the horizontal decoders
are used to obtain the a posteriori LLRs, the vertical
decoders do not need to compute them. Since the ver-
tical decoders don’t use the L(xj |y) and L(xk|y) out-
puts, the two 3-input analog adders on the right side
of Fig. 4 are not needed and can be deleted. Thus
the overall circuit requires just 8 stages for computing
extrinisic information and 4 stages for computing the
a posteriori LLRs.

While the concept of iteration is at the heart of dig-
ital implementations, it is not relevant for analog im-
plementations. Since the analog implementation is not
clocked, the rate at which information is processed and
fed back is limited only by the resistance and capac-
itance within the circuit. Convergence is merely the
steady state operating point of the circuit, and thus
settling time is a more relevant way to describe the
throughput.

4. IMPLEMENTATION DETAILS

A complete decoder was implemented using Cadence
design software. The soft-xor portion of Fig. 2 is imple-
mented as in [6] using bipolar npn transistors. Biased
with 50 µA in the tail current source (Q10), this block
is capable of operation up to several hundred MHz.
The two input adder utilizes PMOS devices and resis-
tors to achieve a linear addition of the rj and L(xj)
input values over an input range of a few hundred mil-
livolts. This particular implementation of the adder
operates with a maximum input frequency of about
200-250 MHz. Q13 and R12 achieve the appropriate
level translation of the input signals before application
to the soft-xor block. The rj,k inputs to the soft-xor are
applied to the bottom BJT pair Q0-Q1. All inputs and
outputs are maintained fully differential for enhanced
signal integrity. The three differential inputs must be
scaled by VT = kT/q = 0.026 at 27 C. Ideally these
input amplitudes will be temperature compensated to
be proportional to Kelvin temperature.
The output summer of the three-input adders shown

in Fig. 3 consists of three npn differential pairs which
effect a differential voltage to current transformation,
allowing current mode summation. The differential
output currents are transformed back to a differential
voltage by R6 and R7. R8 achieves a downward voltage
level shift at the outputs. The current through R8 is
virtually constant, so there is essentially a DC voltage
drop across it. The output of the summer is applied
to a high speed differential input, digital output com-
parator.

5. CONCLUSIONS

Iterative decoding algorithms are a natural fit to analog
circuitry. The two main reasons that analog circuitry is
superior to digital are (1) The soft-xor operation which
is awkward in digital is easily implemented in analog;
and (2) No clock is required in an analog decoder. Be-
cause of the absence of a clock, data is continuously
exchanged among constituent decoders and thus there
is no concept of a finite number of iterations.
However, there are several remaining technical chal-

lenges that limit the applicability of analog decoding.

One problem is how to get the received information into
the decoder. Data is normally transmitted serially, yet
the decoder operates on the entire 8-bit code word in
parallel. One solution would be to convert the received
data to digital solely for the purpose of buffering it,
and then convert back to analog when it is time to
decode. An alternative solution would be to use multi-
carrier techniques to transmit the data in parallel over
separate channels. Another challenge is how to prop-
erly analyze the decoder, which is a nontrivial problem
composed of nonlinear feedback differential equations.
This makes the task of implementing and testing the
circuit in software particularly important.

6. REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimasjshima,
“Near Shannon limit error-correcting coding and
decoding: Turbo-codes(1),” in Proc., IEEE
Int. Conf. on Commun., (Geneva, Switzerland),
pp. 1064—1070, May 1993.

[2] R. G. Gallager, Low Density Parity-Check Codes.
MIT Press, 1963.

[3] R. Chen, N. Vijaykrishnan, and M. Irwin, “Clock
power issues in system-on-a-chip designs,” in VLSI
’99., IEEE, pp. 48—53, 1999.

[4] H. Loeliger, F. Tarkoy, F. Lustenberger, and
M. Helfenstein, “Decoding in analog VLSI,” IEEE
Communications Magazine, pp. 99—101, April 1999.

[5] J. Hagenauer, M. Moerz, and E. Offer, “Analog
turbo-networks in VLSI: The next step in turbo de-
coding and equalization,” in in Proc. Int. Symp.
Turbo Codes & Related Topics, (Brest, France),
pp. 209—218, Sept. 2000.

[6] M. Moerz, T. Gabarra, R. Yan, and J. Hagenauer,
“An analog 0.25µm BICMOS tailbaiting MAP de-
coder,” in IEEE int. Solid-State Circuits Confer-
ence, pp. 357—356, 2000.

[7] N. Correal, “Principles of analog-domain turbo de-
coding,” in Proc. Virginia Tech Symp. on Wireless
Personal Commun., (Blacksburg, VA), pp. 155—
161, June 2002.

[8] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv,
“Optimal decoding of linear codes for minimizing
symbol error rate,” IEEE Trans. Inform. Theory,
vol. 20, pp. 284—287, Mar. 1974.

[9] R. M. Pyndiah, “Near-optimum decoding of prod-
uct codes: Block turbo codes,” IEEE Trans. Com-
mun., vol. 46, pp. 1003—1010, Aug. 1998.

