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ABSTRACT

This paper∗ considers the problem of communicating over
fast fading channels, where the channel coherence time is
only on the order of a few symbols. Since the fading is
too fast for coherent reception, we employ M-ary frequency
shift keying with soft noncoherent demodulation. Infor-
mation is encoded by a binary turbo code. To improve
performance, the soft demodulator and decoder work
cooperatively through the iterative exchange of extrinsic
information. During each iteration, the receiver estimates
the channel state information (CSI), here defined to be
the average received signal energy and noise spectral
density for each block of symbols. The channel estima-
tor uses the Expectation Maximization (EM) algorithm
and exploits extrinsic information fed from the decoder.
Simulation results show that for 16-NFSK in block inde-
pendent Rayleigh fading, performance can be within 0.6 dB
of the perfect CSI case by using blocks as small as 4 symbols.

INTRODUCTION

Bit interleaved coded modulation (BICM) [1] combines bi-
nary forward error correcting coding with M-ary modulation.
It has become a standard method for signaling over fading
channels, forming the basis of third generation cellular and
802.11a/g wireless networks. The performance of BICM can
be improved by feeding back a priori information (in the
form of bit likelihoods) from the decoder back to the demod-
ulator. Such iterative demodulation and decoding schemes
were independently developed by ten Brink [2], Benedetto
et al [3], and Li and Ritcey [4]. The latter reference terms
this technique bit interleaved coded modulation with iterative
decoding (BICM-ID).

When signaling over a fading channel, one of two possible
techniques is typically used. The first option is to period-
ically insert pilot symbols into the transmitted signal, and
then leverage these pilot symbols to perform coherent detec-
tion [5]. This is effective only if the fading is sufficiently slow
and the transmit and receive oscillators relatively stable. An-
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other option is to use orthogonal signaling and noncoherent
reception. This is more appropriate when either dealing with
fast fading or when the oscillators are not stable enough, for
instance in frequency hopping applications. The focus of this
paper is on the second option.

A benefit of orthogonal signaling, such as frequency shift
keying (FSK)† is that it allows bandwidth efficiency to be
traded for energy efficiency. If a binary code is combined with
nonbinary FSK, then BICM-ID can improve performance, as
shown in [6].

In [6], the performance of turbo coded FSK using BICM-ID
was shown under the assumption that the channel fading
amplitude was known perfectly at the receiver. However, in
practice, this amplitude is not known a priori and therefore
must be estimated. This paper extends the work of [6] by
including the process of channel estimation into the receiver
structure. To facilitate the development of a pragmatic
estimator, it is assumed that the channel experiences block
fading, that is, blocks of N consecutive FSK symbols are
attenuated by the same channel gain (though they could
possibly experience different phase shifts). Aside from this
block fading condition, the estimator makes no assumptions
regarding the statistics of the channel and, in fact, estimates
each block independently from the other blocks. The esti-
mator itself is derived using the expectation maximization
(EM) algorithm [7], which iteratively finds the maximum
likelihood (ML) estimate, even though an explicit form is
not readily achievable when extrinsic information is fed back
to the estimator from the decoder.

Before proceeding further, let us stipulate some notational
conventions. Bold lowercase letters will be used to denote
vectors, e.g. x, and bold uppercase will be used for matrices,
e.g. X. All vectors are row-vectors, but can be transposed
into column vectors, e.g. xT . Vector elements are plain
lowercase letters with subscripts beginning at zero, e.g.
x = [x0, x1, ..., xM−1]. Matrices are represented as a row of
column vectors, e.g. X = [xT

0 ,xT
1 , ...,xT

N−1]. The function

†In this paper, orthogonal modulation and FSK are used inter-
changeably.
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Figure 1: System model.

p(·) represents the probability of an event, a probability
density function, or a probability mass function with the
context clearly dependent on the argument.

SYSTEM MODEL

The discrete-time system model is shown in Fig. 1. A vector
u ∈ {0, 1}k of message bits is passed through a binary en-
coder to produce a codeword b′ ∈ {0, 1}n which is interleaved
by a permutation matrix Π to produce the bit-interleaved
codeword b = b′Π. The bit-interleaved codeword is then
passed through a M-ary orthogonal modulator to produce
the M × Nf matrix of symbols S = [sT

0 , ..., sT
Nf−1] where

Nf = dn/ log2 Me. Each column of S represents one M-ary
symbol and is represented as an elementary vector em com-
prised of all zeros except for a one in the mth position.

Let the set of µ = log2 M code bits that label symbol si

be represented as {b(i)
0 , ..., b

(i)
µ−1}. With orthogonal mod-

ulation and flat fading that is constant during each sym-
bol period, the manner in which the code bits are mapped
to symbols is unimportant since the symbols are equidis-
tant, and thus a natural mapping suffices. In this case,
si = em ∈ {e0, ..., eM−1} where

m =
µ−1∑

k=0

b
(i)
k 2k. (1)

The modulated symbol si, which has unit energy, is then
scaled by a factor of

√Es, so that the transmitted symbol is
xi =

√Essi, and the transmitted matrix of scaled symbols is
X = [xT

0 , ...,xT
Nf−1].

The modulated symbol stream passes through a frequency-
nonselective block fading channel, with the fading coefficient
constant within each block, and independent over different
blocks. In the following discussion, we assume Nf = NL,
where N is the number of symbols per block, and L is the
number of blocks per codeword. The `th block fading coef-
ficient can be represented as c` = a` exp{θ`

√−1}, where a`

and θ` are the real-valued amplitude and phase, respectively.

Thus, the received signal of the `th block can be represented
as

Y` = c`X` + N`, (2)

where X` and N` consist of columns `N through (`+1)N−1
of X and N, respectively, and N is a M ×NL noise matrix
whose elements are independently and identically distributed
(i.i.d.) complex Gaussian variables whose real and imaginary
components each have zero mean and variance N0/2.

In (2), the (k, i)th entry of Y`, is denoted yki, where k =
0, 1, 2, · · ·M − 1, i = 0, 1, 2, · · ·N − 1. When the ith sym-
bol is received, it is passed through a filter bank with M
matched filters, one for each FSK tone. Since the receiver is
noncoherent, each matched filter produces a complex quan-
tity. The element yki is then the output of the kth matched
filter during the ith symbol period.

The receiver processes the matrix of received symbols Y and
produces estimates û of the data bits. The receiver is decom-
posed into a demodulator and a decoder, each of which are
implemented using the soft-input soft-output algorithm of
[3] and separated by appropriate interleaving/deinterleaving.
The demodulator processes the matrix of received symbols
Y to produce extrinsic information z, which is deinterleaved
and passed to the decoder. While a coherent receiver will
have knowledge of the complex fading gains c, the nonco-
herent receiver will at best only know the fading amplitudes
a = [a0, ..., aL−1]. When a is available, the system is said to
have perfect channel state information (CSI), while when it
is not available the system has no channel state information
(NCSI). Details of the demodulator can be found in [6][8].
Briefly, the output of the demodulator when a, Es, and No

are known is

zk = max∗
i∈S

(1)
k


log I0

(
2a`

√Es|yi|
No

)
+

µ−1∑

j=0
j 6=k

b
(i)
j vj




−max∗
i∈S

(0)
k


log I0

(
2a`

√Es|yi|
No

)
+

µ−1∑

j=0
j 6=k

b
(i)
j vj


 ,

(3)

where S
(1)
k is the set of indices of those symbols whose

kth bit is labeled with a 1, S
(0)
k is the set of indices

of those symbols whose kth bit is labeled with a
0, and the pairwise max-star operator is defined as
max∗(x, y) = max(x, y) + log(1 + e−|x−y|). Multiple
arguments imply a recursion of pairwise operations, i.e.
max∗(x, y, z) = max∗(x,max∗(y, z)). In the above, v is
the extrinsic information fed from the decoder back to the
demodulator, in log-likelihood ratio (LLR) form.
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CHANNEL ESTIMATOR WITH
KNOWN TRANSMITTED SEQUENCE

When Es, N0, and a are not known to the receiver, (3) can
not be used directly. Instead, these parameters are first esti-
mated and then the estimates are used in place of the actual
values in (3). For each M×N received block Y`, the estima-
tor will generate estimates of the received amplitude a`

√Es

and the noise spectral density N0. Note that since we are
not assuming the presence of a perfect automatic gain control
(AGC) unit, we estimate these quantities separately rather
than following the usual convention of estimating the ratio
Es/No.

For robustness purposes, the estimator makes no assump-
tions regarding the distribution of the quantities to be esti-
mated, nor does it make any assumptions regarding correla-
tion from block to block. While the estimator performance
could be improved by exploiting inter-block correlation and a
priori knowledge of the channel statistics (for instance, that
the a’s are Rician distributed), this leads to a far less robust
estimator and increases complexity since parameters such
as fading rate and Rician K-factor must also be estimated.
If the assumptions about the channel prove false, or if the
channel parameters change too quickly to be tracked, then
the performance of such an estimator will be far worse than
the one proposed here.

Each block is processed in an identical fashion. The estima-
tor directly uses the channel observation for the `th block,
Y`, while the observations of the other blocks are used in-
directly through feedback of extrinsic information from the
decoder. Since the form of the estimation algorithm is the
same for each block, in the following discussion we let Y rep-
resent a generic M×N block and a the corresponding fading
amplitude. While we could have indicated the block index `,
such notation is not necessary and only obscures the results.

Following [9], we can represent the probability density func-
tion of the noncoherent received signals as

p(yki|si = ej) (4)

1
πN0

exp

(
−|yki|2 + a2Esδkj

N0

)
I0

(
2a
√Es |yki| δkj

N0

)
,

where δkj is the Kroneker delta function (δkj = 1 if k = j,
otherwise δkj = 0).

From (4), we can easily form the pdf of the ith symbol as

p(yi|si = ej) = (5)
(

1
πN0

)M

exp

(
−

∑M−1
k=0 |yki|2 + a2Es

N0

)
I0

(
2a
√Es |yji|

N0

)
.

The log-likelihood function with respect to Es and N0 can be

represented as

L = ln [f(Y|A,B,d)]

= −MN ln A− C

A
− NB2

4A
+

N−1∑

i=0

ln I0

(
B |ydii|

A

)
,

(6)

where C =
∑

k,i |yki|2, A = N0 and B = 2a
√Es. Here, d is

an N × 1 vector, and each element di indicates that the ith

actual transmitted symbol si is edi
.

In order to find the maximum-likelihood (ML) estimate, we
need to take the derivatives with respect to A and B, and find
the solution to ∂L

∂A = 0 and ∂L
∂B = 0. After some manipulation

to simplify the estimates, the following ML estimates are
obtained:

Â =
1

MN

(
C − NB̂2

4

)
(7)

B̂ =
2
N

N−1∑

i=0

|ydii|F
(

4MNB̂|ydii|
4C −NB̂2

)
, (8)

where F (x) = I1(x)/I0(x) with Iν being the modified Bessel
function of the first kind and order ν. Equations (7) and
(8) produce the ML estimate of A and B when the exact
transmitted sequence is known to the receiver. However, the
sequence is unknown in a practical receiver whose objective
is to detect and decode the transmitted sequence.

EM ESTIMATOR

The representation of (6) includes the unknown parameter
d. In order to find the ML solution, we need to sum over all
possibilities of d, by using the extrinsic information feedback
from the decoder. This results in

L = ln
N−1∏

i=0

f(yi|A, B)

=
N−1∑

i=0

[
ln

M−1∑

k=0

f(yi|A,B, di = k)p(di = k)

]
. (9)

Even though the expression can be broken down to the prod-
uct of independent symbols, the argument of the log function
still contains the summation of M terms, and therefore a di-
rect solution is too complex to be practical.

The EM algorithm is an appropriate tool for finding the so-
lution to this problem with reasonable complexity. In order
to apply the EM algorithm, we first define the complete data
set as {Y,d}. Then, the log-likelihood function is formed for
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the complete data set, resulting in

L̃ = ln [f(Y,d|A,B)]
= ln [f(Y|A,B,d)] + ln p(d)

∼ −MN ln A− C

A
− NB2

4A
+

N−1∑

i=0

ln I0

(
B |ydii|

A

)
.

(10)

The log-likelihood functions of (10) and (6) for the complete
and incomplete data, respectively, are identical because we
assume that the a priori distribution of d is independent of
A and B and, hence, may be omitted. The EM algorithm is
then performed in the following two steps:

E− step :

Q(A,B|Â(l), B̂(l)) = E
[
L̃(A,B)

∣∣∣Y, Â(l), B̂(l)
]

(11)

M− step :
Â(l+1), B̂(l+1) = arg max Q(A,B|Â(l), B̂(l)) (12)

To form the expectation of the E-step, we take the expecta-
tion over d conditioned on Â(l), B̂(l) and Y,

Q(A, B|Â(l), B̂(l))

= −MN ln A− C

A
− NB2

4A

+
N−1∑

i=0

Edi|yi,Â(l),B̂(l)

[
ln I0

(
B |ydii|

A

)]

= −MN ln A− C

A
− NB2

4A

+
N−1∑

i=0

M−1∑

k=0

p̃ki ln I0

(
B |yki|

A

)
, (13)

where

p̃ki = p(di = k|yi, Â
(l), B̂(l))

=
p(yi|di = k, Â(l), B̂(l))p(di = k)

p(yi|Â(l), B̂(l))
(14)

Applying (5), we obtain

p̃ki = α
(l)
i I0

(
B̂(l)|yki|

Â(l)

)
p(di = k). (15)

where α
(l)
i is the normalization factor forcing

∑M−1
k=0 p̃ki = 1;

thus,

α
(l)
i =

1
∑M−1

k=0 I0

(
B̂(l)|yki|

Â(l)

)
p(di = k)

. (16)

The probability p(di = k) can be formed by combining the
bit probabilities fed back from the decoder (after first con-
verting from LLR domain to probability domain) [8]:

p(di = k) =
µ−1∏

j=0

exp
[
b
(k)
j vi,j

]

1 + exp [vi,j ]
, (17)

where the a priori log-likelihood ratios corresponding to the
µ bits associated with the ith symbol are vi,0, vi,1, · · · , vi,µ−1.
Estimates of A and B are then found using

Â(l+1) =
1

MN

(
C − N(B̂(l+1))2

4

)
(18)

B̂(l+1) =
2
N

N−1∑

i=0

M−1∑

k=0

p̃ki |yki|F
(

4MNB̂(l+1)|yki|
4C −N(B̂(l+1))2

)
.

(19)

Since a closed form solution to (19) is difficult to obtain, an
iterative method needs to be implemented within each EM
iteration. This is satisfied by the recursion

B
(l+1)
n+1 =

2
N

N−1∑

i=0

M−1∑

k=0

p̃ki |yki|F
(

4MNB
(l+1)
n |yki|

4C −N(B(l+1)
n )2

)
,

(20)

where the superscript denotes the EM iteration, while the
subscript denotes the iteration for the recursion (20). To
initialize, the initial value of B

(l+1)
0 can be simply set to B̂(l)

from the previous EM iteration. The initial values used in
(15) are set to

B̂(0) =
2
N

N−1∑

i=0

max
k
|yki| (21)

Â(0) =
1

MN

(
C − N(B̂(0))2

4

)
. (22)

which are only based on the channel observations y, regard-
less of the channel SNR.

Thus, this two-fold iterative process works as follows: First,
the initial values Â(0) and B̂(0) are computed. Based on the
initial values, the probabilities {p̃ki} are calculated according
to (15), (16), and (17). The iterative method (20) can then
be implemented to find B̂(1), with an initial setting B

(1)
0 =

B̂(0). Using B̂(1) and (18), Â(1) can be easily found in a single
step, which finalizes the first EM iteration. The second EM
iteration then starts by recalculating p̃ki based on the newly
acquired Â(1) and B̂(1), and the remaining steps are similar
to the first EM iteration. The whole algorithm terminates
when Â(l) or B̂(l) converges to some fixed value.

Now we will look into the convergence behavior of (20). Let
the function G̃(B(l+1)

n ) denote the right-hand side of (20).
During our simulations, it was found that the G̃(B) exhibits
concavity. Since F (t) approaches 1 asymptotically when t
goes to infinity,

lim
B→

√
4C
N

G̃(B) =
2
N

N−1∑

i=0

M−1∑

k=0

p̃ki |yki|

≤ 2
N

N−1∑

i=0

max
k
|yki| (23)
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Applying the Cauchy-Schwarz inequality for inner products
and then the definition of C, we obtain

lim
B→

√
4C
N

G̃(B) <

√
4C

N
. (24)

These inequalities and the concavity of G̃(B) indicate
that the point (B(1)

0 , G̃(B(1)
0 )) is to the upper-right of

(B̂(1), B̂(1)), so that the iteration of (20) guarantees B(1)

gradually approaches B̂(1). The simulation shows that
the ML estimates converge quickly, in less than 10 EM
iterations. In practice, for a BICM-ID system, (22) and (21)
are only used to select the initial values for the first pass.
From the second pass, the estimators can make use of the
ML estimates calculated during the previous pass.

SIMULATION RESULTS

To illustrate the performance of the proposed estimator, a set
of simulations were run. The simulated system uses the turbo
code from the cdma2000 specification [10]. The turbo code
was a rate-1/2 code with 1530 input bits. As the cdma2000
standard requires 12 coded tail bits, the length of each code
word is 2(1530) + 12 = 3072 bits. In the case that 16-FSK
modulation is used, each FSK symbol conveys 4 code bits,
and the number of FSK symbols per code word is 768. The
receiver executed up to 20 iterations (an early halting routine
stopped the iterations once the data was correctly decoded).

Fig. 2 and 3 show the simulation results under independent
Rayleigh fading. Blocks of N consecutive symbols undergo
the same fading amplitude, while the fading amplitudes are
i.i.d. Rayleigh from block to block. The phase of each sym-
bol is uniformly distributed, though the distribution of the
phases does not affect the performance of the proposed sys-
tem.

In Fig. 2, only 16-FSK modulation was simulated, while
several values of block length N were considered: N =
1, 4, 8, 16, 32, and 64. For each value of N two curves are
shown, one for the case that the CSI is perfectly known by the
receiver, and the other for the case that the CSI is estimated
by the proposed EM-based estimator. The perfect CSI case
serves as a benchmark to compare against the performance
of the estimator and therefore always exhibits better perfor-
mance. As can be seen from the figure, performance of the
perfect CSI case always improves with decreasing N . This is
because as N decreases there is a corresponding increase in
the number L of independent fading blocks per code word,
which translates into an increase in diversity. On the other
hand, the performance of the estimated CSI case does not
always improve with decreasing N . In the simulated case,
the estimated CSI case improves with decreasing N up until
N = 4 but then gets worse for the N = 1 case. This is be-
cause at the same time that diversity is increasing, the length
of each block is reduced resulting in a poorer estimate of the

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

10
-4

10
-3

10
-2

10
-1

10
0

N=64
N=32
N=16
N=8
N=4
N=1

Eb/No  (dB)

BER

Figure 2: Performance of the rate 1/2 cdma2000 turbo code
with K = 1530 input bits and 16-FSK modulation for several
block lengths (N). Blocks are i.i.d. Rayleigh, and the perfor-
mance with perfect CSI (dashed lines) is compared against
the performance using the proposed estimator (solid lines).

fading coefficient. This behavior can also be seen by the ten-
dency for the gap between the perfect CSI and estimated
CSI cases to widen with decreasing N . This is a common is-
sue for fading channels; faster fading improves performance
by providing more diversity while simultaneously degrading
performance by providing the estimator with fewer samples.
For N = 64 the proposed estimator is less than 0.1 dB worse
than the perfect CSI case, while for N = 4 the estimator
is 0.6 dB worse, which is still quite acceptable. For N = 1
performance is rather poor, being nearly 2 dB away from the
perfect CSI case. When N = 1 it would be better to use an
alternative form of the demodulator that does not require
CSI, see for instance [11] and [6].

Fig. 3 considers the influence of different FSK alphabet sizes
when the data rate and block duration are held constant at
24 bits per block. In other words, a single block contains 24
binary FSK symbols, 12 4-FSK symbols, 6 16-FSK symbols
or 4 64-FSK symbols. The channel code is the same as the
one in Fig. 2, and there are 128 blocks per codeword. As
the modulation alphabet size M goes up, the required Eb/No

decreases for both the case with perfect CSI and the case
with the EM-based estimator. The simulation result shows
that the loss due to the proposed estimator is about 0.5 dB,
which varies little with the alphabet size M as long as the
block duration remains constant at 24 bits per block.

Fig. 4 shows simulation results for i.i.d. Rician block fading
with a 10 dB Rician K factor. While this figure shows the
same tendency for the gap between perfect and estimated
CSI to widen with decreasing block length, the gap is smaller
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Figure 3: Performance of the rate 1/2 cdma2000 turbo code
with K = 1530 input bits and blocks that are 24 bits long for
several alphabet sizes (M). Blocks are i.i.d. Rayleigh, and
the performance with CSI (dashed lines) is compared against
the performance using the proposed estimator (solid lines).

compared with the Rayleigh fading case. For example, the
gap decreases from 0.6 dB to 0.4 dB when there is 4 16-FSK
symbols per block. This can be attributed to Rician fading
being less severe than Rayleigh.

In the previous curves, the relationship between perfor-
mance and block length was complicated by the tradeoff
between diversity and estimation error. As the block length
decreased, the diversity improved, but the estimation error
got worse. To better illuminate the effect of block length on
estimator performance, Fig. 5 shows simulation results for
the same cdma2000 turbo code and 16-FSK in an unfaded,
AWGN channel. Because the channel is unfaded, the fading
amplitude is unity for the entire codeword. For the perfect
CSI case, there is just a single curve. The other curves on
this figure show the performance of the EM-based estimator
for different estimator block lengths. While the Es and
No are constant for the whole codeword, the estimator
runs under the assumption that they are fixed for only N
consecutive symbols. When N = 1, the performance of the
estimator is about 0.7 dB away from the perfect CSI case,
and the gap becomes smaller as N increases. This reason
is that more accurate estimation can be achieved through
larger block size, and unlike the fading case, increasing N
does not decrease diversity. When N = 4, the gap is only
about 0.3 dB. When N increases to 32, the proposed estima-
tor has almost the same performance as the perfect CSI case.

Eb/No  (dB)

BER

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

10
-4

10
-3

10
-2

10
-1

10
0

N=16
N=8
N=4
N=1

Figure 4: Performance of the rate 1/2 cdma2000 turbo code
with K = 1530 input bits and 16-FSK modulation as a func-
tion of block length N . Blocks are i.i.d. Rician with K = 10
dB, and the performance with perfect CSI (dashed lines) is
compared against the performance using the proposed esti-
mator (solid lines).

Eb/No  (dB)

BER
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N=32
N=16
N=8
N=4
N=1

Figure 5: Performance of the rate 1/2 cdma2000 turbo code
with K = 1530 input bits and 16-FSK modulation in AWGN.
The performance with the proposed estimator (solid lines)
using different block sizes (N) is compared against reception
with known Es and No (dashed line).
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CONCLUSIONS

The turbo-NFSK system is a robust noncoherent system that
has been shown to withstand the severe channel conditions
of fast fading, unknown fading attenuation, unknown fading
statistics, and unknown noise-power spectral density. The
channel-state estimator is based on the Expectation Maxi-
mization algorithm and exploits extrinsic information pro-
duced after each decoding iteration of the turbo code. Each
updated channel-state estimate is applied to the next de-
coder iteration. Simulation results indicate that if the fad-
ing coherence time exceeds four channel symbols, then the
performance is close to what could be obtained with perfect
channel-state information.
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