Computational Communication Theory: A Modern Tool for Engineering Future Wireless Networks

Matthew C. Valenti

May 2014
Wireless Communications Research Lab

Personnel
- Faculty
 - Matthew C. Valenti, Founder and Director
 - Daryl Reynolds, Associate Professor
 - Natalia Schmid, Associate Professor
 - Brian Woerner, Dept. Chair.
 - Vinod Kulathumani, Assistant Professor
- Approximately 20 graduate students

Research Topics
- Cooperative communications.
- Coding and modulation.
- Spread spectrum systems.
 - Optimization of frequency hop systems.
- Wireless sensor networks
 - Distributed detection
- Cloud computing.
 - Cloud radio access networks
- Biometric and human activity detection.

Funding Sources
- NSF: CRI program; CITeR I/UCRC.
- DoD: ONR, ARL.
- Industry: DoD STTR/SBIR programs; Cisco URP.
- NASA.

Tools and Facilities
- 400-core cluster computer.
- Open source simulation software: CML.
- Web portal for researchers: WebCML.
- USRP software radio testbed.
Outline

• Motivation: What’s on the Wireless Horizon?
• Approach to Research
• Sampling of Results
• Broader Impacts
• Future Research Directions
• Motivation: What’s on the Wireless Horizon?
 • Approach to Research
 • Sampling of Results
 • Broader Impacts
 • Future Research Directions
Greeting the Mobile Data Onslaught

Massive MIMO
256 Antenna Elements

mmWave

Interference Coordination

Densification
16 Antenna Elements

$$C = m \left(\frac{W}{n} \right) \log (1 + \text{SINR})$$
The Device-Centric Architecture

Control/Data Separation
Use microwave large cells for control (anchor node) and mmwave small cells for data (assisting node).

Uplink/Downlink Separation
Uplink and downlink need not be serviced by the same base station.

Device to Device
Devices communicate directly. Possibly under the control of the anchor node.

Smart Caching
Popular content downloaded from hotspots. Made available to others via D2D.

The end of cells as we know it?
Outline

- Motivation
- Approach to Research
- Sampling of Results
- Broader Impacts
- Future Research Directions
Computational Communication Theory

Research Approach

- Cheap utility computing allows for a *computationally intensive* approach to solving problems.
- While computing is cheap, it is not free.
 - Sound principles from communication theory guides smarter use of the available resources.
- Goal is to find “sweet spot” between theory and simulation.

brute-force computation
- lacks: generality
 - reproducibility

pure theory
- requires: loose bounds
 - assumptions

computational communication theory

- Much of the day-to-day work is writing code that makes utility computing easy to use.
- Should not have to be a cloud-computing expert to use our resources.

Example Results

- Application of genetic algorithms.
 - Design of space-time codes.
 - Design of coded-modulation.
- Analysis of networks with random interferers.
 - Cognitive radio.
 - (Cooperative) cellular technologies.
 - Frequency-hopping ad hoc networks.
 - Cooperative relaying.
- Wireless sensing and (indoor) localization.

Broader Impacts

- Cloud-empowered course projects
 - Wireless networking
 - Coding theory
 - Communication theory
- Technology transfer
 - Creating custom cloud-empowered web applications.
 - Software for commercial products.
Cyber-Infrastructure

Open Source Software

• Developed open source software for designing, simulating, and analyzing wireless systems.
 • CML = Coded Modulation Library.
 • Google code project: code.google.com/p/iscml/
• Runs in Matlab, but much of the low-level code is written in C.

Web Portal

Parallel Computing Server

• Job uploaded to user’s project directory.
• Job manager breaks it into tasks.
• Task manager puts into queue.
• Workers autonomously service tasks.

NSF-CRI grant CNS-0750821
“A web-accessible grid-computing resource for the telecommunications research community”
Outline

- Motivation
- Approach to Research
- Sampling of Results
- Broader Impacts
- Future Research Directions
Outage Probability & Stochastic Geometry

Interference Networks
- Transmitter & receiver are arbitrarily placed.
- Interferers placed according to some point process.

SINR and Outage
- The signal-to-interference-and-noise ratio is:
 \[\text{SINR} = \frac{S}{N + \sum_k I_k} \]
 where \(S \) and \(I_k \) are subject to fading.
- An outage occurs when the SINR falls below a threshold \(\beta \).

Outage Probability
- Classes of networks can be characterized by their spatially averaged outage probability:
 \[\epsilon = \mathbb{E}_{g,x} \{ P \left[\text{SINR} \leq \beta \right] \} \]
 where \(g \) is the fading and \(x \) the topology.
- For simple networks, stochastic geometry can compute the above in one step.

Direct Approach
- Our approach is to first fix the network topology and theoretically derive the conditional outage probability.
 \[\epsilon(x) = \mathbb{E}_g \{ P \left[\text{SINR} \leq \beta \mid x \right] \} \]
- Then the spatial average is taken:
 \[\epsilon = \mathbb{E}_x \{ \epsilon(x) \} \]
- For complicated networks, the latter average can be found through a simulation.
- Simulation can be done in computing cloud.

Arbitrary Topologies & Cognitive Radio

Arbitrary Topologies

- Interferers placed on arbitrary region according to some point process.
- Can compute the spatially averaged outage probability numerically.

Application: Cognitive Radio

- Primary transmitters are placed in fixed location.
- *Exclusion zone* surrounds each primary.
- Secondary transmitters are randomly placed outside of the exclusion zones.

- Guard zones can also be used to model a CSMA protocol.

Modeling Cellular Networks

Modeling Base Stations

• In collaboration with AT&T Mobility, developed a stochastic model for base station placements.

 ![hexagonal grid](image1)
 ![Poisson point process](image2)
 ![actual data (AT&T)](image3)
 ![stochastic model](image4)

• Using this model, we can synthesize realistic cellular networks with simulated BS locations.

Rate Allocation Problem

• Approaches that rely on stochastic geometry can only optimize the average rate under an outage constraint.

• Our approach allows the rate to be optimized for each user, and allows the fairness to be analyzed.

Coordinated Multipoint (CoMP).
- Cell-edge users served by multiple base station.
- Signals from multiple base stations get diversity combined at the mobile as if they were multipath.

We model CoMP using two distances:
- r_{int}: Cell interior. Mobile connected to 1 base station.
- r_{max}: Maximum distance. Mobile connected to all base stations within distance r_{max}.

Question is how to optimize the distances.

MBSFN
- Multicast-Broadcast Single-Frequency Network.
- Broadcast content (e.g., TV programming, data feed) sent during special reserved subframes.
- All base stations in an MBSFN group send the same signal.
- The signal is diversity received by the mobile.

Question is how large to make an MBSFN group and how to find its optimal rate.

Talarico, Valenti & Torrieri, “Analysis of multi-cell downlink cooperation with a constrained spatial model” Globecom-2013.

Cloud Radio Access Networks

Radio Access Clouds

- **Cloud Radio Access Network**
 - The signals from multiple base stations are jointly processed by a computing cloud.
 - Allows for simpler processing at each base station.
 - Enables cooperative processing schemes.
 - Clouds could service multiple tenants (providers).
 - Also called centralized baseband.

- **Technical issues:**
 - Backhaul needs to be fast and have low latency.
 - Transport blocks need to be processed in real time.
 - The computational load cannot exceed available resources.

- **For such architectures, responsiveness may be more limiting than interference or fading.**

Collaboration with NEC Laboratories, Europe.

Computational Outage

- **A computational outage occurs if there is not enough computing resources to process all of the transport blocks in a 1 msec subframe.**

- **Challenges:**
 - Characterize the probability of computational outage.
 - Develop computation-aware scheduling policies.

- **Opportunities:**
 - Turbo decoding is the most computationally demanding task and depends on the number of iterations.
 - By increasing the SINR margin, can get by with fewer iterations.

![Graph showing Code BLER vs. SNR for different numbers of iterations.](image)
Barrage Relay Networks

Barrage Networks

- An ad hoc network comprised of alternating active zones and silent zones.
 - **Routing within each zone is cooperative.**
 - Every relay receives each transmission.
 - Relays can transmit simultaneously, creating a cooperative diversity effect.
 - Each transmitter in a zone fires at most once until the destination successfully decodes the message.

Optimization Issues

- **Issues:**
 - Number of relays per barrage zone.
 - Placement of relays within the zone.
 - Size of the zone (distance from S to D).
 - Optimal transmission rate.
- **Optimization with respect to Transport Capacity (bps/m).**
WVU Whitespace Initiative

TV Whitespace Project

• By using unused television bands, can extend the reach of the WVU network.

• Collaborative effort between:
 • WVU Office of Information Technology
 • Air.U Consortium
 • Declaration Networks
 • Adaptrum

• Technical details:
 • Radios FCC certified for 470-698 MHz operation.
 • 1 W transmit power (4 W EIRP)
 • TDD OFDMA up to 16 Mbps over 6 MHz channel.
 • Uses Google TV white space geolocation database.

Connecting the PRT

• Personal Rapid Transit.
• Base station at top of engineering.
• 73 PRT cars randomly in constrained region.
A single point source is to be located using a network of randomly placed sensors.

Issue is how the randomness of the placement effects the quality of the location estimate.

Leverages our approach to stochastic geometry.
Outline

• Motivation
• Approach to Research
• Sampling of Results
• Broader Impacts
• Future Research Directions
Course Projects

Cloud Enabled Projects

- The same computing infrastructure used for research is used to empower course projects.
- Students submit jobs through a web interface.
- Rapid simulation promotes exploration.

Wireless Networking

- Student groups for virtual companies.
- Bid on spectrum using FCC/SMR auction rules.
- Design and analyze network for Morgantown.

Communications Theory

- Design multidimensional constellation.
- Optimized with respect to symbol error rate, bit error rate, and mutual information.

Coding Theory

- Design and simulate an irregular LDPC code for the binary erasures channel.
Rapid Prototyping of Custom Applications

Custom Applications

- Computing environment implemented in a very generic way.
 - Optimized for running Matlab applications in parallel.
- Can quickly adapt it for other applications.
 - Successfully applied it to biometric identification.

Secure Mobile Biometrics

- Through funding by the CITeR NSF I/UCRC, quickly developed a facial recognition app.
 - Accessible by mobile phone.
 - Empowered by the computing cluster.
 - Emphasis on keeping biometric data confidential.
 - Cyber-security applications.
Outline

• Motivation
• Approach to Research
• Sampling of Results
• Broader Impacts
• Future Research Directions
Future Research Directions

Questions

• How do mmWave, small-cell, and massive-MIMO technologies effect the design of future wireless networks?
 • Control signaling?
 • Channel access protocols?
 • Resource allocation policies?
• What is the effect of having orders-of-magnitude more connected devices (M2M)?
• How to best leverage smarter devices?
 • D2D?
 • Data caching?
 • Smart processing?
• What is the impact of wireless network virtualization?
 • How will base stations of the future be implemented?
 • How will carriers share equipment and spectrum?
• What will replace the concept of a cell?
 • Phantom cells?
 • Soft cells?
 • Liquid cells?

Tool & App Development

• Custom software and cloud-empowered apps for the signal processing and communications research community.
• Commercialization potential:
 • Simulation-as-a-service?
 • Identification-as-a-service?
 • Software for SDR implementations.
Thank You

Questions?