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Abstract— Turbo codes are sensitive to both (timing) synchro-
nization errors and signal-to-noise ratio (SNR) mismatch. Since
turbo codes are intended to be deployed in environments with
very low SNR, conventional synchronization methods often fail.
This paper introduces a solution for jointly estimating the SNR
and achieving timing synchronization based on the statistics of
the received signal. Simulation results show only a small loss in
coding gain relative to perfect timing and SNR estimation while
requiring only slightly more complexity and latency.

I. INTRODUCTION

Turbo codes are capable of remarkable performance in very
low signal-to-noise ratio (SNR) environments [1]. However,
the full potential of turbo codes is only achieved if the channel
statistics are known by the receiver. In an additive white
Gaussian noise (AWGN) channel, the receiver must not only
estimate the SNR of the channel, but also must synchronize
with the bit epochs. While timing synchronization is an issue
for any digital transmission system, it is especially important
for turbo codes which operate at SNRs that are often too low
for conventional synchronization techniques to work reliably.
The result of a poorly synchronized signal is equivalent to
additional AWGN noise [2], and for many practical situations
the additional noise will cause a significant loss in coding gain.

Despite the importance of synchronization for turbo codes,
this topic has been largely overlooked by the research commu-
nity. While there currently exist a handful of publications on
turbo code synchronization (see, for instance, [2], [3]), most
studies of turbo codes assume perfect timing. Furthermore,
papers that address the problem of timing synchronization
tend to approach the problem separately from the problem of
SNR estimation, and typically assume that the SNR is already
known. However, these two problems are interrelated and thus
a combined approach could be preferable. In this paper, we
present a method for jointly estimating the SNR and the timing
of the received signal. The strategy is an extension of the SNR
estimation work of Summers and Wilson [4], which has been
modified to account for imperfect timing.

At very low SNR, traditional symbol-by-symbol synchro-
nization methods typically fail [5]. The high variance of the
timing error prevents the front-end synchronization scheme
from converging [3]. Thus, the approach we take performs
synchronization on a frame-by-frame basis. Without a syn-

chronization algorithm, the matched filter will (almost always)
not be sampled at the proper sample instant. One approach to
synchronization is to use the timing estimate to adjust the sam-
ple timing directly. However, this requires complex hardware
and is not easily implemented. An alternative approach that we
use is to oversample the output of the matched filter and store
the samples in memory. Rather than using the timing estimate
to adjust the sampling hardware, the estimate is used along
with the stored samples to construct an estimate of the matched
filter output at the optimal sample instant. This estimate is
created by using an appropriate interpolation algorithm.

Mielczarek [2] introduced a soft-bit combining method for
turbo code synchronization that employs two separate decoders
and uses a weighted combination of the two decoder’s soft
outputs to generate a new likelihood value for each data
bit. While this scheme provided performance within 0.2 dB
of that with perfect timing, it did so at the cost of two
decoders and sampling at four times the symbol rate and it
assumed perfect SNR estimates. This complexity might not be
affordable for many receivers. Furthermore, [2] only assumed a
framesize of 256 information bits and a code rate of 1/2, which
translated to a very weak turbo code that operated at high
SNR where timing synchronization is less challenging. The
goal of our study is to develop a synchronization algorithm
with performance that is comparable to the one proposed by
Mielczarek but which requires only a single turbo decoder and
is able to operate with turbo codes with longer blocklength and
lower code rate.

The remainder of this paper is organized as follows: Section
II presents the system model, while Section III discusses our
approach to combined synchronization and SNR estimation.
Section IV gives simulation results, and Section V concludes
the discussion.

II. SYSTEM MODEL

To start, consider the traditional matched-filter receiver
shown in Fig. 1, which is followed by a standard turbo decoder.
Assume that BPSK modulation is used with (root) raised
cosine-rolloff pulse shaping. Also assume that the receiver has
perfect phase and frame synchronization information available
and that the channel is quasi-static in the sense that it behaves
as an AWGN channel for the duration of the frame and that
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Fig. 1. Conventional receiver structure including a channel estimator and
turbo decoder

the timing offset is constant for the entire frame (although
the channel SNR and timing offset may vary from frame to
frame).

The receiver’s matched filter has the transfer function of a
(root) raised cosine rolloff pulse. The output of the matched
filter is r(t), and the samples taken by the sampler are
rn = r(nT + τ), where τ is the timing offset and T is
the symbol duration. With perfect timing, i.e. τ = 0, the
output of the matched filter has no intersymbol interference
(ISI), and the SNR of the samples is exactly Es/N0, where
Es is the symbol energy and N0/2 is the two-sided power
spectral density of the AWGN (if the code rate is R, then
the energy per information bit Eb is Es/R). However, when
perfect timing is not available, the performance may degrade
significantly. For raised cosine rolloff pulse shaping, the
performance degradation is not only due to the loss in received
signal power, but also due to the presence of rather severe ISI.
Thus the effective SNR in the presence of imperfect timing
should account for both the loss of signal energy and the ISI.

The mean squared error from non-perfect timing is [6]

I(τ) =
∞∑

k=−∞

∞∑

j=−∞
mk−jx(τ − kT )x(τ − jT )

−2
∞∑

k=−∞

mkx(τ − kT ) + m0, (1)

where x(t) is the raised cosine rolloff pulse shape function
in the time domain [7], and mk is the autocorrelation of the
coded sequence {ak},

mk = E [aiai+k] .

Assuming that the ak’s are independent and zero-mean, the
autocorrelation of the coded sequence is

mk =
{

Es if k = 0
0 if k �= 0.

(2)

Therefore, the mean squared error is

I(τ) = Es

[ ∞∑

k=−∞

x2(τ − kT ) − 2x(τ) + 1

]
. (3)

This function has a parabolic shape with I(0) = 0. Thus, the
function can be approximated with power series expansion
near the origin (τ = 0), i.e.

I(τ) = AEsτ
2 + (higher-order terms) (4)

where A is the second order Taylor expansion coefficient

A =
1

2Es

d2I(τ)
dτ2

∣∣∣∣
τ=0

. (5)

When the roll-off factor is 0.5, the value of A is 1.3.
Mielczarek [2] models the ISI as an additive Gaussian

noise independent of the channel noise. More specifically, the
effective SNR β can be expressed as

β =
x(τ)Es

2 (EsAτ2 + No/2)

=
x(τ)Es/No

2Aτ2Es/No + 1
. (6)

III. JOINT TIMING-OFFSET/CHANNEL-SNR ESTIMATION

ALGORITHM

Because (6) is a function of τ , it could be used to obtain an
estimate of the timing-offset τ̂ . Thus, a reasonable method for
computing τ̂ would be to first estimate the effective SNR β and
then invert (6) to obtain the timing-offset estimate. However,
a direct implementation of this approach also requires knowl-
edge of Es/No, which we assume is not known. Thus, a more
indirect approach for simultaneously estimating τ and Es/No

is desired. Our approach to simultaneously estimating τ and
Es/No is to use two matched filter samples per symbol interval
(sampled 0.5T apart). Because now there are essentially two
equations and two unknowns, it is possible to determine which
set of τ and Es/No estimates produces an effective SNR
function β which best fits the two samples over the entire
frame.

Successful implementation of this strategy requires fairly
accurate estimates of the effective SNRs for each of the two
sample positions averaged over the entire frame. To compute
the effective SNR estimate, we use the approach proposed by
Summers and Wilson [4] which requires the computation of
an online statistic using the sample means of r2

n and |rn|, i.e.

s =
E

[
r2
n

]

E [|rn|]

=
1 + 2β√

2
π e−β +

√
2βerf

(√
β
)

= f(β) (7)

We are interested in the inverse function β = f−1(s), from
which we can get the estimated effective SNR for each of the
two sample positions. This inverse function is implemented
with a look-up table (LUT). Fig. 2 shows the analytical value
of β for Es/N0 = 0 dB as a function of timing offset. In
addition, the curve also shows the estimated value of β found
by inverting (7) when simulating a frame of length 4590
(100 simulation runs were averaged to generate this curve).
Two points should be noted. First, the simulated results agree
closely with the analytical value for all but the most extreme
timing offsets. Second, the loss in effective SNR can be in
excess of a decibel for timing offsets greater than 0.18T .
For turbo coded systems operating at low SNR, this loss will
render the decoder useless.
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Fig. 2. Effective SNR in the presence of improper timing, both using the
analytic model and simulatd results (100 trials with a code frame size 4590).
The actual channel SNR is 0 dB.
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Fig. 3. Modified turbo coded system with multiple sampler, estimation, and
interpolator blocks

The process of simultaneously estimating the timing offset
and the channel SNR is summarized by the system diagram
shown in Fig. 3. The matched filter output is sampled twice,
the first at time t = nT + τ − 0.5T and the second at time
t = nT + τ . i.e.

r1,n = r(nT + τ − 0.5T )
r2,n = r(nT + τ).

Without loss of generality and assuming perfect frame syn-
chronization, it is assumed that 0 ≤ τ < 0.5T such that the
first sample r1,n occurs during the interval [(n − 0.5)T, nT )
and the second sample r2,n occurs during [nT, (n + 0.5)T ).

For each of these two sample positions, a sample expec-
tation is taken of |ri,n| and r2

i,n, (i = 1, 2), over the entire
frame inside the “online channel estimation” blocks, which
are used to compute the corresponding online statistic s1 and
s2. These values are fed into the “joint estimation algorithm”

block which uses f−1(s) to estimate the effective SNR for
each sample position. When Es/No is known, (6) can be
inverted to produce an estimate of the timing offset. Due to
the finite length of the received frame, the estimated means of
|ri,n| and r2

i,n, (i = 1, 2) may differ from the expected values.
This error has a strong influence on the overall performance
of the system, as it will cause the timing estimate to differ
from its actual value. Fortunately, Fig. 2 begins to flatten near
its peak at τ = 0, indicating that residual timing offset errors
of |τ | < 0.1T will not significantly impede performance.

When the channel SNR Es/No is not known, then the
two estimated effective SNR’s β1 and β2 can be used to
jointly estimate the timing offset and channel SNR. This joint
estimation is possible because the β curve is unique for each
value of the actual channel SNR. In other words, if the β
function were drawn for multiple values of Es/No, then these
curves would not touch each other. Therefore, two estimated
effective SNR values are sufficient to determine both which
curve (i.e. estimate the SNR) and determine the timing offset,
provided that the time difference between the two estimated
effective SNR values is known (i.e. 0.5T ).

Because there is a one-to-one mapping between online
statistics {s1, s2} and estimated effective channel SNRs
{β1, β2}, the joint estimation algorithm could work directly
with the online statistics. Thus, our simplified estimation
algorithm uses s1 and s2 to determine the following set of
functions:

f = sign(s1 − s2)
b = min(s1, s2)
d = |s1 − s2| , (8)

where f denotes the direction of bias, and the combination
of b and d defines the relationship of the values s1 and
s2. The algorithm also requires two thresholds T1 and T2,
which are selected empirically and used to classify the initial
synchronization state.

If the timing-offset of either sample is close to zero, then the
other sample will have an offset close to τ = ±0.5T . When
this situation occurs, the difference d between the two online
statistics will be quite large. Thus, if d > T1 it is assumed
that either τ or (τ − 0.5T ) are close to zero, i.e. one of the
two samples is almost perfectly synchronized. The selection
between τ and (τ − 0.5T ) would be determined by f , i.e. the
sample with the higher online statistic is assumed to be close
to synchronization.

Due to the symmetry of Fig. 2, the two online statistics will
have roughly equal value when the optimal sample instant is
halfway between the two sample instances, i.e. when τ =
0.25T . Thus, when d < T2 the timing offset is set to τ̂ =
0.25T . When d �≈ 0 or τ �≈ 0.25T , then the timing-offset
estimate is set to:

τ̂ =
(

1
4

− fd

4T1

)
T (9)

Because the slope of the curve generated by (6) varies with the
channel SNR, the thresholds T1 and T2 should be functions



of b. Hence two look-up tables are established for T1 and T2
with entries relative to b.

The timing estimation value τ̂ controls the interpolator
which reconstructs the samples with perfect timing according
to

rk = 2τ̂ r1,k + (1 − 2τ̂) r2,k (10)

Note that this is a simple linear interpolation rule. Although
our goal was to achieve a simple synchronization algorithm
(albeit a somewhat heuristic one), better performance could
be attained by using a more sophisticated interpolator which
takes into account the pulse shaping. Strictly speaking, the
bandwidth when using raised-cosine pulse shaping is greater
than 1/T , so the signal is sampled at less than the Nyquist
rate when just two samples are used per symbol. Thus, a
more sophisticated interpolator would benefit from a higher
sampling rate to avoid aliasing. However, we found little
additional gain by using a more precise interpolator. The
negligible gain from using more sophisticated interpolation
can be attributed to the low SNR. For example, when Eb/N0
is 0 dB and R = 1/3, the SNR per symbol Es/N0 is -4.77
dB at which point the waveform r(t) becomes dominated by
noise. Therefore, the sample values are not reliable enough to
reconstruct the interpolation values.

The joint estimatation approach can be easily extended to
the situation that the matched filter ouput is oversampled N
times each symbol. If N > 2, then the 2 samples with highest
effective SNR’s are selected because of the fact that the sample
closer to perfect timing has higher effective SNR. The time
difference between the samples is then T/N .

IV. SIMULATION RESULTS

A set of computer simulations were performed to investigate
the performance of the proposed joint estimation algorithm.
The turbo code and its interleaver were designed according to
the cdma2000 specification [8], with the rate set to R = 1/3
and interleaver size set to 1530.

Fig. 4 shows the BER performance of the turbo code with
several fixed timing offsets. This figure gives a general idea
about the effect of timing shift. The performance gap the
perfect timing curve and the other curves with nonzero timing
offset grows exponentially (in dB) with τ . At a BER of 10−5,
a timing offset of only τ = 0.2T would create a loss in coding
gain of more than 1 dB.

The BER performance with the modified system structure
described in Fig. 3 is shown in Fig. 5. Four curves are shown
corresponding to (from most to least energy efficient): (1)
Perfect timing (τ = 0) and perfect SNR estimation (because
timing is perfect, only one sample per symbol is needed),
(2) Imperfect, but known timing (τ is uniformly distributed
in [0, 0.5T ]) and perfect SNR estimation, (3) Imperfect and
unknown timing (which is estimated) but known SNR, and
(4) Both timing and SNR are unknown and estimated.

When the timing is imperfect, but both the timing offset
and channel SNR are known to the receiver, the performance
is within 0.2 dB from the perfect timing case when the
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Fig. 4. Simulation results showing cdma2000 turbo code performance for
various fixed timing offsets (interleaver size = 1530, rate R = 1/3, 10 decoder
iterations, and BPSK modulation with RC-rolloff pulse shaping).
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Fig. 5. Bit error rate performance of the cdma2000 turbo code with different
types of frame-by-frame synchronization (2 samples per symbol, interleaver
size = 1530, rate R = 1/3, 10 decoder iterations, and BPSK modulation with
RC-rolloff pulse shaping).

BER is 10−5. Since all estimation blocks are disabled and
perfect knowledge of timing and SNR are used, the loss comes
completely from the simple linear interpolation method.

When the channel SNR is known but timing must be
estimated, the loss relative to perfect timing increases to
approximately 0.7 dB at a BER of 10−5. While 0.2 dB loss
is attributed to the linear interpolation, the rest comes from
the timing estimation. When the channel SNR is known,
the timing estimation algorithm is much simpler than that
described at the end of the previous section. In particular, the
timing offset is determined by the differences of the estimated
effective SNR values and the actual channel SNR. Let β̂1 and
β̂2 be the estimated effective SNR values from sample sets
{r1,n} and {r2,n} respectively and β be the actual SNR, all
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in dB, then the timing offset is determined using

0.5 − τ̂

τ̂
=

β − β̂1

β − β̂2
(11)

While lack of channel SNR information causes an additional
performance loss, this loss is actually rather small. This is
consistent with the results of [4], which indicates a small
loss when only estimating the SNR in the presence of perfect
timing. Thus, most of the overall system loss is due to the
timing estimation. With larger frame sizes, both the timing
and channel estimation will become more reliable, and the
coding gain loss should decrease.

Fig. 6 presents the BER performance of the joint esimation
algorithm with 4 samples per symbol. Four curves are shown
corresponding to (from most to least energy efficient): (1)
Perfect timing (τ = 0) and perfect SNR estimation, (2)
Imperfect, but known timing (τ is uniformly distributed in
[0, 0.5T ]) and perfect SNR estimation, (3) Both timing and
SNR are unknown and estimated, and (4) Post-decoding syn-
chronization using the soft-bit combining algorithm developed
by Mielczarek [2].

When timing is imperfect, but both the timing offset and
channel SNR are known to the receiver, the loss of coding gain
is negligible. This means, with 4 samples per symbol, there
is approximately no loss from the simple linear interpolation
method. When no knowledge about timing offset and channel
SNR is available to the receiver, the coding gain loss at a BER
of 10−5 is about 0.1 dB. This is a significant improvement
comparing to the coding gain loss with only 2 samples per
symbol. The reason is that the samples selected have higher
effective SNR and the timing estimation has less variance. At
very low SNR, i.e. when Es/N0 is within 1 dB, the joint
estimation algorithm yields better performance than the soft-
bit combining method, and at higher SNR, the two curves
merge together. Note that joint estimation approach only uses

one turbo decoder while soft-bit combining requires two, the
overall system complexity of the former is greatly less than
the latter.

V. CONCLUSIONS

Analytical and simulation results indicate that imperfect
timing causes a loss in effective SNR which results in a severe
BER performance degradation for timing shifts greater than
about 10% of the symbol period. This performance loss can
be recovered by a proper estimation algorithm. However, the
situation is complicated by the fact that the channel SNR
over which turbo codes operate are both very small and not
known to the receiver. Our approach involves sampling the
signal multiple times per symbol period and computing an
online statistic for each of the sample instances over the entire
frame. These online statistics are then used to simultaneously
estimate the channel SNR and timing offset. A simple linear
interpolation algorithm is then used to reconstruct the matched
filter samples at the estimated timing instants.

The proposed algorithm recovered much of the loss due to
poor synchronization, and did so with negligible added com-
plexity and latency (compared to that of the turbo decoding
algorithm itself). The simulated coding gain loss is about 0.1
dB with 4 samples per symbol. Modifications to the algorithm
can further close this gap. Suggested improvements include:

1) A less heuristic timing estimation algorithm which
mathematically fits the online statistics {s1, s2} with
the set of {Es/No, τ} indicated by (6). Linear MLSE
algorithm, using curve fitting, has been applied, but the
performance was actually worse. The proposed heuristic
approach may be beneficial, because of the nonlinearity
of (6),

2) Exploitation of the turbo principle, i.e. pass information
from the turbo decoder back to the timing/channel esti-
mation algorithm and use this information to reestimate
the timing and SNR after each iteration. Negligible
coding gain loss has been achieved with 4 samples per
symbol and only one global iteration.
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