Modern Wireless Network Design Based on Constrained Capacity

April 20, 2005

Matthew Valenti Assistant Professor West Virginia University Morgantown, WV 26506-6109 mvalenti@wvu.edu

Overview

- Key observations:
 - Capacity approaching binary codes are now practical.
 - M-ary modulation such as PSK, QAM, and FSK continue to be used.
 - Block space time coding is an effective way to modulate across multiple transmit antennas.
- Implications of these observations:
 - It makes sense to study point-to-point links in terms of the capacity under modulation constraints.
 - It is desirable to match binary codes with M-ary modulation.
- Overview of talk:
 - Capacity under modulation constraints.
 - Bit interleaved coded modulation (BICM).
 - BICM with iterative demodulation and EXIT charts.
 - Efficient cross-layer design of retransmission (MAC) and routing (networklayer) protocols.

Noisy Channel Coding Theorem

- Claude Shannon, "A mathematical theory of communication," Bell Systems Technical Journal, 1948.
- Every channel has associated with it a *capacity* C.
 - Measured in bits per channel use (modulated symbol).
- The channel capacity is an upper bound on *information rate* r.
 - There exists a code of rate r < C that achieves reliable communications.
 - Reliable means an arbitrarily small error probability.

Computing Channel Capacity

The capacity is the *mutual information* between the channel's input X and output Y maximized over all possible input distributions:

$$C = \max_{p(x)} \{I(X;Y)\}$$
$$= \max_{p(x)} \left\{ \iint p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)} dx dy \right\}$$

Capacity of AWGN with Unconstrained Input

- Consider an AWGN channel with 1-dimensional input:
 - y = x + n
 - where n is Gaussian with variance $N_o/2$
 - x is a signal with average energy (variance) E_s
 - The capacity in this channel is:

$$C = \max_{p(x)} \{I(X;Y)\} = \frac{1}{2} \log_2 \left(\frac{2E_s}{N_o} + 1\right) = \frac{1}{2} \log_2 \left(\frac{2rE_b}{N_o} + 1\right)$$

– where E_b is the energy per (information) bit.

- This capacity is achieved by a Gaussian input x.
 - This is not a practical modulation.

Capacity of AWGN with BPSK Constrained Input

Capacity of AWGN w/ 1-D Signaling

Power Efficiency of Standard Binary Channel Codes

M-ary modulation

- μ = log₂ M bits are mapped to the symbol x_k, which is chosen from the set S = {x₁, x₂, ..., x_M}
 - The symbol is multidimensional.
 - 2-D Examples: QPSK, M-PSK, QAM
 - M-D Example: FSK, block space-time codes (BSTC)
- The signal $\mathbf{y} = \mathbf{x}_k + \mathbf{n}$ is received
 - More generally (BSTC), $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{N}$
- For each signal in S, the receiver computes $p(\mathbf{y}|\mathbf{x}_k)$
 - This function depends on the modulation, channel, and receiver.

Monte Carlo Approach to Computing Modulation Constrained Capacity

- Suppose we want to compute capacity of M-ary modulation
 - In each case, we cannot control input distribution.
 - The capacity is merely the mutual information between channel input and output.
 - The mutual information can be measured as the following expectation:

$$C = I(X;Y) = \mu - E \left[\log_2 \frac{\sum_{\mathbf{x} \in S} p(\mathbf{y} \mid \mathbf{x})}{p(\mathbf{y} \mid \mathbf{x}_k)} \right]$$

This expectation can be obtained through Monte Carlo simulation.

Simulation Block Diagram

 $C = \mu - E[\Lambda]$

Benefits of Monte Carlo approach: -Allows high dimensional signals to be studied.

-Can determine performance in fading.

-Can study influence of receiver design.

BICM

- Coded modulation (CM) is required to attain the aforementioned capacity.
 - Channel coding and modulation handled jointly.
 - e.g. trellis coded modulation (Ungerboeck); coset codes (Forney)
- Most off-the-shelf capacity approaching codes are binary.
- A pragmatic system would use a binary code followed by a bitwise interleaver and an M-ary modulator.
 - Bit Interleaved Coded Modulation (BICM); Caire 1998.

BICM Receiver

- Like the CM receiver, the BICM receiver calculates p(y|x_k) for each signal in S.
- Furthermore, the BICM receiver needs to calculate the log-likelihood ratio of each code bit:

$$\lambda_n = \log \frac{\sum_{\mathbf{x} \in S_n^{(1)}} p(\mathbf{y} | \mathbf{x})}{\sum_{\mathbf{x} \in S_n^{(0)}} p(\mathbf{y} | \mathbf{x})}$$

- where $S_n^{(1)}$ represents the set of symbols whose nth bit is a 1.
- and $s_n^{(0)}$ is the set of symbols whose nth bit is a 0.

BICM Capacity

The BICM capacity is then [Caire 1998]:

$$C = I(X;Y) = \mu - E\left[\sum_{n=1}^{\mu} \log_2(1+\lambda_n)\right]$$

As with CM, this can be computed using a Monte Carlo integration.
For each bit, calculate:

Modern Wireless Network Design Based on Constrained Capacity

BICM-ID

The conventional BICM receiver assumes that all bits in a symbol are equally likely:

$$\lambda_n = \log \frac{\sum_{\mathbf{x} \in S_n^{(1)}} p(\mathbf{y} | \mathbf{x})}{\sum_{\mathbf{x} \in S_n^{(0)}} p(\mathbf{y} | \mathbf{x})}$$

■ However, if the receiver has estimates of the bit probabilities, it can use this to weight the symbol likelihoods. $\sum p(\mathbf{y}|\mathbf{x})p(\mathbf{x} | c_n = 1)$

$$\lambda_n = \log \frac{\mathbf{x} \in S_n^{(1)}}{\sum_{\mathbf{x} \in S_n^{(0)}} p(\mathbf{y} | \mathbf{x}) p(\mathbf{x} | c_n = 0)}$$

- This information is obtained from decoder feedback.
 - Bit Interleaved Coded Modulation with Iterative Demodulation
 - Li and Ritcey 1999.

Mutual Information Transfer Chart

- Now consider a receiver that has a priori information about the code bits (from a soft output decoder).
- Assume the following:
 - The a priori information is in LLR form.
 - The a priori LLR's are Gaussian distributed.
 - The LLR's have mutual information I_v
- Then the mutual information I_z at the output of the receiver can be measured through Monte Carlo Integration.
 - I_z vs. I_v is the *Mutual Information Transfer Characteristic.*
 - ten Brink 1999.

Generating Random a Priori Input

Mutual Information Characteristic

EXIT Chart

EXIT Chart for Space Time Block Code

Extensions to the MAC Layer

Hybrid-ARQ Encode data into a low-rate R_M code • Implemented using rate-compatible puncturing. Break the codeword into M distinct blocks • Each block has rate $R = R_M/M$ Source begins by sending the first block. If destination does not signal with an ACK, the next block is sent. After mth transmission, effective rate is R_m = R/m This continues until either the destination decodes the message or all blocks have been transmitted.

Info Theory of Hybrid-ARQ

- Throughput of hybrid-ARQ has been studied by Caire and Tuninetti (IT 2001).
 - Let γ_m denote the received SNR during the mth transmission
 - γ_m is a random.
 - Let C(γ_m) be the capacity of the channel with SNR γ_m
 - $C(\gamma_m)$ is also random.
 - The capacity after m blocks have been transmitted is:

$$C_m = \sum_m C(\gamma_m)$$

- This is because the capacity of parallel Gaussian channels adds.
- An outage occurs after the mth block if

 $C_m < R$

Throughput and delay depend on the average number of blocks required to get out of an outage.

Extensions to the Network Layer

Generalized Hybrid-ARQ Protocol

- Source broadcasts first packet, m=1.
- Relays that can decode are added to the decoding set D.
 - The source is also in D
- The next packet is sent by a node in D.
 - The choice of which node depends on the protocol.
 - Geographic-Relaying: Pick the node in D closest to destination.
- The process continues until the destination can decode.
- We term this protocol "HARBINGER"
 - Hybrid ARq-Based INtercluster GEographic Relaying.
- Energy-latency tradeoff can be analyzed by generalizing Caire and Tuninetti's analysis.

HARBINGER: Initialization

HARBINGER: First Hop

HARBINGER: Selecting the Relay for the Second Hop

contention period

HARBINGER: Second Hop

HARBINGER: Third Hop

HARBINGER: Fourth Hop

HARBINGER: Results

Topology:

Relays on straight line S-D separated by 10 m

Coding parameters:

Per-block rate R=1 No limit on M Code Combining

Channel parameters:

n = 3 path loss exponent $2.4 \, \mathrm{GHz}$ $d_0 = 1$ m reference dist

Unconstrained modulation

Monte Carlo Integration

B. Zhao and M. C. Valenti. "Practical relay networks: A generalization of hybrid-ARQ," IEEE JSAC, Jan. 2005.

Discussion

- Advantages.
 - Better energy-latency tradeoff than multihop.
 - Nodes can transmit with significantly lower energy.
 - System exploits momentarily good links to reduce delay.
 - No need to maintain routing tables (reactive).
- Disadvantages.
 - More receivers must listen to each broadcast.
 - Reception consumes energy.
 - Nodes within a cluster must remain quiet.
 - Longer contention period in the MAC protocol.
 - Results are intractable, must resort to simulation.
 - Requires position estimates.
 - These tradeoffs can be balanced by properly selecting the number of relays in a cluster.

Conclusions

- Capacity analysis is a quick way to assess the impact of the modulation choice and channel model.
 - The capacity of complicated systems can be found through Monte Carlo simulation.
- Once a modulation choice is selected for the channel of interest, any off-the-shelf capacity approaching binary code can be used.
 - The interface between demodulator and decoder can be characterized by its EXIT chart.
- Capacity analysis can also be used to characterize:
 - Delay and throughput of retransmission protocols.
 - Performance of multihop routing protocols.