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Abstract— This paper addresses the general problem

of finding the combination of code rates and continuous

phase modulation (CPM) parameters that have the best

energy efficiency for a given spectral efficiency and de-

modulator complexity. More specifically, bit-interleaved

coded modulation (BICM) with noncoherently detected

M -ary Gaussian frequency shift keying (GFSK) is con-

sidered for the fading channel. First, a sequential, soft-

out (SO), soft-decision differential phase detector (SD-

DPD) is presented for noncoherent detection of GFSK

signals. Next, the capacity for the proposed system under

modulation, channel and receiver design constraints is

calculated. For a wide range of spectral efficiencies, the

optimal (in terms of energy and bandwidth efficiency)

combination of GFSK parameters and code rates is found

using information theoretic bounds on reliable signaling.

Bit error rate simulations using a capacity-approaching

binary turbo code reveal that performance within 1 dB

of the constrained capacity can be obtained .

I. I NTRODUCTION

Continuous phase modulation (CPM) [1] is a nonlin-

ear modulation scheme well suited for bandwidth con-

strained applications due to its small spectral side lobes

and fast spectral roll-off. Another beneficial feature is

that the constant envelope property of CPM permits the

use of power efficient nonlinear amplifiers. In order to

exploit these properties at improved energy efficiencies,

CPM has been combined with channel coding in a

substantial body of work.

CPM using a convolutional code was considered

in [2], [3]. However, these do not achieve the en-

ergy efficiency promised by systems that use capacity-

approaching error correcting codes. An alternative ap-

proach is to separate a trellis encoder from the CPM

modulator by a symbol-wise interleaver, which allows

the demodulation process to be decoupled from the



decoding process [4], [5]. Such systems are referred

to as trellis coded CPM (TCCPM) [6]. While the

interleaver precludes true ML joint demodulation and

decoding, it can be approximated by using turbo-style

processing [6], [7]. If a bit-interleaver is used instead

of a symbol-interleaver, the system design, which now

boils down to the selection of a good binary code

and efficient CPM modulation parameters (modulation

index, modulation order and pulse shape), is greatly

simplified. The strategy of combining a binary code,

bit-interleaver, andM -ary modulator is calledbit-

interleaved coded modulation(BICM) [8], and here we

refer to its extension to continuous phase modulation as

BICPM. Not only is BICPM more convenient to design

and implement than TCCPM, results in [6] indicate that

BICPM provides higher diversity than TCCPM, which

is consistent with results for BICM in general [8].

In communication systems with constraints on spec-

tral efficiency, channel coding must be done without an

increase in the bandwidth. There is however an inherent

tradeoff between code rate and CPM parameters. For

instance, if a lower rate code is used, then in order to

maintain a specified bandwidth efficiency, the modula-

tion must have either a smaller modulation index, use

wider pulse shapes, or a smaller signal set. For any

particular scenario, it is not clear if the coding gain

due to using lower rate codes will offset the perfor-

mance loss due to modulation which is further from

being orthogonal or due to the additional inter symbol

interference (ISI) caused by longer pulse shapes.

In this paper, we attempt in part to address the ques-

tion put forth in [7]: “Which is the optimal combination

of coding and CPM for a given bandwidth efficiency

and detector complexity?” Considering all possible

CPM pulse shapes and receiver designs would render

a prohibitively large search space. Hence, we restrict

our search to{2, 4}-Gaussian frequency shift keying

(GFSK), in fading channels. Due to its benefits outlined

earlier, bit-interleaved coded GFSK is considered. The

coherent detectors used in [2], [3], [7] are limited

by complexity and susceptibility to phase estimation

errors. We hence use the noncoherent (differential) soft-

decision differential phase detector (SDDPD) [9] which

with sequence detection, was shown to outperform [10]

some popular differential detectors such as the limiter

discriminator integrator [11] and the differential phase

detector [12]. Different from [9] and [10] where the

SDDPD with Viterbi decoding gives hard estimates on

the modulated symbols, we develop a soft-out SDDPD

(SO-SDDPD) that generates bit-wise log-likelihood ra-

tios (LLRs) for the modulated symbols.

The Shannon capacity is the natural benchmark for

BICM, since it is now possible to signal within1

dB of the blocklength-constrained capacity using “off-

the-shelf” capacity- approaching binary codes [13]. In

this paper, we outline a method for determining the

Shannon capacity under BICPM constraints. For our

proposed system, we use the constrained capacity as a

metric to drive the search for the most energy efficient

combination of GFSK parameters and code rate over

a wide range of spectral efficiencies. Our approach

hence differs from the traditional methods of selecting
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Fig. 1. System model.

CPM parameters based on maximizing Euclidian dis-

tance [2], [3], [5], [14]. The key benefit of a capacity

based selection of CPM parameters is that it explicitly

takes into account the tradeoff between code rate and

modulation parameters, which is fundamental to the

considered problem. Such an approach (to the best of

our knowledge) has not been previously proposed.

BICM performance could be improved by feeding

soft information back from the decoder to the demod-

ulator, a process termedBICM with iterative decoding

(BICM-ID) [15], [16] and has been applied to the

BICPM paradigm in [6], [7]. We did simulate BICM-

ID for our system, but for the range of parameters

considered in this paper, there were no significant im-

provements over BICM. Hence a discussion on BICM-

ID has been omitted from this paper.

II. SYSTEM MODEL

The system model is shown in Fig. 1.

A. Transmitter and Channel

A vector u ∈ {0, 1}Nu of message bits is passed

through the binary encoder to produce a codeword

b′ ∈ {0, 1}Nb . b′ is multiplied by a permutation matrix

Π to produce the bit-interleaved codewordb = b′Π.

b is arranged in alog2 M×Na matrix B such that, the

matrix elementBi,k = bk log2 M+i. Each column ofB

is mapped to one ofM symbols (natural mapping) to

produce the symbol sequencea ∈ {±1,±3, ...,±(M−
1)}Na , where,Na = dNb/ log2 Me. The M -ary, base-

band GFSK signal in the intervalkT ≤ t ≤(k + 1)T

is

x(t,a) =
√

Px exp
(√−1ϕ(t,a)

)
, (1)

wherePx = Es/2T with symbol energyEs and symbol

periodT . The phase of the GFSK signal can be written

as [12]

ϕ(t,a) = πh
∞∑

i=−∞
ai

∫ t

−∞
g(τ − iT )dτ, (2)

where h is the modulation index, andg(τ) is the

response of the Gaussian shaping filter to a rectangular

pulse of durationT . In particular for GFSK,

g(t) = [Q(−cBgt)−Q(−cBg(t− T ))] /T, (3)

where c =7.546 and BgT is the normalized3 dB

bandwidth of the filter. TheQ function is given by

Q(x) = (2π)−1/2
∫∞
x exp(−y2/2)dy.

The GFSK modulated signal at the output of a

frequency nonselective, Rician channel is

r′(t,a) = c(t)x(t,a) + n′(t), (4)

where,

c(t) =
√

Ps +
√

Pdξ(t). (5)

Ps is the power gain of the direct signal component,Pd

is the power gain of the diffused component, and the

RicianK-factor is given byK = Ps/Pd. Ps andPd are



normalized such thatPs + Pd = 1. WhenK = 0, the

channel is Rayleigh and whenK = ∞, the channel is

AWGN. ξ(t) is a zero mean, complex Gaussian fading

process with variance1/2 in each complex dimension.

Lastly, n′(t) is additive, zero-mean, complex white

Gaussian noise with power spectral densityNo/2.

B. Receiver

The received signalr′ is passed through a front-end

receive filter that removes the out-of-band noise. The

filter noise bandwidth (Bn) is assumed to be greater

than the signal’s99% power bandwidth, hence the

signal remains sufficiently undistorted by the filter. The

signal at the output of the filter is

r(t,a) = c(t)x(t,a) + n(t), (6)

where,n(t) is bandlimited Gaussian noise. The phase

of the filtered signal can be written as

φ(t,a) = ϕ(t,a) + η(t), (7)

where the phase noiseη(t) is as defined in [12].

The SO-SDDPD finds the phase difference between

successive symbol intervals. The received phase dif-

ferences are used to produce bit-wise LLRsz, which

are deinterleaved (z′) and passed to the input of a

channel decoder. The decoder usesz′ in its local/

internal iterations (assuming the decoder is iterative)

and generates estimates of the data bits, denoted asû.

III. SO-SDDPD

The SO-SDDPD finds the phase difference between

successive symbol intervals as

∆φk = (∆ϕk + η(tk,a)− η(tk − T,a)) mod 2π, (8)

for k = 0, 1, ..., Na − 1. Assuming the GFSK induced

ISI extends up toZ symbols [12],

∆ϕk = πh

(Z−1)∑

i=−(Z−1)

ak−i

∫ iT

iT+T
g(t)dt. (9)

From (9), it is seen that∆ϕk will assume one ofMZ+1

values. The phase region between0-2π is divided

into R sub-regions. The detector finds one of theR

possible sub-regions (Dk), in which ∆φk lies. The

sequence of sub-regionsD = (D0, D1, ..., DNa−1)

is then sent to a branch metric calculator. Let

∆ϕi = (∆ϕi
0, ∆ϕi

1, ...∆ϕi
Na−1) be the phase differ-

ences corresponding to any transmitted sequenceai =

(ai
−1, a

i
0, a

i
1, ..., a

i
Na−1), whereai

−1 is used to initialize

the detector trellis. The branch metric calculator finds

the conditional probabilities of receivingD, given∆ϕi

i.e.P (D|∆ϕi). The metric for theith path in the trellis

at a symbol intervalk is [9]

P (Dk|∆ϕi
k) = P (%1

k ≤ ∆ϕi
k < %2

k) (10)

= 1 + F (%2
k|∆ϕi

k)− F (%1
k|∆ϕi

k), %
1
k ≤ ∆ϕi

k < %2
k

= F (%2
k|∆ϕi

k)− F (%1
k|∆ϕi

k), otherwise.

%1
k and %2

k are the boundaries of the sub-regionDk.

The branch metrics are precalculated and stored in a

MZ+1 × R look up table. The nonlinear functionF

for M -GFSK can be derived from [12].

The SO-SDDPD estimates the LLR forBi,k as

Zi,k = log
∑
B(1) αk−1(s′)γk(s′, s)βk(s)∑
B(0) αk−1(s′)γk(s′, s)βk(s)

, (11)

where, α, β and γ are the metrics in the BCJR

algorithm.B(1) is the set of state transitions{Sk−1 =
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Fig. 2. BICPM capacity of2-GFSK (h = 0.7, BgT = 0.25)

and4-GFSK (h = 0.21, BgT = 0.2) in a Rayleigh channel, under

the constraint of using SO-SDDPD. The SO-SDDPD usesR = 40

uniform phase regions for2-GFSK andR = 26 uniform phase

regions for4-GFSK.

s′} → {Sk = s} corresponding toBi,k = +1 andB(0)

is defined similarly forBi,k = 0. The branch metric is

γk(s′, s) = P (Dk|∆ϕk).

The LLRs in the matrixZ can be arranged into a vector

z such that,zk log2 M+i = Zi,k. The deinterleaved LLRs

from the demodulator (z′) is fed to the channel decoder,

which after performing a certain number of iterations,

forms estimates of the data bitŝu.

IV. CAPACITY UNDER BICPM CONSTRAINTS

The mutual information between a channel inputx′

and outputy′ is defined as [18]

I(x′, y′) =
∫ ∫

p(x′, y′) log2

p(x′, y′)
p(x′)p(y′)

dx′dy′. (12)

The channel capacity is simply the mutual information

maximized over all possible input distributions

C = max
p(x′)

I(x′, y′). (13)

However, in a practical system, the input distribution

is constrained by the choice of the modulation param-

eters. The capacity is hence the mutual information

between the bit at the modulator input and the LLR

at the demodulator output. Additionally, BICM trans-

forms the channel intolog2 M parallel channels such

that the capacity of theith channel in nats is [8]

Ci = Ea,n,c,s′→s[log(2) + log p(bi|r)]. (14)

E denotes the expectation operation, which is per-

formed over all possible symbolsa, fading coefficient

c, noisen and state transitionss′ → s. It is assumed

that the fading coefficientc(t) = c remains fixed over

the duration of a state transitions′ → s. Further, since

the trellis sections are identical, the subscript denoting

symbol intervals can be dropped from the equations.

The above equation can also be written as

Ci = log(2) + Ea,c,n,s′→s

[
log p(bi|r)

p(bi=0|r)+p(bi=1|r)
]

= log(2)− Ea,c,n,s′→s

[
log p(bi=0|r)+p(bi=1|r)

p(bi|r)
]

= log(2)− Ea,c,n,s′→s

[
log

{
exp log

p(bi = 0|r)
p(bi|r) +

exp log
p(bi = 1|r)

p(bi|r)
}]

. (15)

Since themax ∗ operator can also be written as [19]

max ∗{x, y} = max(x, y) + log {1 + exp{−|y − x|}} .

Ci = log(2)− Ea,c,n,s′→s

[
max ∗

{
log

p(bi = 0|r)
p(bi|r) ,

log
p(bi = 1|r)

p(bi|r)
}]

. (16)



Now assigningy = log p(bi=1|r)
p(bi|r) andx = log p(bi=0|r)

p(bi|r)
Ci can be written as

Ci = log(2)− Ea,c,n,s′→s [max(x, y)+ (17)

log {1 + exp{−|y − x|}}] .

The above equation can also be expressed as

Ci = log(2)− Ea,c,n,s′→s

[
max ∗{0, zi(−1)bi}

]
.

Since the capacities of parallel channels add, the

BICPM capacity is simply

C =
log2 M∑

i=1

Ci

=
log2 M∑

i=1

log(2)− Ea,c,n,s′→s

[
max ∗{0, zi(−1)bi}

]
.

The ergodic BICPM capacity when converted to bits

per channel use of our system is now

C = log2 M − 1
log(2)

log2 M∑

i=1

Ea,c,n,s′→s [max ∗{0,

zi(−1)bi}
]
. (18)

Since a convenient closed form integral does not exist,

(18) is found using Monte Carlo simulations. Since the

soft-outputsz are influenced byR andZ, the capacity

is also constrained by the detector design. Fig. 2 shows

the constrained BICPM capacity versusEs/No for 2-

GFSK (h = 0.7, BgT = 0.25) and4-GFSK (h = 0.21,

BgT = 0.2) in Rayleigh fading, using SO-SDDPD with

R = 40 and R = 26 respectively. The information

theoretic minimumEs/No (min{Es/No}) at code rate

Rc is found by reading (from a figure similar to

Fig. 2, with the appropriate GFSK parameters) the

value of Es/No for C = Rc log2 M . The information

theoretic minimumEb/No (min{Eb/No}) to achieve an
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Fig. 3. Information theoretic minimumEb/No (min{Eb/No})
in dB at different2BcodedTb for a rate5/6 coded{2, 4}-GFSK,

with SO-SDDPD based BICPM, in Rayleigh fading. The numbers

denote modulation indices corresponding to GFSK parameters with

the lowestmin{Eb/No} at different2BcodedTb.

arbitrary low BER at a givenRc is nowmin{Eb/No} =

min{Es/No}/Rc log2 M , sinceEs = EbRc log2 M .

V. CAPACITY BASED SELECTION OFGFSK

PARAMETERS

The parameters of interest, viz,Rc, M , h and

BgT can take on a wide range of values. Practi-

cal considerations dictate that the selection of GFSK

parameters and code rates at different spectral ef-

ficiencies must be done under some constraints. In

this paper, we limit ourselves to code ratesRc ∈
{6/7, 5/6, 3/4, 2/3, 1/2, 1/3, 1/4, 1/5}. The spectral

efficiency is measured by the normalized double-sided

99% coded bandwidths (2BcodedTb) (Tb is the bit pe-

riod). We constrain the search to the representative set,

2BcodedTb ∈ {0.4, 0.6, 0.8, 0.9, 1.0, 1.2}. {2, 4}-GFSK



are considered, and to limit complexity the detector

always assumesZ = 2. Unless specified otherwise,

SO-SDDPD uses uniformly spaced phase sub-regions

such thatR = 40 for M = 2 andR = 26 for M = 4,

also z are generated using the log-MAP algorithm

[19]. Similar to [12], BgT = 0.5, 0.25 and 0.2 are

considered.

Using the signal power spectral densities, at each

Rc, the value ofh is found that meets the required

2BcodedTb for each value ofBgT andM . This is done

using the relationship betweenRc and uncoded power

spectral density from [3]. Using (18),min{Eb/No} is

found for all allowable combinations ofM , h, BgT

andRc at each2BcodedTb. Fig. 3 showsmin{Eb/No}
versus2BcodedTb whenRc = 5/6. At each2BcodedTb,

there are6 combinations ofM , h andBgT (due to our

search constraints), out of which the GFSK parameters

yielding the lowestmin{Eb/No} are selected. Since it

is not feasible to list the36 different values ofh, only

those values corresponding to the lowestmin{Eb/No}
at each spectral efficiency are listed in Fig. 3. As an

example for2BcodedTb = 1.2, M = 2, h = 0.7, BgT =

0.25 has the lowestmin{Eb/No} with Rc = 5/6.

For a givenBgT , as the spectral efficiency decreases,

the allowable value ofh increases. Typically (but not

necessarily), larger values ofh result in lower values

of min{Eb/No}. Since by loweringBgT , we can have

a larger value ofh for the same2BcodedTb, it may be

possible to reducemin{Eb/No} by selecting smaller

values ofBgT . However, reducingBgT increases the

GFSK induced ISI, whereas our detector accounts only

for adjacent symbol interference (Z = 2). Hence, when

BgT is lowered beyond a certain value, the benefits of

an increasedh may be offset by unaccounted GFSK

induced ISI at the receiver as is evident from Fig. 3.

A similar search was conducted for all listed values

of Rc. This gives us the set ofM , h and BgT

with the lowestmin{Eb/No} at different 2BcodedTb

for each of the considered code rates. The search is

further narrowed to find the combination ofRc and

GFSK parameters that have the lowestmin{Eb/No}
for a particular spectral efficiency. This is illustrated

in Fig. 4 for 2BcodedTb = 0.8. Shown here is the

lowest min{Eb/No} for each of the differentRc. For

our proposed system, it is apparent thatRc = 3/4

with M = 4, h = 0.25 and BgT = 0.5 has the

best energy efficiency at2BcodedTb = 0.8. Fig. 4

also illustrates the tradeoff between between code rate

and GFSK parameters at a fixed bandwidth efficiency.

As Rc is lowered from6/7 to 3/4, improvement in

the energy efficiency is seen. However, whenRc is

lowered below3/4, the scaling of GFSK parameters

(primarily h) not only offsets any potential coding gain,

but in fact worsens the performance by increasing the

min{Eb/No}. The combination of GFSK parameters

and code rates with the lowestmin{Eb/No} at the

different spectral efficiencies is listed in Table I for a

Rayleigh channel and in Table II for a Rician channel

(K = 6 dB). It is observed that for the considered

BICPM system,4-GFSK outperforms2-GFSK except

at the worst considered spectral efficiency. It is ob-

served that with increasingK, the best code rate tends
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Fig. 4. GFSK parameters with the lowest information theoretic

minimum Eb/No (dB) for various code rates at2BcodedTb = 0.8

in Rayleigh fading. At2BcodedTb = 0.8, it is seen thatRc = 3/4

with M = 4, h = 0.25 and BgT = 0.5 has the best energy

efficiency for BICPM with SO-SDDPD.

to increase for each value of2BcodedTb.

VI. ERRORRATE SIMULATIONS

Bit error rate (BER) simulations were performed for

the proposed BICPM system using the UMTS turbo

code [20] to demonstrate the utility of the constrained

capacity as a performance measure. Codeword length

of Nb = 6720 bits was used. While the mother code

rate is Rc = 1/3, rate matching was performed to

obtain higher code rates. At everyEb/No, at least30

frame errors were logged.

The BER after16 turbo decoder iterations for our

proposed BICPM system with4-GFSK (h = 0.24,

BgT = 0.5) in Rayleigh fading is shown in Fig.

5 (solid curve). Here, a rate2/3 turbo code was

used, which for the considered GFSK parameters gives

TABLE I

COMBINATION OF CODE RATES ANDGFSK PARAMETERS WITH

LOWEST INFORMATION THEORETIC MINIMUM Eb/No UNDER

THE CONSTRAINT OF USINGSO-SDDPDIN RAYLEIGH FADING

AT DIFFERENT 2BcodedTb.

2BcodedTb Rate M BgT h min{Eb/No} dB

0.4 3/4 4 0.2 0.195 18.15 dB

0.6 2/3 4 0.2 0.21 18.08 dB

0.8 3/4 4 0.5 0.25 12.38 dB

0.9 2/3 4 0.5 0.24 11.99 dB

1.0 2/3 4 0.5 0.3 11.44 dB

1.2 5/6 2 0.25 0.7 11.34 dB

2BcodedTb = 0.9. The simulatedEb/No required to

achieve an arbitrarily low BER (assumed10−5) is

found from Fig. 5 to be12.93 dB. This combination of

code rate and GFSK parameters gives2BcodedTb = 0.9

andmin{Eb/No} = 11.99 dB (Table I). The simulation

results reveal that it is indeed possible to signal within

1 dB of the information theoretic limit by simply using

an off-the-shelf binary turbo code.

While signalling at specific spectral efficiencies,

performance comparisons between coded and uncoded

systems must be made at the same bandwidth effi-

ciency. Fig. 5 shows the BER comparison between

our proposed BICPM system and an uncoded system,

also detected using the SO-SDDPD. The parameters for

uncoded GFSK areM = 2, h = 0.5 and BgT = 0.3

which gives2BuncodedTb = 0.9 (incidently these values

of M , h andBgT are used in the GSM specifications).

A coding gain of16 dB is observed at BER= 10−5.
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Fig. 5. BER for SO-SDDPD (R = 26) based BICPM using a

rate2/3 turbo code in Rayleigh fading. Shown is the BER after16

decoder iterations. The coded GFSK parametersM = 4, h = 0.24

andBgT = 0.5 with Rc = 2/3 give2BcodedTb = 0.9. Also shown

is the BER for uncoded, SO-SDDPD (R = 40) detected GFSK. The

uncoded GFSK parametersM = 2, h = 0.5 andBgT = 0.3 give

2BuncodedTb = 0.9.

VII. C ONCLUSION

The Shannon capacity of bit-interleaved coded CPM

under modulation, channel, and detector constraints is

a very practical predictor of system performance due

to the availability of off-the-shelf capacity-approaching

binary codes. Since most CPM systems and their

associated demodulators are too complex to admit a

closed-form solution, a method for determining the

constrained capacity using Monte Carlo integration has

been proposed. A soft-out, soft-decision differential

phase detector has been developed for noncoherent

detection of GFSK signals. For a select range of

code rates, spectral efficiencies and GFSK parameters,

the BICM capacity under modulation and SO-SDDPD

TABLE II

COMBINATION OF CODE RATES ANDGFSK PARAMETERS WITH

LOWEST INFORMATION THEORETIC MINIMUM Eb/No UNDER

THE CONSTRAINT OF USINGSO-SDDPDIN RICIAN FADING

(K = 6 dB) AT DIFFERENT 2BcodedTb.

2BcodedTb Rate M BgT h min{Eb/No} dB

0.4 3/4 4 0.2 0.195 15.38 dB

0.6 5/6 4 0.5 0.18 11.67 dB

0.8 5/6 4 0.5 0.29 9.09 dB

0.9 3/4 4 0.5 0.285 8.87 dB

1.0 2/3 4 0.5 0.3 8.83 dB

1.2 6/7 2 0.25 0.76 8.39 dB

design constraints has been calculated in Rayleigh and

Rician fading. This constrained capacity is used to

identify the combination of GFSK parameters and code

rates with the best energy efficiency for a desired

spectral efficiency.

Due to the large number of variables involved,

we had to limit the search space. Even under these

constraints,576 different capacity calculations were

required to generate the two final tables. An extension

of this work could be to considerM > 4, more values

of BgT , code rates, bandwidth efficiencies and receiver

architectures (such as coherent receivers or SO-SDDPD

with Z > 2). Since the search space is so large, a more

efficient way to go through the search space could be

to use a gradient algorithm or even an evolutionary

algorithm.
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