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ABSTRACT

Synchronization for Capacity-Approaching

Coded Communication Systems

Jian Sun

The dissertation concentrates on synchronization of capacity approaching error-correction
codes that are deployed in noisy channels with very low signal-to-noise ratio (SNR). The
major topics are symbol timing synchronization and frame synchronization.

Capacity-approaching error-correction codes, like turbo codes and low-density parity-
check (LDPC) codes, are capable of reaching very low bit error rates and frame error rates
in noisy channels by iterative decoding. To fully achieve the potential decoding capability of
Turbo codes and LDPC codes, proper symbol timing synchronization, frame synchronization
and channel state estimation are required. The dissertation proposes a joint estimator of
symbol time delay and channel SNR for symbol timing recovery, and a maximum a posteriori
(MAP) frame synchronizer for frame synchronization.

Symbol timing recovery is implemented by sampling and interpolation. The received
signal is sampled multiple times per symbol period with unknown delay and unknown SNR.
A joint estimator estimates the time delay and the SNR. The signal is rebuilt by interpolating
available samples using estimated time delay. The intermediate decoding results enable
decision-feedback estimation. The estimates of time delay and SNR are refined by iterative
processing. This refinement improves the system performance significantly.

Usually the sampling rate is assumed to be a strict integer multiple of the symbol rate.
However, in a practical system the local oscillators in the transmitter and the receiver may
have random drifts. Therefore the sampling rate is no longer an exact multiple of the symbol
rate, and the sampling time follows a random walk. This random walk may harm the system
performance severely. The dissertation analyzes the effect of random time walks and proposes
to mitigate the effect by overlapped sliding windows and iterative processing.

Frame synchronization is required to find the correct boundaries of codewords. MAP
frame synchronization in the sense of minimizing the frame sync failure rate is investigated.
The MAP frame synchronizer explores low-density parity-check attributes of the capacity-
approaching codes. The accuracy of frame synchronization is adequate for considered coded
systems to work reliably under very low SNR.
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Chapter 1

Introduction and Problem Statement

Synchronization is an important step in establishing communication connections. Although

it is often ignored by general users, the problem of synchronization must be considered

by designers and appropriately handled in all types of communications. For example, a

television must scan each line in accordance with the transmitter in order to rebuild each

frame of video. There are 25 (PAL format) or 30 (NTSC format) frames every second.

The television ought to synchronize each frame so that viewers can obtain fluent consistent

images. Likewise, a cell phone user must synchronize with the base station in order to receive

and make calls.

For a digital communication receiver, the procedure of synchronization consists of esti-

mating the parameters of received signals besides the unknown data. Like other estimation

problems, synchronization becomes more difficult when the signal is corrupted by noise. Nev-

ertheless communications at very low signal-to-noise ratio (SNR), where signals are severely

corrupted by noise, is of great interest because

1. It is desirable to keep transmission power at a level as low as possible in order to

prolong a transmitter’s battery life.

1
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Figure 1.1: Diagram of digital transmitter.

2. Lower transmission power reduces inter-user interference.

3. For the overall system, lowering the required receive power helps to expand coverage

and increase capacity.

Channel-capacity-approaching foward error-correction (FEC) codes, like turbo codes and

low-density parity-check (LDPC) codes, are capable of achieving highly reliable communi-

cations at very low SNR. However, their performance is sensitive to synchronization errors.

Their potential can only by obtained when proper synchronization is available. This disser-

tation focuses on symbol timing synchronization and frame synchronization for turbo codes

and LDPC codes in very low SNR circumstances. The proposed techniques are applicable to

communication systems with moderate data rate (below several Mega bits per second) and

low to moderate code rate (below 1/2). New techniques are proposed to help coded systems

recover the performance loss due to improper synchronization. The proposed solutions are

suitable for applications in deep-space, satellite, fixed-wireless, or wireline communications.

1.1 System overview

Synchronization assures that the receiver is clocked in accordance with the transmitter. A

diagram of a typical transmitter used within a digital communication system is shown in

Fig. 1.1. Information is transmitted in the form of digital symbols. The source is a flow of

random data. The symbols could be analog signals sampled and quantized to digital format,

or inherently digital data. Forward error correction (FEC) codes are implemented to increase

reliability by managing redundancy in the transmitted signals. A channel encoder adds
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controlled redundancy into the source sequence so that errors can be corrected or detected

at the receiver.

A scrambler, or channel interleaver, is used to break the correlation in the coded sequence.

When the signal propagates through a fading channel, the received version tends to have

burst errors. A scrambler helps to break the burst errors into random errors. It is needed

when the coding method, like turbo coding, is not as good at correcting burst errors as

correcting random errors. The scrambler also helps synchronization.

A digital modulator maps the scrambled sequence onto a complex constellation. Pulse

shaping makes the transmitted signal comply with bandwidth constraints. Usually pulse

shaping is implemented by concatenation of a transmit filter and a receive filter in the

transmitter and the receiver respectively. Let gT (t) and gR(t) denote the impulse-response

functions of the transmit filter and the receive filter. The pulse shape function g(t) is a

convolution of gT (t) and gR(t).

g(t) = gT (t) ∗ gR(t) (1.1)

If raised cosine (RC) roll-off pulse shaping is used, then the pulse shape function will be

g (t) = sinc (πt/T )
cos (παt/T )

1− 4α2t2/T 2
. (1.2)

where α is the roll-off factor and T is the symbol duration. When the pulse is longer than

one symbol duration, then adjacent symbols may overlap, causing inter-symbol interference

(ISI). One property of RC pulse shapes is that g(0) = 1, and g(kT ) = 0, for k 6= 0, so

it satisfies Nyquist’s criterion for zero ISI [1]. A carrier modulator up-converts the base-

band signal to an intermediate frequency (IF) and then a radio frequency (RF) suitable for

propagation in wireless channels.
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Figure 1.2: Channel model with time delay τ , flat fading gain a(t), and additive
noise w(t).

The transmitted signal in baseband representation is

x (t) =
√

Es

∞∑
i=−∞

digT (t− iT ) (1.3)

where {di} is the coded symbol sequence. If binary phase-shift-keying (BPSK) modulation

is used, then di = ±1. Es is the transmitted energy per coded symbol.

The signal x(t) is sent over a wireless channel, which affects the signal in several ways,

as shown in Fig. 1.2. One characteristic of the channel is that it delays the signal by an

unknown time τ , and it is the estimation of τ that is the main problem confronted by this

dissertation. The time delay τ is decomposed into two parts

τ = µT + τs, (1.4)

with µ an integer and τs in the range of [−T/2, T/2]. µ presents the shift of the symbols and

is estimated by a frame synchronizer. τs denotes the timing offset within a symbol duration

and is recovered by a symbol timing synchronizer.

In addition, the wireless channel acts as a linear time-varying filter. In the case of flat

fading [2], the channel multiplies the signal by a time varying gain a(t). Gaussian white

noise w(t) is then added to the received signal, and the noise spectral density is N0/2. When

a(t) = 1, the channel is only corrupted by additive white Gaussian noise (AWGN), and so

such channels are simply called “AWGN”.
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Figure 1.3: Diagram of digital receiver.

A receiver, shown in Fig. 1.3, picks up signals from the channel. The receiver is designed

to recover transmitted data correctly. The receiver must be synchronized with the transmit-

ter’s carrier frequency, phase, symbol timing and frame timing. The carrier frequency and

phase synchronization is usually achieved by inserting pilot tones and/or pilot symbols [3].

Achieving symbol and frame synchronization requires additional signal processing.

A carrier demodulator down-converts the RF signal to baseband for further processing.

Perfect carrier frequency synchronization is assumed in this dissertation. An ideal automatic

gain controller (AGC) normalizes the average magnitude of the received signal to a constant.

In Fig. 1.3, the input of the matched filter is

y (t) = a (t) x (t + τ) + w (t) (1.5)

The matched filter has impulse response

gR (t) = gT (T − t) . (1.6)

The matched filter maximizes the output signal-to-noise ratio in an AWGN channel [4]. The

output of the matched filter is

r (t) =
√

Es

∞∑

k=−∞
a (t) dkg (t− kT + τ) + wR (t) . (1.7)
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The additive noise wR(t) becomes colored because of the matched filter and has autocorre-

lation function

Rw (ν) = N0g (ν) . (1.8)

r(t) is sampled N times per symbol. N is normally an integer though we also consider non-

integer values of N in Chapter 4. If the sampler fails to sample r(t) at the correct timing, the

receiver will suffer from signal energy loss and inter-symbol interference. A symbol timing

synchronizer helps the sampler to estimate and track the timing offset τ within one symbol

period. A frame synchronizer is inserted to find the starting point of a codeword. If the

frame synchronizer fails to locate the correct position, the whole codeword is lost. The

combination of the matched filter and the sampler is referred to as a digital demodulator. It

is the counter part of the digital modulator in the transmitter.

While either a hard or soft decision could be made on the demodulator output, soft

decisions are preferred because they provide more information to the decoder [1]. The de-

scrambler permutes the received sequence back to its original order. The channel estimator

estimates the channel state, including the propagation gain, phase (if the receiver is co-

herent), and noise variance. The channel estimator also provides SNR estimates which are

needed for soft-input decoders that are required for typical decode capacity-approaching

codes like turbo codes and LDPC codes.

The decoder seeks the most probable transmitted data sequence based on the demod-

ulated data signals. Usually soft-input iterative maximum a posteriori (MAP) decoding

processes are implemented to decode turbo codes and LDPC codes, using side information

generated by the channel estimator. Decoding is iterative and greater coding gain is achieved

after each round of iterations until the incremental increase in coding gain diminishes. The

decoding process stops when it reaches a maximum number of iterations or the decoding
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result has converged to a valid codeword. Intermediate decoding results are available after

the first decoding cycle. The interim results enable the use of decision-feedback estima-

tion for improved accuracy in symbol timing recovery, frame synchronization, and channel

estimation.

A sink is the destination of data transmission, where the quality of performance is evalu-

ated in terms of bit error rate (BER) and frame error rate (FER). Lower error rate correspond

to more reliable connections.

Symbol timing synchronization and frame synchronization play important roles in the

receiver. Existing techniques and issues in symbol timing synchronization and frame syn-

chronization are introduced next.

1.2 Packet transmission and packet processing

One important setting used in this research is that coded data are transmitted in individual

packets. This is a valid model used in time division multiplexing (TDM) systems, peer-to-

peer communication systems, and ad hoc systems, where a global clock is unavailable. The

receiver must synchronize with the transmitted packet based on the signals it receives.

In continuous transmission mode, all data are transmitted in a strict sequence. In con-

trast, a packet-based transmitter sends frames of data individually with pauses between

transmissions, as illustrated in Fig. 1.4. The guard time is set long enough to prevent

packets from overlapping. During the guard time, no data are transmitted, and the empty

symbols during the guard times are referred to as “blanks”. In this work, a packet contains

one whole codeword that is either turbo coded or LDPC coded, and the terminology of

“frame” is interchangeable with “packet” and “codeword”.

The concept of packet processing using oversampling and interpolation is becoming at-

tractive thanks to the availability of high-speed analog-to-digital converters and tremendous
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Figure 1.4: Packet transmission.

computational power. The received signal is sampled multiple times each symbol to preserve

information including data and channel characteristics. Processing is restricted to a finite

length observing window, which contains samples of the complete frame, as shown in Fig.

1.4.

In the remainder of this dissertation, we make the following assumptions:

1. The channel is AWGN. Therefore only additive Gaussian noise is considered.

2. The channel is quasi-static and so the SNR is fixed for a frame, but changes indepen-

dently from frame to frame.

3. The time delay τ is unknown and may drift during a frame.

1.3 Symbol synchronization

The receiver must sample the output of the matched filter at the right timing. In a noise-free

environment, an example matched filter output is shown for BPSK modulated data in Fig.

1.5. The transmitted data is [+1, -1, +1, -1, +1, +1, -1]. The pulse shaping uses raised

cosine pulses with roll-off factor α = 0.5. If the waveform is sampled with correct timing, as
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Figure 1.5: Waveform in noise-free channel. BPSK modulation is used. The
transmitted data is [+1, -1, +1, -1, +1, +1, -1]. Raised cosine pulse shaping
is used with roll-off factor α = 0.5.

the pulses shown in Fig. 1.5, values with maximum SNR will be obtained. Otherwise the

receiver will suffer from symbol energy loss and ISI.

1.3.1 Traditional symbol timing synchronization

Traditional real-time synchronizers consist of a sampler, a timing error detector (TED),

a loop filter, and a voltage-controlled oscillator (VCO) as shown in Fig. 1.6. The TED

generates τ̂ , which is an estimate of τ , or, alternatively, the timing error ε = τ − τ̂ . The

looped filter is a low-pass filter over the observation window. The error signal is filtered

by the loop filter and controls the VCO, which locks the sampler’s rate and phase to the

estimated timing information.
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Figure 1.6: Symbol timing synchronizer in continuous time.
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Figure 1.7: Mueller and Müller’s synchronizer.

There are generally two main types of TED. One is decision-aided (DA) and the other

is non-decision-aided (NDA). One widely accepted DA timing error detector is Mueller and

Müller’s method [5] as shown in Fig. 1.7. The matched filter is sampled at the symbol rate,

i.e. only one sample per symbol is needed. A hard decision is made on the sample. Timing

error is determined by comparing the value of samples and the hard decision results.

One category of NDA timing error detectors is derived from the technique proposed by

Gardner [6]. This type uses more than one sample per symbol and is non-decision directed.

A special case of NDA synchronizer is the early-late gate as shown in Fig. 1.8 [7]. In tracking

mode, one of the samplers is tuned before the sampling time by δ, while the other is tuned

after the sampling time by δ. The difference in the samples contains the sign and amplitude

of the timing error.
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Figure 1.8: Early-late gate synchronizer.
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Figure 1.9: Symbol timing synchronizer using ITR.

1.3.2 Interpolation timing recovery

The Nyquist sampling theorem indicates that if the sampling rate is high enough (greater

than the Nyquist frequency), then it is possible to reconstruct the original signal. There-

after, the reconstructed signal can be resampled at the desired timing. The two steps of

interpolation and resampling can be combined into one step to reconstruct the samples.

This processing is called interpolation timing recovery (ITR). A diagram of an ITR-based

synchronizer is shown in Fig. 1.9. A timing error detector (TED) estimates the time delay

between the actual and ideal sampling time [8][9][10][11][12][13][14].

The interpolation method suggested by the sampling theorem is to use a sinc function
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for reconstruction.

sinc (x) =
sin (x)

x
(1.9)

Polynomial functions are more practical than the sinc function. The simplest interpolation

is zeroth order interpolation, which takes the sample value that is closest to the desired

timing instance as the interpolation result. A better interpolation is linear interpolation, or

first order interpolation. It returns a linear combination of the two closest samples to the

desirable position. Although quite simple, it usually gives sufficiently accurate interpolation

results. Higher order interpolations and other non-linear interpolation methods are more

complicated and do not necessarily work better at low SNR. They are likely to boost up

noise, and therefore are not suitable to be implemented for the applications of interest with

very low SNR values.

The output of the matched filter r(t) in (1.7) is sampled N times each symbol period.

Assuming that the time delay is constant during the whole frame (later this assumption is

relaxed), the sample sequence is

r [n] = r

(
nT

N

)

=
√

Es

∞∑

k=−∞
dkg

(
nT

N
− kT + τ

)
+ wR

(
nT

N

)
. (1.10)

Usually N is an integer between 2 and 4. Generally, the greater N is, the more accurate

the timing estimate will be though this increases the system’s complexity by requiring a

higher rate analog-to-digital converter. Also the interpolation benefits from more information

contained in more samples per symbol.

References [8] and [9] explore methods for estimating the time delay using sampling

rates higher than twice the symbol rate. In [8], a square law device is used to remove the
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uncertainty in the random data.

x [n] = |r [n]|2 . (1.11)

The frequency component at the symbol rate is found using a discrete Fourier transform

(DFT)

X =

NLF−1∑
n=−NLF

x [n] e−j2π n
N (1.12)

where LF is the size of an observation window. Due to a property of the DFT, the time

delay in the time domain is transformed to the phase in the frequency domain [15]. Thus

the time delay is estimated by observing the phase angle of the transformation result X,

τ̂ = − T

2π
arg (X) . (1.13)

The function arg(X) is the angle of X, with a value between−π and π, and so τ̂ is in the range

[−T
2
, T

2
). It is shown in [8] that the time delay estimate is unbiased. The operation resembles

a digital phase-locked loop (PLL). The square law operation is a non-linear operation. Other

operations like the absolute value and logarithm are also applicable [9][10].

Lee [10] proposed a method that requires only two samples per symbol and estimates the

time delay as

τ̂ =
T

2π

{
2LF∑

n=−2LF

[|r [n]|2 e−jkπ + < [r (kT ) r∗ [(n− 1) T ]] e−j(n−0.5)π
]
}

. (1.14)

One issue with this TED is that the estimate is biased although the bias is very small. This

issue is mitigated by a modification proposed by [12].

All the techniques described above assume that the time delay is changing slowly so that
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it is constant during the observation interval. They also assume that the sampling rate is a

known integer multiple of the symbol rate. However, the sampling time may drift randomly

due to improper alignment and jitter in the local clocks at the transmitter and the receiver.

Therefore the sampling time is not necessarily fixed. Rather, it wanders according to a

random time walk. There are two types of random time walk. The first type, linear walk,

is a result of using a fractional sampling rate. The second type, random jitter, characterizes

the random drift of the sampling time. If time walk is not properly handled, it may severely

degrade the receiver’s performance.

1.4 Frame synchronization

A frame is a packet of data that conveys a certain amount of information. In this context,

a frame contains a codeword. A frame synchronizer estimate µ in (1.4) and determines the

starting point of a frame. Frame synchronization is required, in addition to other types of

synchronization, to correctly receive the complete packet. The most straightforward method

to achieve frame synchronization is to insert synchronization markers, known as sync words,

into the transmitted sequence. The receiver keeps searching for the markers. If a marker is

detected, then the receiver is ready to read the packet. Usually, the receiver uses a sliding

window to calculate the correlation of the stored sync word pattern and the received signal.

The candidate markers must have good autocorrelation properties, i.e., they have high peaks

when the frame is synchronized and low side lobes when it is not. Barker codes and some

other pseudo-random codes are usually used for their outstanding autocorrelation properties.

The family of Barker codes is shown in Table 1.1.

Fig. 1.10 shows the autocorrelation property of a 13-bit Barker code. In a noiseless envi-

ronment, the autocorrelation has a peak of 13 when synchronized. Otherwise, the correlation

value is no greater than one. An alternative family of sync words which has longer length is
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Length Sync Word

2 1 0

3 1 1 0

4 1 1 0 1

5 1 1 1 0 1

7 1 1 1 0 0 1 0

11 1 1 1 0 0 0 1 0 0 1 0

13 1 1 1 1 1 0 0 1 1 0 1 0 1

Table 1.1: Barker Codes.

shown in Table 1.2.

A likelihood function is established to indicate the probability of frame synchronization

at each position. Let µ be all possible starting points, and L (µ) be the likelihood function.

The likelihood function for the correlation approach is

L (µ) =
Mw−1∑

i=0

r [µ + i] Ws [i] (1.15)

where Mw is the length of the sync word and Ws[i] represents the sync word. There are two

commonly used decision rules, the threshold rule and the maximum rule. For the threshold

rule, as illustrated in Fig. 1.11(a), the frame synchronizer compares the present L (µ) value

against an optimized threshold. Once L (µ) is greater than the threshold, a frame sync is

declared. By the maximum rule, as in Fig. 1.11(b) the index number corresponding to the

maximum of all L (µ) is selected as the most reliable decision. Generally, the maximum rule

is more robust than the threshold rule, but more complex.

One issue with using sync words is that a pattern that is identical or close to the sync

word may also appear in the data. When this occurs, the frame synchronizer may give a

wrong decision. Therefore the frame sync error rate is bounded by a lower limit, called the

random data limit.
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Figure 1.10: Auto-correlation property of 13-bit Barker code.
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Figure 1.11: Decision of frame synchronizers.

In very low SNR circumstances, the signal is severely corrupted by noise. the correlation

result calculated by the frame synchronizer also becomes noisy. The frame synchronizer may

fail to detect the presence of a sync word.

1.4.1 Optimum frame synchronizer for continuous transmission

Optimum frame synchronization for continuous transmission is discussed by Massey for

BPSK modulation in [17]. In continuous transmission, frames are transmitted sequentially
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Length Sync word Length Sync word

7 1011000 19 1111100110010100000

8 10111000 20 11101101111000100000

9 101110000 21 111011101001011000000

10 1101110000 22 1111001101101010000000

11 10110111000 23 10110101101011010000000

12 110101100000 24 111110101111001100100000

13 1110101100000 25 1111100101101110001000000

14 11100110100000 26 11111010011010011001000000

15 111011001010000 27 111110101101001100110000000

16 1110101110010000 28 1111010111100101100110000000

17 11110011010100000 29 11110101111001100110100000000

18 111100110101000000 30 111110101111001100110100000000

Table 1.2: Alternative sync words [16].

and the sync words are surrounded by random data as shown in Fig. 1.12. A maximum

likelihood (ML) synchronizer is proposed as a modification to the correlation approach in

(1.15), taking into account the data that are adjacent to the sync words. Two approximate

algorithms for high SNR and low SNR are provided to reduce the complexity of the receiver.

Lui and Tan [18] extended the ML decision rule to M -ary modulated constellation. Sev-

eral bounds are also given in [18], particularly the random data limit.

1.4.2 Frame synchronization for coded systems

The frame synchronization methods presented above only consider random data, i.e., the

code structure in the received sequence is ignored. If the data are coded, it should be realized
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Figure 1.12: Frame synchronization in continuous transmission mode.

that the frame synchronizer and the decoder can be integrated into a joint estimator so that

sync words are not absolutely necessary. Intuitively frame synchronization is achieved if,

and only if, the received frame corresponds to a valid codeword. Robertson [19] developed

a generalized frame synchronizer, taking into account general coded data. The method

improves the performance by several dB at high SNR.

1.4.3 Packet-transmission and preamble-less frame synchroniza-

tion

In many systems, data are transmitted in separate packets instead of continuous streams.

Robertson [20] discussed optimum frame synchronization for preamble-less packet transmis-

sion. The synchronizer has similar structure as those for continuous transmission. However,

the blanks before and after each packet need to be considered.

Howlader and Woerner [21] [22] applied list synchronization to packet-transmission of

convolutional codes and turbo codes. The code structure, trellis in this case, is considered.

Sync words are coded to be included into the trellis so that the decoder works in synergy

with the synchronizer to detect the correct position of the codeword.

Cassaro and Georghiades [23] proposed the most general frame synchronizer so far, which
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combines a low complexity synchronizer running a threshold rule and a high complexity part

implementing list synchronizer. The former treats the incoming data as uncoded symbols

with the algorithm provided in [18]. If the synchronizer at this stage gives a confident esti-

mate about frame synchronization, then the high complexity part is by-passed. Otherwise,

several candidates with the most significant likelihood are recorded and a decoder is used to

examine the candidates and select the most likely frame sync position. Recursive systematic

convolutional (RSC) codes are considered in [23]. RSC codes are inherently cyclic codes,

therefore a channel interleaver is used to disturb the regular distribution of codewords.

Matsumoto and Imai [24] proposed a frame synchronizer that explores iterative decoding

for packet transmission of LDPC codes. The Gaussian approximation of sum-product decod-

ing [25] is used on the variable nodes after one full iteration. Then the decoder determines

if a potential codeword has been processed. If not, the data are shifted by one symbol and

the decoder repeats the decoding-estimation cycle until a possible codeword is detected.

1.5 Proposed method and dissertation organization

The categories of synchronization and existing techniques are briefly introduced above. Issues

are encountered when deploying powerful error-correction codes, like turbo codes and LDPC

codes, in very low SNR environments. The goal of this dissertation is to find methods of

estimating τ at the low SNR encountered by capacity-approaching codes. A key theme is

that the structure of the code itself is exploited whenever possible.

After giving an overview of capacity-approaching codes in Chapter 2, the dissertation

considers the following issues.
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1.5.1 Joint estimation of time delay and SNR

As shown in Fig. 1.3, MAP decoding of turbo codes and LDPC codes requires knowledge

of the channel. The samples r[n] provide a sufficient statistic for computing the time delay

and channel information. Therefore it is desirable to jointly estimate the time delay and the

channel state. Decision-feedback estimation is implemented to achieve better performance.

Such a joint approach for turbo codes in AWGN channels is proposed and analyzed in Chapter

3. The results were published in IEEE International Conference on Communications 2003

[14], and is accepted for publishing in IEEE Transactions on Communications [26].

The proposed technique is applicable to flat Rayleigh fading channels where the coherence

time is longer than the duration of one frame. The channel is quasi-static which remains

fixed during the interval of one codeword and changes from frame to frame.

1.5.2 Mitigation of time walk

Random time walk has negative impact on symbol timing estimation. Time walk over a

long observation window may accumulate to significant timing offset. In extreme cases, this

may cause cycle slips, and consequently, irreducible burst errors. Its effect is mitigated by

overlapped sliding windows and iterative timing refinery as proposed in Chapter 4 and is

submitted to IEEE Vehicular Technology Conference Spring 2005 [27].

1.5.3 Preamble-less frame synchronization

If sync words are used, they do not convey any information. Due to this fact, the power

efficiency of the system is lowered. This energy loss from sync word insertion is critical

whenever capacity-approaching error correction coding is used in very low SNR. Therefore,

it is desirable to find a frame synchronization method that does not require insertion of sync

words.
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A frame synchronizer for packet-transmission of LDPC codes is developed where no

sync word or preamble is required as described in Chapter 5. The proposed method is to

exploit the inherent parity-check properties of LDPC codes and turbo codes to detect the

starting point of a frame. The algorithm is based on Gaussian approximation of check nodes

and only requires half of a decoding iteration. The complexity of the proposed method is

approximately half that of [24]. It is able to replace the high-complexity component in [23]

in cases that data are LDPC coded or turbo coded. The results are accepted to be published

in Asilomar Conference on Signals, Systems, and Computers 2004 [28].

1.5.4 Integrated system with timing and frame synchronization

We conclude the dissertation by considering an integrated receiver for a turbo coded system

in Chapter 6. The receiver consists of a symbol timing synchronizer, a SNR estimator, a

frame synchronization, and a turbo decoder. The results verify the proposed techniques as

promising approaches to implement efficient receivers for capacity-coded systems.



Chapter 2

Capacity-Approaching Coding

This chapter reviews fundamentals of channel capacity and error correction coding. The

code structure and iterative decoding of turbo codes and LDPC codes are described.

2.1 Channel capacity

The channel capacity C, introduced by the milestone paper of Shannon[29], is the upper

limit of the data rate that can be reached on a noisy channel. If an arbitrary signal is used,

the highest data rate on a Gaussian channel is

C =
1

2
log2

(
1 +

2Es

N0

)
(2.1)

The capacity theory states

1. If the data rate R > C, then there is no possibility to realize error-free data transmis-

sion;

2. If R ≤ C, then there exists a coding scheme to achieve reliable transmission with

arbitrarily small error probability.

22
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The capacity theory itself does not give a solution to how to achieve the capacity. The proof

of the theory suggests that a random code should be used to achieve the capacity. However,

a random code is not realizable because it lacks structure. For quite a long time, the best

performance any code could reach was still a few dB away from the theoretic capacity. It was

in the 1990’s when iterative decoding made the historic leap in coding theory. Turbo codes

and low density parity check (LDPC) codes were demonstrated to be capable of reaching

less than 1 dB from Shannon’s capacity [30] [31]. Turbo codes and LDPC codes represent

practical strategies for approaching capacity by exploiting pseudo-random code structure

and iterative decoding. Turbo codes are constructed on concatenated convolutional codes.

LDPC codes are an ensemble of linear block codes that have sparse parity check matrices.

Fundamentals of coding theory are briefly reviewed below.

2.2 Error-correction codes

Error correction coding is the process of adding redundancy into the data in order to protect

the information from channel errors. A decoder is required at the receiver, which exploits

the structure of the redundancy to estimate the correct data. There are two basic types of

error correction codes, namely, linear-block codes and convolutional codes.

2.2.1 Linear block codes

The linear block codes are based on linear algebra on Galois fields. A linear block code is

specified by the generating matrix G (or the parity check matrix H). The data is represented

by a row vector x of nk bits. The operation

c = xG (2.2)
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expands the space of data bits into a codeword space with a dimension of nn, where G is

a nk × nn matrix. If a binary code is considered, then among all 2nn codes, only a set of

2nk codewords are valid. The distance between valid codewords is defined as the Hamming

distance. And the smallest Hamming distance is the minimum distance, denoted by dmin.

dmin determines the capability of a linear block code to correct and detect errors. The larger

dmin a code has, the more powerful the code is.

The conventional decoding of a linear block code is based on linear algebra in finite Galois

fields [32]. H consists of element vectors in the null-space of G, which means

GHT = 0. (2.3)

The dimension of H is nm × nn, where nm = nn − nk. H defines a set of parity check

equations. If c is a valid codeword, then it must satisfy

cHT = 0 (2.4)

Hard decisions on the received signals are made prior to decoding. The hard decision

result ĉ is the transmitted codeword c disturbed by an error vector e.

ĉ = c + e (2.5)

Because cHT = 0, we obtain

ĉHT = eHT . (2.6)

The decoder finds out e according to eHT and flips the corresponding bits to correct errors.

Decoding errors happen when there are more than dmin/2 errors in ĉ.
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Figure 2.1: The encoder of (7, 5) NSC code.

2.2.2 Convolutional codes

A convolutional code is defined by a finite state machine. Usually the encoder is implemented

with shift registers. Parameters of a convolutional code include the constraint length kc and

code rate r. kc is the number of symbols taken into the convolutional operation. It is the

number of registers plus input. Fig. 2.1 shows the encoder of a non-systematic convolutional

(NSC) code. This code has two registers and one input, therefore it has kc = 3. The encoder

takes in one bit and outputs two bits each symbol period, thus it has a rate r = 1/2.

In Fig. 2.1, v1 and v2 are results of two bitwise convolutional operations. The convolu-

tional coefficients are (1, 1, 1)2 and (1, 0, 1)2 respectively. The subscript ()2 indicates binary

expressions. The code is represented in octal format as (7, 5)8. A parallel-to-serial (P/S)

convertor assembles v1 and v2 into the codeword sequence c. In practice, the codeword is

truncated to a given length.

The Viterbi algorithm (VA) [33] is the most widely used method for performing maximal

likelihood sequence estimation (MLSE). An alternative decoding technique is introduced by

Bahl et al in 1974 [34]. The so-called BCJR algorithm performs maximum a posteriori

(MAP) detection of each data symbol. Although the complexity of the BCJR algorithm is

higher than VA, the BCJR algorithm found its application in turbo codes [30]. The BCJR

algorithm is more suitable for turbo decoding because it can return soft output information

about the probability of each data symbol, while the standard VA only returns decisions on
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Figure 2.2: A diagram of concatenated codes.

the most likely sequence.

2.2.3 Concatenated codes

Concatenated codes provide a way to improve the error-correction capacity using realizable

complexity [35]. A diagram of concatenated codes is shown in Fig. 2.2. Usually a con-

catenated code uses a convolutional code as the inner code and a Reed-Solomon code as

the outer code[32] because the convolutional code is good at correct random errors and the

Reed-Solomon code is capable of correcting burst errors.

The cascaded code in Fig. 2.2 does not have feedback from the outer decoder to the inner

decoder. The two decoders work separately. The turbo codes modifies the code structure so

that the two decoders work in synergy to improve the error-correction power in an iterative

way.

2.3 Turbo codes

Turbo codes are a family of parallel concatenated convolutional codes (PCCC). They are

featured constituent recursive systematic convolutional (RSC) codes, random interleavers,

and iterative decoding.

2.3.1 Encoder

A typical structure of turbo codes consists of two identical constituent recursive systematic

convolutional (RSC) codes. A rate 1/2 RSC code is shown in Fig. 2.3. It has one systematic
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Figure 2.4: Encoder schematic of turbo codes.

output and one parity output. There are two branches of convolution operations. One of

the two branches is fed back and exclusive-ored with the systematic input. This feedback

mechanism makes the encoding process recursive.

As shown in Fig. 2.4, the information bits are fed into Encoder 1 to produce parity bits

z1. An interleaver reorders the information bit sequence randomly or pseudo-randomly. The

interleaved sequence is taken into Encoder 2 to generate z2. Since the systematic part of

Encoder 1 and 2 contains the same information, only one copy of x is transmitted. The code

rate is then approximately 1/3. The puncturing block periodically deletes certain parity bits

to tailor the code rate to a proper higher rate. A P/S block outputs the codeword c.
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2.3.2 Decoder

Assuming an AWGN channel, the received codeword y is a sequence of transmitted data

signal distorted by additive noise. If BPSK modulation is used, then

y = 1− 2c + w (2.7)

where w is a vector of independent identically distributed (i.i.d.) additive noises with vari-

ance σ2 = N0/2. A serial-to-parallel convertor converts y into x̂ and v̂, where x̂ is a soft

decision about data bits x and v̂ is a soft decision about parity bits v. A bit-insertion

block inserts dummy symbols in the places of punctured parity bits. The receiver has two

soft-input soft-output (SISO) RSC decoders as shown in Fig. 2.5. The soft input refers to x̂

and extrinsic information Li
e from another decoder about information bits. The soft output

is usually the log-likelihood ratio (LLR) Λ about data bits, given by

Λi = log

(
Pr (xi = 1 |Y = y )

Pr (xi = 0 |Y = y )

)
. (2.8)

The hard decision on Λi is

x̄k =





1 if Λi > 0

0 if Λi < 0
(2.9)

The LLR derived from observations of the channel is 2y/σ2 in AWGN channels, where σ2

is the variance of the additive noise. The extrinsic information output from the decoder is

defined as

Lo
e = Λ− 2x̂

/
σ2 − Li

e , (2.10)
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Figure 2.5: Decoder schematic of turbo codes.

which is the pure decoding gain achieved from each individual RSC decoder.

The BCJR algorithm is described in detail in Appendix C [36]. For the turbo decoding

process, in the initial state, there is no extrinsic information. Decoder 1 starts decoding

on x̂ and ẑ1, and outputs Lo1
e . Decoder 2 takes z2 and properly interleaved x̂ and Lo1

e ,

and generates soft decisions Λ2 and Lo2
e . This finishes one iteration. Lo2

e is then passed to

Decoder 1 and so starts a new iteration. A given number of iterations are processed before a

hard decision is made on Λ2. The accumulation of extrinsic information helps the decoding

result converge to the correct codeword.

2.4 LDPC codes

LDPC codes are an ensemble of linear block codes that have low density parity check ma-

trices. They are more clearly defined by Tanner graphs. LDPC codes were first presented

in Gallager’s pioneer work in 1961 [37]. They were generally ignored by the coding society

until in the late 1990’s they were re-discovered by MacKay [31] and Urbanke [38]. LDPC

codes are capable of correcting all errors if the Tanner graph is cycle-free.
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2.4.1 Code structure

An LDPC code is a linear block code described by its parity check matrix H. H is sparse,

which means that most entries in H are “0”, and it has very few “1” in each row and column.

The dimension of H is nm×nn. Let Wc be the number of “1” per column, and Wr the number

of “1” per row, where Wr << nn.

The generating matrix G consists of element vectors in the null-space of H. One straight-

forward way to find G is to use row operations (and possible column permutations) to change

H into a systematic form H =

[
PT ... I

]
, then G =

[
I
... P

]
. G obtained from this process

is generally no longer low-density. Hence encoding a LDPC code may have high complexity

[39]. For example, considering a (10000, 5000) LDPC code, the size of P is 5000 × 5000.

We may assume that the density of 1’s in P is 0.5, then there are 12.5 × 106 1’s in P, so

12.5× 106 exclusive-or operations are required to encode one codeword.

Conventional syndrome-based decoding methods are not suitable for LDPC codes because

1. H has a very large size.

2. Randomly generated H is not subject to structural decoding.

3. Hard-decision decoding is inferior to soft-input decoding because channel information

is partly lost which results in an SNR loss of about 2 dB.

A soft-input message-passing algorithm based on the Tanner’s graph [40] is applicable and

contributes to the outstanding error-correcting power of LDPC codes. The following sec-

tions introduce how to describe LDPC codes with graphs and the message-passing decoding

algorithm.
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Figure 2.6: Tanner graph of a product (4, 8) codes.

2.4.2 Graph-based codes

The message-passing algorithm is based on a bipartite graph [38]. The bipartite graph,

frequently referred to as Tanner graph [31], is a graphical interpretation of the parity check

equations. It is bipartite because the vertices are divided into two groups. Every vertex,

or node, in one group is only connected to nodes in the other group, and none of the same

group. In a Tanner graph, the check nodes represent the parity check equations and the

variable nodes denote the symbols in a codeword. The check node i is connected to variable

node j iff hij = 1 in H.

For example, consider an (8, 4) product code

H =




1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1




(2.11)

The corresponding Tanner graph of (2.11) is shown in Fig. 2.6.

2.4.3 Message-passing algorithm

The message passing algorithm is illustrated in Fig. 2.7 for the (8, 4) product code with

the parity check matrix in (2.11) and Fig. 2.6. The algorithm finds MAP decision of each
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Figure 2.7: The message-passing algorithm.

symbol in a codeword based on the received signal. The information held by a check node is

the likelihood that the parity check equation is satisfied, that is, an even number of “1”s are

connected to the check node. For a variable node, the information is the likelihood that “1”

or “0” is transmitted. The message passed around in the decoding process is the extrinsic

information about each variable node (check node) from information gathered from check

nodes (variable nodes) connected to it. As shown in Fig. 2.7(a), the message on path fi → cj

is extrinsic information collected from other variable nodes connected to fi. As shown in

Fig. 2.7(b), the message on path cj → fi is formed by collecting extrinsic information from

other check nodes connected to cj and information from the channel.

Each iteration of the message passing decoding algorithm has two steps. The information

on each variable node is initialized as the soft decision for the corresponding symbol from

the channel. If an AWGN channel is considered, then it is 2y0/σ
2. In the first step, as shown

in Fig. 2.7(a), every check node collects extrinsic information from variable nodes connected

to it, and update the message on path fi → cj. The second step is to update the message

on paths from variable nodes to check nodes as shown in Fig. 2.7(b).

The likelihood ratio of each variable node is updated after each full iteration. Hard

decisions ĉ are made on the codeword symbols. If the parity check equation ĉH = 0 is

satisfied, or the limit of iterations has been reached, then the decision is output to the
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Figure 2.8: Update likelihood on variable nodes.

decision maker. Otherwise, the decoder starts another iteration. The details of the decoding

algorithm in the probability domain are described in Appendix D.

2.5 Conclusion

One important similarity in turbo codes and LDPC codes is that the decoding process is

iterative, fulfilling the turbo principle. The iterative processing feeds back decoding results to

facilitate another round of iteration. Greater coding gain is achieved in each round until there

is no more significant increment. The decoding stops when the decoding result converges to

a valid code word, or the decoder has reached maximum iteration.

This inherent feedback characteristic in turbo codes and LDPC codes enables a library

of decision-feedback estimations. The symbol timing estimation and channel estimation are

among them. The intermediate decoding results are used in these estimators. Once the

system converges, the feedback mechanism improves the accuracy of the estimators, the

reliability of the decoder and, ultimately, improves the system performance.



Chapter 3

Joint Symbol Synchronization and

SNR Estimation

This chapter proposes a method to jointly estimate symbol timing delay and SNR using

samples from a codeword. The sampling rate is two to four times the symbol rate. The sam-

ples form a sufficient statistic of both the time delay and SNR. Estimates of time delay and

SNR are found by a feedforward minimum mean square error algorithm. When a time delay

estimate is available, proper timing is recovered by interpolation. SNR estimates provide

channel reliability information to the soft-input decoder. Applying the turbo principle to

the joint estimation algorithm, accuracy of timing and SNR is refined by decision feedback

estimation.

The chapter begins with a brief review of existing techniques and lower bounds on es-

timation errors. The proposed system structure is described. The chapter then proceed to

introduction of effective SNR, which is an important concept in developing the joint estima-

tion algorithm. The joint estimation algorithm is analyzed and verified by simulation. It is

shown that the proposed method can recover most of the coding gain loss of turbo coded

systems due to random time delay.

34
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3.1 Existing techniques

Although symbol timing synchronization is critical to the performance of turbo coded and

LDPC coded systems, the problem is generally overlooked by researchers. Most publications

assumes that perfect symbol timing is available. Nevertheless, a handful researchers have

published their relative work.

3.1.1 M & M method

Liu et.al. [41] and Nayak et.al [42] discuss the performance of Mueller and Müller’s syn-

chronizer with a phase-locked-loop (PLL) and use it to track timing in systems that are

protected by turbo or low density parity check (LDPC) codes. The authors consider specific

applications in magnetic storage, where the codeword length is no longer than 1000 symbols

and Eb/N0 is around or above 5 dB. Iterative processing can help to refine timing estimation

using intermediate decoding results from turbo decoders. Nayak et.al. [43] derived a lower

bound for iterative timing recovery with a PLL-based structure, which has a gap of 7 dB to

the CRB.

3.1.2 ITR method

Wu et. al. [44] discuss the effect of ITR using the minimum mean square error (MMSE)

algorithm over a sliding window. The objective of ITR is to reconstruct the signal given the

samples and knowledge of the timing offset associated with these samples. The accuracy of

the estimator increases with larger window sizes and higher SNR, but the complexity of this

algorithm grows exponentially with the window size. Hence it is not suitable for low SNR,

where a large window size is required.
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3.1.3 Early-late gate method

Lu and Wilson [45] proposed a front-end synchronizer that uses a combination of an early-

late-gate and decision-feedback. Hard decisions on the code symbols are fed back to the

synchronizer prior to decoding, and therefore the turbo decoder structure is not exploited.

The authors assume perfect initial timing, and use a PLL to track changes in the timing.

3.1.4 Soft information combining

Mielczarek and Svensson [13] investigated the distribution of extrinsic information within a

turbo decoder as a function of timing offset and introduced a soft-bit combining method for

synchronization that employs two separate turbo decoders and generates the likelihood of

each data bit by appropriately combining the two decoder’s soft outputs. While this scheme

provided performance within 0.2 dB of that with perfect timing, it did so at the cost of two

decoders and sampling at four times the symbol rate and it assumed perfect SNR estimates.

This complexity might not be affordable for many receivers. Furthermore, [13] only assumed

a frame size of 256 information bits and a code rate of 1/2, which translated to a very weak

turbo code that operated at high SNR where timing synchronization is less challenging.

3.1.5 Desirable method

The desirable symbol timing synchronization techniques are applicable for low-rate, capacity-

approaching turbo codes operating over AWGN channels with random timing offset, band-

limited pulse shapes, and modest data rates. The solutions are suitable for deep-space,

satellite, fixed-wireless, or wireline communications. The goal of this study is to develop a

synchronization algorithm with performance that is comparable to the one proposed in [13]

but requires only a single turbo decoder.
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3.2 Cramer-Rao bound

Because of noise and other impairments, the time delay estimate τ̂ is a random variable. A

good estimator should give an unbiased estimate of the timing offset, i.e., E [τ̂ ] = τ . A well-

designed estimator should also have a small variance σ2
τ̂ = E

[
(τ̂ − τ)2]. The Cramer-Rao

bound (CRB) defines a lower bound on the variance of the estimation error an estimator can

achieve, regardless of any other unknown parameters [46]. In other words, it sets the limit

for the precision of estimation, and also provides a benchmark for estimating the timing

offset when the SNR is known.

The CRB for timing estimation is addressed by Georghiades and Moeneclaey [47], and

Mengali and D’Andrea [11]. The normalized CRB is

σ2
τ̂

T 2
≥ 1

8π2ξL
· 1

Es/N0

, (3.1)

where L is the observing window size, i.e. the number of symbols used in the estimator. ξ

is a constant related to pulse shaping. For RC pulse shaping

ξ =
1

12
+ α2

(
1

4
− 2

π2

)
. (3.2)

When the roll-off factor α = 0.5, the normalized CRB of timing estimation is

σ2
τ̂

T 2
≥ N0

Es

(
7
6
π2 − 4

)
L

. (3.3)

As shown in Fig. 3.1, the CRB is inversely proportional to the SNR and the window

size. This implies that the variance σ2
τ̂ can be decreased by increasing the SNR or using a

larger observation window. When Es/N0 = 0 dB, the normalized CRB of symbol-by-symbol

(L = 1) timing estimate is 0.1331. However, the lower bound is 1000 times smaller when we



38 CHAPTER 3. JOINT SYMBOL SYNCHRONIZATION AND SNR ESTIMATION

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Es / No (dB)

R
oo

t N
or

m
al

iz
ed

 M
C

R
B

L = 1

L = 10

L = 100

L = 1000

Figure 3.1: Root normalized CRB for different window sizes and raised-cosine
roll-off factor α = 0.5.
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base our estimate on a data sequence whose length is 1000 symbols.

3.3 Joint time delay and SNR estimation

The turbo coded system considered in this work is shown in Fig. 3.2. The system consists of

a matched filter. The output of the matched filter is sampled N times per symbol period. N

is assumed to be an integer with typical value between two and four. For clarity, the diagram

shows N samplers, each clocked at the symbol rate at sample instants that are shifted from

one sampler to the next by T/N . A practical synchronous sampling implementation would

use a single sampler clocked at N times the symbol rate [6]. Each of the N samplers

passes its samples of the entire codeword to a block that calculates an online statistic for

that sampler. This online statistic is related to effective SNR. All the samples are stored in

memory according to their sampling order, forming N sample sequences. The online statistics

are then passed to an estimator that jointly performs timing estimation and SNR estimation.

With the switches being placed in position 1, the timing estimate is used to control an

interpolator which combines the samples from the matched filter to yield a sufficient statistic

for each symbol.

The decoder uses the interpolated samples as input. The turbo decoder is implemented

with the maximum a posteriori (MAP) algorithm [30], so it needs an SNR estimate. We

assume that the receiver has perfect carrier and phase synchronization. Furthermore, we

assume that perfect frame synchronization is achieved so that the channel is quasi-static in

the sense that it behaves as an AWGN channel for the duration of the frame and that the

timing offset is constant for the entire frame (although the channel SNR and timing offset

may vary from frame to frame).

The part enclosed by dotted lines is the subsystem for decision-aided estimation. Due

to the iterative nature of turbo processing, timing and SNR estimates can be refined using
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Figure 3.2: System model of joint symbol timing synchronization and SNR
estimation in AWGN channels.

decision-aided methods. In order to do this, intermediate decoding results are used as a

reference to the transmitted code word. The turbo decoder runs a few decoding iterations

(local iterations) and then feeds intermediate decisions back to a decision feedback estimator,

forming a global iteration. The switches flip to position 2. The new timing estimate is

used to re-interpolate the samples, reconstructing a new input to the turbo decoder. The

turbo decoder reuses the extrinsic information from previous local iterations, but uses the

new reconstructed samples and SNR estimates for further decoding. The decision feedback

estimation requires knowledge of the energy transmitted per symbol Es (if the code rate is r,

then the energy per information bit Eb is Es/r), therefore an automatic gain control (AGC)

block is needed. We assume that perfect AGC is available so that Es is normalized to unity.

Assuming that (root) raised cosine-rolloff (RC-rolloff) pulse shaping is used, the output
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of the matched filter is

r (t) =
∞∑

k=−∞

√
Esakg (t− kT ) + w (t) (3.4)

where {dk} is the transmitted code sequence, which for BPSK is ak ∈ {−1, +1}, g (t) is the

RC-rolloff pulse shape function with a rolloff factor α [1], and w (t) is additive noise. r (t) is

sampled N times per symbol period, and the kth sample taken by the nth sampler is

rn [k] = r

(
kT +

n− 1

N
T − T

2
+ τ

)
1 ≤ n ≤ N. (3.5)

where τ is the timing offset. The assumption of perfect frame synchronization implies that

−T/2N ≤ τ ≤ T/2N . With perfect timing (i.e. τ = 0) only one sample per symbol is needed

(i.e. N = 1) and the output of the matched filter has no intersymbol interference (ISI). Thus

the SNR of the samples is exactly Es/N0. However, when perfect timing is not available,

the performance may degrade significantly. For RC-rolloff pulse shaping, the performance

degradation is not only due to the loss in received signal power, but also due to the presence

of rather severe ISI.

3.4 Effective SNR

As shown in Fig. 3 of Chapter 1 , improper timing results in signal energy loss and ISI. If

r(t) is sampled once each symbol period, then

r [k] = r (kT ) =
√

Esdkg (τ) +
√

Es

∑

i6=k

dig (kT − iT + τ) + wk. (3.6)

On the right side of (3.6), only the first time contains the required data, modified by g(τ).

The second term in (3.6) represents interference from adjacent symbols, namely ISI. If τ = 0,
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then rk =
√

Esdk + wk. Otherwise the decision on each symbol is affected by symbol energy

loss and possible ISI when pulse shaping is applied. Thus symbol error rate may increases

due to improper timing. The task of a time synchronizer is to estimate τ and compensate

for it.

We define effective SNR in comparison with channel SNR. The effective SNR is a function

of both the channel SNR and the timing offset. It indicates the SNR loss due to time

delay. When the received signal is free of noise, the error caused by non-perfect timing is

r (kT ) − √
Esdk, where w (t) = 0. The timing error results in interference from adjacent

symbols and a loss in received signal energy. It is characterized by the normalized mean

squared error (MSE) [48]. When a RC pulse is used for pulse shaping and timing offset

τ 6= 0, this MSE is

M(τ) =
∞∑

k=−∞

∞∑
j=−∞

mk−jg(τ − kT )g(τ − jT )− 2
∞∑

k=−∞
mkg(τ − kT ) + m0, (3.7)

where mk is the autocorrelation of the coded sequence {xk}. Assuming that the xk’s are

independent and zero-mean, the autocorrelation of the coded sequence is mk = 1 if k = 0,

and zero elsewhere. Therefore, the mean squared error is

M (τ) =
∞∑

k=−∞
g2(τ − kT )− 2g(τ) + 1. (3.8)

Note that this is an even function of τ .

Because the ISI is independent of the channel noise, it could be modeled as an additional

Gaussian noise component [13]. More specifically, we define the effective SNR β as the SNR

at a particular timing offset when all the effects are counted including the additive noise,

the ISI, and the loss of signal power. It can be expressed as a function of both the channel
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Figure 3.3: BER performance of a rate 1/3 turbo code with fixed timing offset.
Interleaver size = 1530. Constituent convolutional codes have constraint length
= 4.

SNR β0 and the timing offset τ .

β (τ, β0) =
g(τ)Es/N0

2M (τ) Es/N0 + 1
(3.9)

where β0 = β (0, Es/N0) = Es/N0.

Fig. 3.3 shows the BER performance of a turbo code with fixed timing offset. The

code uses the structure as defined in cdma2000 standard [49]. The coding rate is 1/3, and

constituent RSC code is (15, 13). The interleaver size is 1530. BPSK modulation is used

with raised-cosine pulse shape, where α = 0.5. The decoder uses log-MAP [30] with 10

iterations. The coding gain loss for τ = 0.1T is about 0.25 dB at a BER of 10−5, and over 1

dB for τ = 0.2T . This loss illustrates the sensitivity of turbo codes to timing synchronization

errors. This coding gain loss is also the difference between the effective SNR and the actual

channel SNR at the given timing offset. Thus the effective SNR is a good way to characterize



44 CHAPTER 3. JOINT SYMBOL SYNCHRONIZATION AND SNR ESTIMATION

the loss in coding gain.

3.5 Feedforward estimation

3.5.1 Online statistics

Since multiple samples per symbol are taken, they can be used to first estimate the effective

SNR and then solve (3.9) for τ and β0. If a set of N ≥ 2 effective SNR values and the timing

differences between them are known, an equation array can be established using (3.9). Now

with N ≥ 2 equations and two unknowns, it is possible to jointly determine β0 and τ .

Interpolation can help to recover the loss in signal energy when there are multiple samples

available.

Successful implementation of the joint estimation strategy requires fairly accurate es-

timates of the effective SNR for each of the N sample positions averaged over the entire

frame. To compute the effective SNR estimate, we use the approach proposed by Summers

and Wilson [50] which computes online statistics using sample means of r2
n and |rn|, i.e.

ŝn =
1

K

K∑

k=1

r2
n [k]

/[
1

K

K∑

k=1

|rn [k]|
]2

(3.10)

where K is the number of symbols in a frame. The online statistics are of interest because

they are directly related to SNR and do not require knowledge about data. As K approaches

infinity, the sample means become expected values,

sn =
E [r2

n]

{E [|rn|]}2 =
1 + 2βn[√

2
π
e−βn +

√
2βnerf

(√
βn

)]2 = f (βn) (3.11)

where βn = β
(

n−1
N

T − T
2

+ τ, β0

)
, 1 ≤ n ≤ N . Since βn is a function of β0 and τ , sn is also
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related to β0 and τ . The following terminologies are used now and hereafter. Let x be a

parameter, for example τ , then x denotes the actual value, while x̂ is an estimate of x.

Fig. 3.4 shows the results of a simulation that compares the estimated and analytical

effective SNRs. Analytical effective SNRs are calculated from (3.9). Non-decision-aided

(NDA) estimates of effective SNRs are obtained by calculating {sn} and inverting (3.11).

In Fig. 3.4 the NDA estimated effective SNR fits the analytical results well for |τ | ≤ 0.1T .

The NDA estimation produces pessimistic results of effective SNRs when 0.1T < |τ | < 0.5T

because, as discussed shortly, the online statistic generates a biased estimator of the effective

SNR.

The received sequence rn [k] , 1 ≤ k ≤ K is a discrete random process, therefore online

statistics calculated by (3.10) are random variables. Before the synchronizer can be designed
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and evaluated, the online statistics must first be characterized. Detailed derivations are

shown in Appendix E. The expected value of ŝn is

E [ŝn] = (1 + 2βn)


 1√

2
π

exp (−βn) +
√

2βnerf
(√

βn

)




2

+

[
g

(
n−1
N

T − T
2

+ τ
)
Es

]2

K

·
(

1 +
1

2βn

) 
1 +

1

2βn

−
[√

2

π
exp (−βn) +

√
2βnerf

(√
βn

)]2

 (3.12)

The first term in (3.12) is exactly the same as the right-hand side of (3.11). However, the

second term in (3.12) is greater than zero, thus the online statistics are inevitably biased.

Since the online statistic sn is a decreasing function of βn, the estimated effective SNR is

always less than the real value. If either K or βn is large, then the second term is negligible

and ŝn is approximately an unbiased estimator. The variance of the online statistic is

V [ŝn] =

[
2σ4

K
+

4σ2

K
+

(
σ2 + Es

)2
] (

4σ2
v + 2σ4

v

)

+

(
2σ4

K
+

4σ2

K

)





 1

σ
√

2
π

exp
(− Es

2σ2

)
+
√

Eserf
(√

Es

2σ2

)




2

+ σ2
v





. (3.13)

where σ2
v is the variance of 1

K

∑K
k=1 |rn [k]|. V [ŝn] decreases when K grows. Intuitively, this

is reasonable because an estimate becomes more reliable with a larger observation window.

3.5.2 MMSE algorithm

The estimation problem is to find the timing offset τ and SNR β0 of the channel based

on multiple sequences of samples obtained from the matched filter. Online statistics are

calculated using these sample sequences. The relationship between {sn} and the pair of
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parameters τ and β0 is

sn = s

(
−T

2
+

n− 1

N
T + τ, β0

)
(3.14)

where s (τ, β0) = f [β (τ, β0)]. Intuitively, the optimal MMSE solution to this problem would

result in a curve-fitting algorithm. The idea is to find the effective SNR curve with a certain

pair of τ and β0 that best fits the existing series of {ŝn}. An example is shown in Fig. 3.5

for N = 4 samples per symbol when τ = 0.13T and β0 = −3.77 dB. The error is defined as

the Euclidean distance of the candidate curve to the values in {ŝn}. The goal is to pick τ̂

and β̂0 that minimizes the following error function

e
(
τ̂ , β̂0

)
=

N∑
n=1

{
s

(
−T

2
+

n− 1

N
T + τ̂ , β̂0

)
− ŝn

}2

(3.15)

The corresponding optimization equations are

∂e
(
τ̂ , β̂0

)

∂β̂0

= 0

∂e
(
τ̂ , β̂0

)

∂τ̂
= 0 (3.16)

Direct solution of (3.16) is difficult. Alternatives are to solve the problem numerically,

or to make assumptions that simplify it. The numerical approach requires a large library of

entries to be stored in look-up tables, and is sensitive to noise. Hence we seek an approach to

simplify the problem by applying a linearized approximation to the relationship of effective

SNR and the pair of parameters (τ, β0) as shown in Fig. 3.5. Since the online statistics {ŝn}
are directly available without needing to compute each β̂n, and uniquely map to the effective

SNR as in (3.14), the algorithm can be directly applied to ŝn.
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3.5.3 Reduced complexity estimation of β0 and τ

Because the exact MMSE solution is complex and sensitive to noise, we have developed the

following reduced complexity method for estimating β0 and τ . An initial estimate of β0 is

found by selecting the minimum {ŝn} and then inverting (3.11),

β̂0 = f−1

(
min

1≤n≤N
ŝn

)
(3.17)

For the curve fitting method, this estimate is used to select the initial candidate curve. In the

linearized approximation β̂0 is used to determine the slope, i.e. the linearized approximation

is

s
(
τ̂ , β̂0

)
= C

(
β̂0

)
|τ̂ |+ ŝ0 (3.18)

where C
(
β̂0

)
is the slope and ŝ0 = f

(
β̂0

)
. Values of C

(
β̂0

)
are found by evaluating the

relationship between online statistics and τ . For a specific β0,

C (β0) =
s (0.5T, β0)− s0

0.5T
(3.19)

Empirical values of C (β0) are found by simulations and are stored in a look-up table. The

linearization approximation of C (β0) is C (β0) = 0.0269β0 + 0.2133, where β0 is in dB.

The optimization function for τ̂ is

∂e

∂τ̂
=

N∑
n=1

2C
(
β̂0

)
sign

(
n− 1− N

2
+ τ̂

)[
C

(
β̂0

) ∣∣∣∣−
T

2
+

n− 1

N
T + τ̂

∣∣∣∣ + ŝ0 − ŝn

]
. (3.20)
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τ̂ is found by setting (3.20) equal to zero. The slope C
(
β̂0

)
6= 0, hence

τ̂ =
T

2N
− 1

C
(
β̂0

)
N

N∑
n=1

[
sign

(
−T

2
+

n− 1

N
T

)
(ŝ0 − sn)

]
. (3.21)

Under the linearized approximation, the true value of τ should satisfy

τ =
T

2N
− 1

C (β0) N

N∑
n=1

[
sign

(
−T

2
+

n− 1

N
T

)
(ŝ0 − s̄n)

]
, (3.22)

where s̄n = E [ŝn]. The mean square error of the timing estimate is found to be

E
[
(τ − τ̂)2] =

1[
C(β̂0)N

]2

N∑
i=1

N∑
j=1

ρijsign

[
(i− 1− N

2
)(j − 1− N

2
)

] √
V [ŝi]V [ŝj], (3.23)

where ρij is the correlation coefficient of si and sj, 1 ≤ i, j ≤ N . This coefficient is symmetric,

ρij = ρji, and is periodic due to the fact that the online statistics count all the samples in a

frame. When α = 0.5, ρi,i+1 = 0.1657, 0.3229 and 0.4792 when N = 2, 3 and 4, respectively.

The root-mean square (RMS) timing error with 2, 3, and 4 samples per symbol using the

proposed joint estimation algorithm is shown in Fig. 3.6. The analytical curves are found

by plotting (3.23). The simulated and analytical results agree, especially as the SNR and

number of samples per symbol gets large.

3.5.4 Interpolation

Once the estimate of τ is available, the interpolator combines information from candidate

samples to construct what the samples would have been, had the waveform been sampled at

one sample per symbol at exactly the proper instant. This is equivalent to reconstructing the

waveform and sampling it with proper timing. These samples are input to the turbo decoder.
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The simplest interpolator is a linear interpolator, which generates a weighted summation of

selected samples. In the proposed strategy, just the two samples that are closest to the

estimated timing offset are selected. The other samples, if available, are not used because

they are subject to higher additive noise, and consequently are not as reliable. Assuming

that the two samples come from the nth and (n + 1)th samplers, then the sampling time

associated with these samples are τ̂n = −T
2

+ n−1
N

T + τ̂ and τ̂n+1 = τ̂n + T/N , respectively.

The result of the linear interpolation is the following statistic for the kth symbol

r[k] = wnrn[k] + wn+1rn+1[k], (3.24)

where the weights wn = |τ̂n+1|
|τ̂n|+|τ̂n+1| and wn+1 = |τ̂n|

|τ̂n+1|+|τ̂n+1| .

This simple interpolation method results in a signal energy loss. However, this loss is

negligible when N > 2 from observation of simulation results. We have also tested higher

order polynomial interpolators [51]. The performance of more complex interpolaters is usu-

ally worse than with using simple linear interpolation because these interpolaters are too

sensitive to noise, so they are not suitable for the low SNR environment where turbo codes

are implemented.

3.5.5 Final estimation of β0

As shown in Fig. 3.5, the linearized approximation reaches its minimum value at

ŝ0 =
1

N

N∑
n=1

[
ŝn + C

(
β̂0

) ∣∣∣∣−
T

2
+

n− 1

N
T + τ̂

∣∣∣∣
]
. (3.25)

When τ̂ is available, a final estimate of β0 is found

β̂′0 = f−1

(
1

N

N∑
n=1

[
ŝn + C

(
β̂0

) ∣∣∣∣−
T

2
+

n− 1

N
T + τ̂

∣∣∣∣
])

. (3.26)
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This estimate is used in the turbo decoder to generate the channel reliability information.

Turbo codes are not sensitive to moderate errors in the estimation of the SNR [50]. Our

simulation also shows that the performance loss due to estimating β0 is negligible.

3.6 Decision-directed refinery

3.6.1 Decision-aided (DA) SNR estimation

When the data is known (or can be accurately estimated), the variance of the additive noise

can be estimated as proposed by Reed and Asenstorfer in [52]. The additive noise includes

the effects of both the channel noise and the ISI. Let σ2 = N0/2 be the variance of channel

noise and σ2
n the additive noise on the n-th sample sequence. Assuming that the transmitted

data is available at the receiver, the variance of the additive noise is a function of (τ, β0) and

can be expressed as

v (τ, β0) = E

[{
r (kT + τ)−

√
Esak

}2
]

= Es

{
[g (τ)− 1]2 + M (τ) +

1

2β0

}
. (3.27)

v (τ, β0) is an even function of τ and v (0, β0) = σ2. The effective SNR is

β(τ, β0) =
g (τ) Es

2v (τ, β0)
(3.28)

The ideal AGC block in the system model normalizes Es. Therefore Es = 1 in the follow-

ing. The validity of (3.27) is verified by simulation as shown in Fig. 3.4. This simulation

uses the estimated variance σ̂2
n derived below and the actual data for decision feedback.

When implemented in a turbo decoder, the feedback simply uses a hard decision of the log-

likelihood ratio (LLR) âk = sign (y [k]), where y [k] is the LLR of the kth information bit.

We also considered soft-decision feedback by using âk = tanh (y [k] /2) but found essentially
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no performance difference when compared with hard-decision feedback.

For limited length sequences, an estimate of σ2
n can be found by replacing the expected

value with the sample mean

σ̂2
n =

1

K

K∑

k=1

[
(rn [k]− ak)

2]. (3.29)

The point estimator defined in (3.29) is an unbiased estimator for v
(

n−1
N

T + T
2

+ τ, β0

)
. Its

variance is

V
[
σ̂2

n

]
=

2

K

[
v

(
n− 1

N
T +

T

2
+ τ, β0

)]2

. (3.30)

Similar to non-decision-aided estimation, we establish the following error function

eDA (τ, β0) =
N∑

n=1

{
v

(
−T

2
+

n− 1

N
T + τ̂ , β̂0

)
− σ̂2

n

}2

, (3.31)

which we wish to minimize with respect to τ̂ and β̂0.

3.6.2 Estimation of β0 and τ

Since v (τ, β0) ≥ σ2, we select the estimate of σ2 as σ̂2 = min
1≤n≤N

σ̂2
n. Thus the corresponding

estimate of the channel SNR is

β̂0,DA =
1

2σ̂2
. (3.32)

The linearized approximation of (3.27) is

v
(
τ̂ , β̂0

)
= CDA

(
β̂0

)
|τ̂ |+ σ̂2 (3.33)
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In our simulations, all candidate CDA (β0) are stored in a look-up table. The linearization

approximation is CDA (β0) = 0.0650β0 + 0.8233, where β0 is in dB.

Similar to the process of (3.20) and (3.21), we find the following DA estimate of τ

τ̂DA =
T

2N
− 1

CDA

(
β̂0,DA

)
N

N∑
n=1

[
sign

(
−T

2
+

n− 1

N
T

) (
σ̂2 − σ̂2

n

)]
(3.34)

The mean square error of the timing estimate is

E
[
(τ − τ̂DA)2]

=
1[

CDA(β̂0)N
]2

N∑
i=1

N∑
j=1

ρ′ijsign

[
(i− 1− N

2
)(j − 1− N

2
)

] √
V [σ̂2

i ]V
[
σ̂2

j

]
(3.35)

When α = 0.5, the correlation values ρ′i,i+1 = 0.537, 0.779 and 0.874 when N = 2, 3 and

4 respectively. These values were calculated using the sample mean and sample variances

of the simulation results. The noise is correlated because the matched filter colors the

additive noise. Therefore w (t) has an auto-correlation function equal to g (t). The root-

mean-square timing estimation error is shown in Fig. 3.7. The analytical curves are found

by plotting (3.35). It is found that with knowledge of the transmitted data, the estimation

error is close to the CRB, but the performance is sensitive to the accuracy of linearized

approximation. When N = 2, or when the channel SNR is high, the linearized approximation

turns inaccurate.

3.7 Simulations

A simulation campaign was completed in order to illustrate the effectiveness of the proposed

estimation techniques. In the simulations, BPSK modulation was used over an AWGN chan-

nel. The timing error was quasi-static in the sense that the offset was constant throughout
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Figure 3.7: Root-mean square error of the decision-feedback timing estimate
for uncoded BPSK modulation with rolloff factor α = 0.5, frame size K =
4590, and N = {2, 3, 4} samples per symbol.
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the frame but varied independently from frame-to-frame according to a uniform distribution.

The timing offset was estimated using the linearized approximation, and a lookup table with

31 candidate slope values was used, with Es/N0 ranging from −4.8 dB to −1.8 dB in 0.1

dB increments. This range corresponds to Eb/N0 between 0 dB and 3 dB when the coding

rate is 1/3. This range was selected because this is where the BER performance of typical

turbo codes changes most rapidly, i.e. the range contains the so-called “waterfall”. Turbo

decoding is performed using the log-MAP algorithm [30].

We define two types of iteration, local and global. A local iteration is merely an iteration

within the turbo decoder. On the other hand, a global iteration is an iteration between

the turbo decoder and the estimator. The number of times the SNR and timing offset are

estimated is equal to the number of global iteration. In all simulations, the total number

of local iterations is set to 10. Systems that do not use decision feedback only execute one

global iteration, while systems with decision feedback execute two global iterations (with five

local iterations per global iteration). The balance between the number of global and local

iterations is important. On the one hand, decision-directed estimation works better when

the intermediate decision is accurate, and thus it is important to not feed back information

prematurely. On the other hand, it is important not to wait too long before feeding back

information to the estimator or else the benefits of the decision-feedback estimator will not

be realized.

As in [13], the first turbo code tested uses a 256 bit random interleaver. The constituent

RSC code uses octal generators (37, 33), and the parity bits are alternatively punctured to

obtain a coding rate of 1/2. The two constituent codes are terminated independently. The

BER performance is shown in Fig. 3.8 for N = 2, 3, and 4 samples per symbol and both the

non-decision-aided and the decision-directed estimation techniques. The performance with

perfect timing and SNR estimates is also shown for comparison purposes. With only two

samples per symbol and non-decision-aided estimation, the BER performance is within 0.8
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Figure 3.8: Performance of turbo code one using the proposed joint tim-
ing/SNR algorithms and N = {2, 3, 4} samples per symbol. The interleaver
size is 256, overall code rate is 1/2, RSC generators (37, 33), and decoding
uses 10 total iterations of log-MAP algorithm.

dB of perfect timing at a BER of 10−4. If a second global iteration is used (decision-feedback

estimation), then this loss is reduced to only about 0.4 dB. With four samples per symbol

and non-decision-aided estimation, performance is within 0.2 dB of perfect timing at a BER

of 10−4, and with decision-feedback estimation the loss is less than 0.1 dB.

The second code that we consider is one of the turbo codes defined in the cdma2000

standard [49]. In particular, an interleaver size of 1530 and overall code rate of 1/3 is

selected, which will make this code significantly stronger than the first code. This code

uses RSC constituent codes with octal generator (15, 13) and interleaver as defined in the

standard. The BER performance is shown in Fig. 3.9, again for N = 2, 3, and 4 samples

per symbol and both estimation techniques. The BER losses in this case are very similar
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Figure 3.9: Performance of turbo code two using the proposed joint tim-
ing/SNR algorithms and N = {2, 3, 4} samples per symbol. The code is as
specified in the cdma2000 standard with overall code rate 1/3 and interleaver
size 1530. Decoding uses 10 total iterations of log-MAP algorithm.

to the losses observed with the first code, indicating that the estimation technique is robust

enough to work with stronger codes and at the corresponding low SNRs. In particular, with

N = 2 and at a BER of 10−4 the loss relative to perfect timing with the non-decision-aided

estimator is 0.8 dB and with the decision-directed estimator is about 0.4 dB. With N = 4

these two losses are 0.2 dB and 0.1 dB, respectively. In the above systems, it is shown

that the BER performance improves as N increases if perfect timing is not available. Data-

directed estimation helps to close the gap, thereby approaching the BER performance with

perfect timing.

In Fig. 3.10, we compare the performance of both codes using our proposed estimation

techniques with the previously proposed soft-combining method of [13] with 4 samples per
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Figure 3.10: Comparison of Mielczarek’s soft-combining method [13] and joint
estimation of SNR and timing offset method with 4 samples per symbol. Code
1: interleaver size = 256, coding rate = 1/2, constituent RSC code is (37, 33);
Code 2: interleaver size = 1530, coding rate = 1/3, constituent RSC code is
(15, 13). Random interleaver is used and 10 iteration.

symbol. While soft-bit combining works better with the weaker code, the proposed joint

estimation techniques outperform it when using the stronger code. This is due to the fact

that the estimation error of the proposed frame-based estimator is inversely proportional

to the window (frame) size. Recall, however, that the method in [13] requires two turbo

decoders running in parallel, while our method only requires a single turbo decoder. The

overall system complexity of the proposed approach is therefore significantly less than the

one proposed in [13].

We also considered a third code, which is much stronger than the first two. This code

is also defined in the cdma2000 standard [49]. The interleaver size is 20730. The code can
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Figure 3.11: Performance of turbo code three using the proposed joint tim-
ing/SNR algorithms and N = {2, 3, 4} samples per symbol. The code is as
specified in the cdma2000 standard with overall code rate 1/3 and interleaver
size 20730. Decoding uses 10 total iterations of log-MAP algorithm.

get a BER of 10−5 at a SNR of 0.23 dB with perfect timing. With only 2 samples per

symbol and non-decision-aided estimation, the coding gain loss is within 0.8 dB of the BER

performance for perfect timing at a BER of 10−4. When N = 2 and one global iteration is

invoked, the coding gain loss is about 0.3 dB at a BER of 10−5. With 4 samples per symbol

and non-decision-aided estimation, the coding gain loss is within 0.05 dB of the BER for

perfect timing at a BER of 10−5. When one global iteration is called, the coding gain loss

does not improve much because of the low SNR.

In all the above simulations, it is found that the performance of N = 3 with global

iteration is comparable to that of N = 4 without global iteration. The performance gain is

achieved at the cost of one call of decision-aided joint estimation and re-interpolation. This
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means we can design a system with a lower sampling rate and additional system complexity

to achieve the similar performance with higher sampling rate and lower complexity.

3.8 Conclusion

Imperfect timing causes a loss in effective SNR which results in a severe BER performance

degradation for timing shifts greater than about 10% of the symbol period. This performance

loss can be recovered by a proper estimation algorithm. However, the situation is complicated

by the fact that the channel SNR over which turbo codes operate is both very small and not

known to the receiver. Also, practical systems are likely to use Nyquist pulse shaping, which

introduces ISI in the presence of timing errors. Our approach to synchronization and SNR

estimation involves sampling the signal multiple times per symbol period and computing an

online statistic for each of the sample instances over the entire frame. These online statistics

are then used to simultaneously estimate the channel SNR and timing offset. A simple

linear interpolation algorithm is then used to reconstruct the matched filter samples at the

estimated timing instants. Tentative decisions from the decoder can be fed back and used

to refine the timing and SNR estimates.

The proposed algorithm recovers much of the loss due to poor synchronization, and does

so with negligible added complexity and latency (compared to that of the turbo decoding

algorithm itself). With feedback from the decoder to the estimator, the simulated coding

gain loss is negligible, i.e. about 0.1 dB with 4 samples per symbol when the interleaver size

= 1530 at a BER of 10−5. Finally, it is noted that the proposed technique is suitable for

more than just turbo codes. Indeed, any system can use the non-decision-aided technique.

Furthermore, since only hard-decisions were fed back from the decoder to the estimator, the

proposed iterative synchronization strategy is suitable for any error control code, not just

those that use soft-output decoders.



Chapter 4

Mitigation of Random Time Walk

This chapter investigates the problem of timing recovery using fractional multiple samples

per symbol. Usually the sampling rate is assumed to be a strict integer multiple of the

symbol rate. A more practical assumption is that the multiple is a real number very close

to a known integer but has an unknown fractional part. The sampler may also have jitter

which makes the sampling time drift in a random manner. This chapter studies the effect

of random time walk on turbo coded systems in very low signal-to-noise ratio environments.

The random time walk is mitigated by overlapped sliding window and decision-feedback

timing recovery.

4.1 Introduction

The concept of symbol timing recovery using oversampling and interpolation is becoming

attractive thanks to availability of high-speed analog-to-digital converters and tremendous

computational power. Usually the received signal is sampled two to four times per symbol. A

timing error detector (TED) estimates the time delay between the actual and ideal sampling

time [8][9][10][11][12][13][14].

63



64 CHAPTER 4. MITIGATION OF RANDOM TIME WALK

The authors of references [8][9][10][11][12] considered feedforward-only non-data-aided

(NDA) estimation for random sequences. Hence the techniques introduced therein are appli-

cable to general system schemes, including coded systems. The precision of timing estimators

is proportional to the length of observation windows as indicated by the lower bounds [11][47].

When the data sequence is coded, especially turbo coded, the system is required to operate

at signal-to-noise ratios (SNR) so low that very long observation windows are required to

achieve desirable accuracy of timing estimation [13][14].

All the above publications assume that the time delay is changing slowly so that it is

constant during the observation interval. They also assume that the sampling rate is a

known integer multiple of the symbol rate. However, the sampling time may drift randomly

due to improper alignment and jitter in the local clocks at the transmitter and the receiver.

Therefore the sampling time is no longer fixed. It wanders with random time walk. There

are two types of random time walk. The first type, the linear walk, is a result of the fractional

sampling rate. The second type, the random jitter, is characterized by the random drifting

of the sampling time.

Barry et al [53] discussed the effect of the random jitter in magnetic storage systems using

powerful convolutional codes. The system is assumed to have zero initial timing offset. The

signal is sampled at the symbol rate. Decision-feedback timing error detector (DF/TED)

using Mueller and Müller’s method [5] is implemented. A turbo equalizer is used to remove

remaining intersymbol interference.

This chapter studies the problem of random walk introduced by both fractional sampling

rate and random drifting. A powerful turbo coded system is considered, therefore very low

SNR values are treated. The application considered is a turbo coded wireless communication

system with moderate code rate and moderate data rate in AWGN channels. The negative

effect of time walk is mitigated by overlapped sliding windows and iterative processing.

When time walk exists, the feedforward timing estimate in an observation window may
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only be applicable to the symbols close to the center of the observation window. A direct

solution is to use overlapped sliding window. This trades computational complexity for

higher accuracy.

An important feature of turbo codes is that the decoding process is inherently iterative.

After one or more decoding iterations, intermediate decoding results are available to enable

decision-feedback estimation. Usually the decision-feedback estimation generates a more

precise estimate of the timing estimate.

The remainder of the chapter is organized as follows. Section 4.2 introduces the system

model of the receiver. Section 4.3 analyzes the effect of random time walk. Timing recovery

techniques are proposed in Section 4.4 to combat random time walk. Section 4.5 presents

simulation results. Section 4.6 concludes the research work.

The following nominating rule is used in the chapter to present continuous and discrete

signals. x(t) is a continuous function, while x[n] is a discrete sequence in the time domain.

j =
√−1 represents the imaginary unit.

4.2 System model

The system model of a receiver which implements timing recovery and turbo decoding is

shown in Fig. 4.1. Without loss of generality, it is assumed that the time walk is introduced

in the receiver. The received signal from an additive white Gaussian noise (AWGN) channel

is

y (t) =
√

Es

∞∑

k=−∞
dkgT (t− kT + τ0) + w (t) , (4.1)

where τ0 is the relative time offset between the transmitter and receiver. Assuming perfect

frame synchronization, τ0 is a random variable with uniform distribution in the range−T/2 ≤
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Figure 4.1: Receiver diagram using over-sampling and interpolation timing
recovery.

τ0 < T/2. τ0 is assumed to be constant during one frame. w(t) is additive white Gaussian

noise. The matched filter has an impulse response of gR(t) = gT (T − t). The matched filter

output is

r (t) =
√

Es

∞∑

k=−∞
dkg (t− kT + τ0) + wM (t + τ0) . (4.2)

wM(t) becomes colored because of the receive filter.

r (t) is sampled multiple times each symbol duration. The desirable sampling rate is

an integer N , for example, two or four samples per symbol [8][10]. However, the actual

sampling rate is Nf = N
1+τ1/T

, where τ1 is the fixed time delay that happens in one symbol

period. There is also random jitter that comes from unexpected variations of the local

clocks in the transmitter and the receiver. Let ξi represent the time jitter in the i-th symbol

period. ξi is assumed to be an independent identically distributed (i.i.d.) Gaussian random

variable with distribution N (0, σ2
t ). The random jitter in the k-th symbol τ2[k] =

∑k
i=k0

ξi

is the accumulation of ξi’s of all symbols of interest with indices k0 ≤ i ≤ k, where k0

is the starting point of the observation window. For the k-th symbol, the total delay is
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τ [k] = τ0 + kτ1 + τ2 [k]. The output of the sampler is

r [n] = r

(
nT

Nf

+ τ2 [n]

)

=
√

Es

∞∑

k=−∞
dkg

(
nT

N
− kT + τ0 +

nτ1

N
+ τ2 [n]

)
+ wM

(
nT

N
+ τ0 +

nτ1

N
+ τ2 [n]

)

=
√

Es

∞∑

k=−∞
dkg

(
nT

N
− kT + τ [n]

)
+ wM

(
nT

N
+ τ [n]

)
. (4.3)

One feature of a turbo coded system is that the decoding process is iterative. While

one round of maximum a posteriori (MAP) decoding is called a local iteration, one round

of timing estimation, interpolation, and decoding process is termed a global iteration. At

least one global iteration is invoked when a codeword is received and decoded. In the first

round global iteration, the switch is placed in position 1. The NDA/TED block finds out an

estimate τ̂ of τ using samples r[n] in an observation window consisting of 2LF + 1 symbols.

τ̂ is then used in the interpolator to reconstruct the signal, known as interpolation timing

recovery (ITR) [14]. The reconstructed samples then enter the soft-input turbo decoder.

After one or more local iterations, decoding results are available to facilitate decision-

feedback time delay estimation. To begin a round of decision-feedback iteration, the switch is

turned to position 2. The DF/TED uses the intermediate decision results and interpolated

samples to calculate the timing difference between the previously estimated timing and

proper timing. The timing estimate is updated by the timing difference. The samples r[n]

are re-interpolated according to the refined estimate τ̂ to generate new input for the turbo

decoder. The extrinsic information is reused in the remaining turbo decoding iterations.

In the following text, it is assumed that one codeword is transmitted as one frame with

perfect frame synchronization. As a quasi-static channel, τ0 is an unknown constant in the

transmission of one frame and τ0 changes from frame to frame. τ1 is a fixed constant for

all frames. For simplicity of analysis, the symbol duration T is normalized and therefore
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omitted.

4.3 Random time walk

To reveal the effect of random time walk, the special case of transmitting a single tone, i.e.,

a sinusoidal signal, in a noise-free environment is analyzed. The results can be extended to

general cases of random data with Nyquist pulse-shaping in AWGN channels. It is assumed

that τ1 ¿ 1, and σ2
t ¿ 1. The received signal is

rs (t) = sin

(
2π

T
t + τ0

)
. (4.4)

The sampled result is

rs [n] = sin
(nπ

N
+ τ0 +

nτ1

N
+ τ2 [n]

)
. (4.5)

The digital filter technique introduced in [8] is used, where a square-law operation is imple-

mented.

x [n] = |rs [n]|2 . (4.6)

The frequency component at the symbol rate is decomposed using discrete Fourier transform

(DFT)

X =
NL−1∑

n=−NL

x [n] e−j2π n
N . (4.7)
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The time delay is transformed to the phase of X and is found by estimate the angle of X.

τ̂ = − 1

2π
arg (X) . (4.8)

The function arg(X) gets the angle of X, where the return value is between −π and π. τ̂

is in the range of [−1
2
, 1

2
). It is shown in [8] that the time delay estimate is unbiased when

τ1 = 0 and σ2
t = 0.

4.3.1 Known linear walk without random jitter

If τ1 is known, then (4.7) can be modified to

X̃ =

dNf (LF +1)e−1∑

n=−bNf LF c
x [n] e

−j2π n
Nf , (4.9)

and the time delay estimate is

τ̌ = − 1

2π
arg

(
X̃

)
(4.10)

If σ2
t = 0, then τ̌ is still an unbiased estimate of τ . It has the same property as τ̂ in (4.8).

4.3.2 Unknown linear walk and random jitter

When τ1 is unknown, the DFT result is

X =

N(LF +1)−1∑
n=−NL

xs [n] e−j2π n
N

=

LF∑

l=−LF

N−1∑
n=0

xs [n + lN ] e−j2π n
N . (4.11)



70 CHAPTER 4. MITIGATION OF RANDOM TIME WALK

Substituting (4.5) and (4.6) into (4.11), we obtain

X =

LF∑

l=−LF

N−1∑
n=0

sin2
{

π
[ n

N
+ τ0 +

(
l +

n

N

)
τ1 + τ2 [l]

]}
e−j2π nk

N

=

LF∑

l=−LF

X l (4.12)

where

X l =
N−1∑
n=0

sin2
{

π
[ n

N
+ τ0 +

(
l +

n

N

)
τ1 + τ2 [l]

]}
e−j2π n

N

=
N−1∑
n=0

1

2

(
1− cos

{
2π

[ n

N
+ τ0 +

(
l +

n

N

)
τ1 + τ2 [l]

]}) (
cos

2πn

N
− j sin

2πn

N

)

≈ −N

4
{cos [2π (τ0 + lτ1 + τ2 [l])] + jsin [2π (τ0 + lτ1 + τ2 [l])]} . (4.13)

The last approximation is valid because τ1 ¿ 1. X l is further decomposed to

X l = −N

4
(cos 2πτ0 + jsin 2πτ0)− N

4

(
∆l

c + j∆l
s

)
, (4.14)

where

∆l
c = 2 sin {π (lτ1 + τ2 [l])} sin {π (2τ0 + lτ1 + τ2 [l])} (4.15)

and

∆l
s = 2 sin {π (lτ1 + τ2 [l])} cos {π (2τ0 + lτ1 + τ2 [l])} (4.16)
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The estimate value is

τ̂ =
1

2π
arctan




LF∑

l=−LF

∆l
s + N sin 2πτ0

LF∑

l=−LF

∆l
c + N cos 2πτ0




. (4.17)

It is clear from (4.17) that the effect of random time walk resembles noise around the con-

stellation of (N cos 2πτ0, N sin 2πτ0) in the Cartesian coordinates. The estimation error ε in

a noise-free environment has three parts

ε = γ1τ1 + γ2 + LF γ3. (4.18)

γ1 and γ2 are both functions of τ0, τ1, and τ2. γ3 is related to τ2. The absolute value of

estimation error caused by linear walk when τ1 = 0.01 and σ2
t = 0 is plotted in Fig. 4.2

against τ0/T . The estimation error is periodic and is apparently a sinusoidal curve. The

magnitude of the curve is limited by τ1. Note that this estimation error is only applicable

to the center of the observation window. Other symbols have greater errors because the

accumulation of time walk. When LF τ1 is close to or greater than 1, cycle slips happen

which cause burst errors.

Fig. 4.3 illustrates the relationship between LF and the mean square estimation error

of NDA/TED, when σ2
t = 3× 10−8. Sinusoidal signal is transmitted in a noiseless channel.

The estimation error is averaged over τ0 in [−T/2, T/2). The mean square errors are average

values from 10,000 trials of simulation. The estimation error grows when LF increases. This

is because the accumulated random jitter is the sum of Gaussian random variables which

has a greater variance. It is shown that an error floor appears when σ2
t 6= 0. When LF τ1 is

close to or greater than one, the estimation error increases exponentially.
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Figure 4.2: Timing estimation error due to unknown linear walk with N = 4,
τ1 = 0.01, and σ2

t = 0. τ1 is unknown to the receiver.

Fig. 4.4 depicts the performance of NDA/TED in terms of mean square estimation error

in an additive white Gaussian noise (AWGN) channel with τ1 = 10−3 and σ2
t = 10−6. The

curves are compared with the lower bound given by the Cramer-Rao bound [11]. Generally,

the greater size the observation window has, the more precise estimate it produces. However,

the error floor illustrated in Fig. 4.3 may prevent the estimate from converging no matter

what the SNR is, as shown in Fig. 4.4. It is also shown that the TED with longer obser-

vation window suffers more from random jitter. There exists a trade-off between estimation

precision and observation window size.

As previously mentioned, the symbols close to the boundaries of observation windows

tend to have significantly greater errors than those close to the center of the windows. One

straightforward solution is to use overlapped sliding windows. The estimation result in one

observation window is only applied to the symbols in the middle of that window. The

observation window moves along the frame to cover other symbols. Higher computational
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Figure 4.3: Mean square estimation error of NDA/TED in noiseless channel
in the presence of random jitter, with N = 4 and σ2

t = 3× 10−8.

complexity is traded for more accurate estimates for each symbol in a frame.

4.4 Iterative symbol timing recovery

It is shown in Section 4.3 that the time walk imposes irreducible estimation error in the

feedforward NDA/TED. Intuitively, if the precision of time estimation is increased, then

the overall system performance can be improved accordingly. As indicated in the system

diagram of Fig. 4.1, decision feedback iterations are invoked to refine the timing estimate

and improve the overall receiver performance. Soft decision is made on the log-likelihood

output of the turbo decoder.

di
k = tanh

(
Li

k/2
)
, (4.19)
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Figure 4.4: Mean square timing estimation errors of feedforward estimators
for observation window sizes LF = 30 and LF = 300 with N = 4, τ1 = 10−3,
and σ2

t = 10−6. BPSK modulated random data with rectangular pulse shaping
is used.

where Li
k is the log-likelihood ratio of the k-th symbol in the i-th decoding iteration. The

decision-feedback TED introduced by Mueller and Müller (M&M) [5] is used. Let si
k denote

the interpolation result and di
k be the intermediate result in the i-th global iteration of the

k-th symbol. The error is calculated as

ei
k = di

k−1s
i
k − di

ks
i
k−1. (4.20)

A moving average is used to implement the loop filter

ψi
k =

ω

LB

LB−1∑

l=0

ei
k. (4.21)
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The time delay estimate for each symbol is updated individually by

τ̂ i+1
k = τ̂ i

k − ψi
k. (4.22)

One issue with M&M method is that it works well only when the bit error rate (BER) is less

than 10−2 [7]. Hence it is necessary to only use reliable decision for the data, which means

that the receiver must wait a few local iterations before the first decision-directed timing

estimation can start.

The number of local iterations must be specified to evaluate the computational complexity

of the whole system. In this research, the receiver runs a total of ten decoding iterations.

If decision-directed feedback estimate is used, then the receiver runs two global iterations,

with five local iterations in each global iteration.

4.5 Simulation study

The analysis and proposed techniques in previous sections are verified by Monte-Carlo sim-

ulations. A rate 1/3 turbo code is used as an example of powerful error-correction codes.

It is capable of reaching BER lower than 10−4 at Eb/N0 = 1 dB in AWGN channels. The

interleaver size is 1024. The constraint length of the constituent convolutional code is 4. The

turbo decoder runs a total number of 10 decoding iterations. Random data are encoded, and

(root) raised-cosine pulse shaping is used with fall-off factor α = 0.5. The received signal is

corrupted by additive white Gaussian noise. The ideal sampling rate is N = 4, while linear

walk and random jitter may exist. τ1 and σ2
t are normalized about T .

When the observation windows are non-overlapped, the estimated timing delay is applied

to the entire observation window, i.e., all the symbols in the sliding window are assumed to

have the same time offset. This setting makes the symbols close to the borders of the sliding
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Figure 4.5: Bit error rate performance of turbo coded system with known linear
walk. Timing delay is estimated by (4.9) and (4.10). Observation windows are
not overlapped.

window have less accurate timing estimate. In extreme cases, this setting may cause cycle

slips when LF is large and yield burst errors. A channel interleaver is used to combat this

deficiency.

When τ1 is known to the receiver, the NDA/TED uses the exact value of Nf as shown

in (4.9) and (4.10). Fig. 4.5 shows the BER curves of the turbo coded system with known

fractional sampling rate when σ2
t = 0. As pointed out in Section 4.3.1, there is no particular

difference when τ1 changes. Although the same data and noise sequences were used in the

simulation, the results are not exactly the same because the samplers were sampling the

sequences at different timing. Therefore the turbo decoders have different input values and

decoding results.

If τ1 is unknown to the receiver, then the NDA/TED uses N = 4. In the feedforward-

only case, timing estimates are generated once by the NDA/TED and the decoder iterates
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Figure 4.6: BER performance of feedforward-only turbo coded system when
τ1 = 10−4 and σ2

t = 0. τ1 is unknown to the receiver. Observation windows
are not overlapped.

10 times until the log-likelihood ratio is used for hard detection of the transmitted data.

Fig. 4.6 shows the BER performance when linear walk exists and no random jitter using

non-overlapped windows. The case of interest is when τ1 = 10−4, σ2
t = 0, the NAD/TED

uses different observation window sizes, LF = 100, 200, 400, and 800. The two curves of

LF = 100 and 200 shows that these window sizes are too small to provide accurate timing

estimate. LF = 400 is superior to LF = 800 because the latter is so large that cycle slips

appear at the borders of the observation windows.

Fig. 4.7 shows the BER curves when τ1 = 0, σ2
t = 10−5 with non-overlapped windows.

The same values of LF as in Fig. 4.6 are tested, and similar curves are obtained. Because

the timing jitter is random, it is shown that when LF = 400, the probability of cycle slips is

lower than that when LF = 800.

Fig. 4.8 shows the BER curves when LF = 400 with various combinations of τ1 and σ2
t
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Figure 4.7: BER performance of feedforward-only turbo coded system when
τ1 = 0 and σ2

t = 10−5. τ1 is unknown to the receiver. Observation windows
are not overlapped.

using non-overlapped windows. When τ1 = 10−3, σ2
t = 0 and τ1 = 0, σ2

t = 10−4, the system

fails to synchronize. When τ1 = 10−4 and σ2
t = 10−5, the two effects of linear walk and

random jitter add up to degrade the BER performance even more severely. Error floors are

observed when σ2
t 6= 0.

The proposed techniques to mitigate time walk are examined. Overlapped sliding win-

dows are used to combat the cycle slips caused by linear walk. The factor γ indicates the

proportion of one observation window overlapped by adjacent windows. For example, if

γ = 90%, and LF = 400, then each window is shifted by 2× (1− 90%)× 400 = 80 symbols.

The estimated time delay in this sliding window is applied to the 80 symbols in the center.

Decision-feedback is also tested to refine the time estimate. The decoder iterates five

times before output decision to the DD/TED. Samples are re-interpolated by the refined

timing estimate and extrinsic information from previous iterations is reused in the rest five
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Figure 4.8: BER performance of feedforward-only turbo coded system
when LF = 400. Observation windows are not overlapped.

decoding iterations. ω = 0.5 and LB = 400 are selected so that maximal improvements on

BER performance are achieved.

Fig. 4.9 demonstrates the effect of overlapped sliding window and decision feedback

timing refinery when linear time walk exists. It compares the BER curves of feedforward and

feedback schemes, and non-overlapped and overlapped sliding windows with τ1 = 4× 10−4,

σ2
t = 0, and LF = 400. At BER of 10−3, there is a gap of about 0.4 dB from the BER

curve of using non-overlapped sliding window and feedforward-only timing estimate to the

curve with no time walk (τ1 = 0, σ2
t = 0). If the sliding window are 75% overlapped, the gap

decreases to about 0.2 dB at BER of 10−3. When the sliding windows are non-overlapped,

decision feedback timing refinery helps to recover more than 0.1 dB SNR losses at BER of

10−3. However, when 75% overlapped observation windows are used, the decision feedback

only slightly improves the BER performance. The overlapped sliding window and iterative

processing fail to provide further improvement when Eb/N0 > 1 dB and an error floor is
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Figure 4.9: BER performance of decision-feedback iterative timing re-
covery when LF = 400, τ1 = 4× 10−4, and σ2

t = 0. The DF/TED uses
LB = 400 and ω = 0.5.

present.

Fig. 4.10 illustrates the effect of overlapped sliding window and decision feedback timing

refinery when random jitter exists. It is shown that 75% overlapped sliding window can

improve the BER performance as much as 0.15 dB. When non-overlapped sliding windows

are used, the BER curve is shifted towards the left by approximately 0.05 dB. When 75%

overlapped windows are used, decision feedback can only slightly improve the performance.

The BER curves with time walks reaches error floors when Eb/N0 > 0.8 dB.

4.6 Conclusion

The effect of random walk is studied. The timing estimate error is not only related to the

random walk, but also related to the size of observation window. To mitigate the negative
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Figure 4.10: BER performance of decision-feedback iterative timing
recovery when LF = 400, τ1 = 0, and σ2

t = 4 × 10−5. The DF/TED
uses LB = 400 and ω = 0.5.

effects of time walk, we propose the following methods to design a turbo coded system with

random time walks.

1. Channel interleaver must be used to combat burst errors.

2. Appropriate observation window size must be selected to compromise estimation pre-

cision and the possibility of cycle slips.

3. Overlapped sliding windows can be used to mitigate the effect of linear walks.

4. Iterative timing refinery can be used to improve the BER performance.

Combination of the following requirements should be fulfilled to select the proper window

size

1. For linear walk, LF τ1N should be less than one-tenth of T .
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2. For random jitter, Pr [τ2 > T/N ] ¿ 1.

Both channel scramblers and overlapped sliding windows remarkably improve the BER

performance. It is found that the decision feedback timing refinery can only contribute slight

improvement to the BER performance especially when 75% overlapped observation windows

are used. Error floors of the BER curves are observed when significant time walk exists. The

error floor is produced by cycle slips. Further work to enable the system of detecting and

correcting cycle slips would improve performance.



Chapter 5

Optimum Frame Synchronization for

LDPC Codes

A MAP frame synchronization method in the sense of minimizing the probability of frame

sync error for LDPC coded system is introduced. This method is based on properties of

low-density parity-check and does not require the insertion of sync words or preambles. The

algorithm computes the LLR of receiving even number of 1’s at each check node. The sum

of all LLR values, which is related to the probability of receiving a valid codeword, forms a

metric on the probability of frame synchronization. This metric is a function of candidate

frame starting point. The position with highest value is selected. For the considered LDPC

codes, frame sync failure rates lower than 10−2 are achieved at Eb/N0 less than 2 dB.

The proposed frame synchronizer is applicable to turbo codes exploiting the low-density

parity-check properties of turbo codes. A turbo code is described as a special LDPC code.

By using an additional scrambler, the MAP frame synchronizer also works for turbo codes.

For the considered turbo codes, frame sync failure rates lower than 10−4 are achieved at

Eb/N0 less than 3 dB.

83



84 CHAPTER 5. OPTIMUM FRAME SYNCHRONIZATION FOR LDPC CODES

�

��� ������	 
 �

� � ����

��� ����
� �� ��� �

Figure 5.1: The buffer structure and estimation issues.

5.1 System model

The frame synchronization problem is presented in this section. A packet of data is LDPC

encoded, transmitted, and received, corrupted by additive noise. Let d = {di} denote the

transmitted signal, and w = {wi} be i.i.d. additive Gaussian noise. wi has zero mean and

variance N0/2, where N0 is the one-side power spectrum density of additive noise. The

received signal y = {yi} is

y = d + w (5.1)

Assuming each symbol is sampled once with perfect symbol timing synchronization, the

samples of received signal are stored in a buffer as shown in Fig. 5.1. The location µ0 where

the codeword starts is unknown. It is assumed that the codeword is completely contained in

the buffered samples. This assumption is valid if a coarse frame estimator is available, for

example, by using the carrier power sensor as in [24]. The buffer size is lL, where L is the

codeword length and l > 1 is the normalized observation window size. The problem is to

estimate µ0, 0 ≤ µ0 ≤ lL− L, from the whole frame of samples y = {yi}, 0 ≤ i < lL. If the

estimate µ = µ0, then frame synchronization is achieved. Otherwise, there is a failure.

The frame synchronization problem is a detection problem. The problem is to examine

y against two hypotheses. The null hypothesis H0 means that there exist cycle slips of a few

symbols. The alternative hypothesis H1 is that frame synchronization is achieved.
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The maximum a posteriori probability (MAP) frame synchronizer in the sense of maxi-

mizing frame sync acquisition rate maximizes the following probability

Pr [µ |y ] , µ ∈ [0, lL− L] (5.2)

which means the probability of µ when receiving the sample frame y. It denotes the a

posteriori probability (APP).

The following components of the samples in Fig. 5.1 are taken into account. At position

0 ≤ i < µ and µ + L ≤ i < lL, no data is sent, therefore di = 0, and it is referred to as

a blank. Assuming that BPSK modulation is used, then di = ±1 for µ ≤ i < µ + L. C is

the set of all valid codewords in GF(2), C = {c : cHT = 0}. Let C̃ denotes the modulated

version of C. If {di, · · · , di+L−1} is modulated from a valid codeword c, then {di, · · · , di+L−1}
is also a valid codeword in the sense that {di, · · · , di+L−1} ∈ C̃.

The maximizing problem is now

Pr [µ |y ]

= Pr [{d0, · · · , dµ̄−1} = 0 |y ] · Pr
[
{dµ̄−1, · · · , dµ̄+L−1} ∈ C̃ |y

]

· Pr [{dµ+L, · · · , dlL} = 0 |y ]

=

(
1√

2πσ2

)lL−L µ−1∏
i=0

exp

(
− y2

i

2σ2

) lL−1∏
i=µ+L

exp

(
− y2

i

2σ2

)

· Pr
[
{dµ, · · · , dµ̄+L−1} ∈ C̃ |y

]
(5.3)

The two products in (5.3) account for the blanks in head and tail, where only noise presents.

The last probability term in (5.3) requires a decoder because it examines the argument

if {dµ, · · · , dµ+L−1} is a valid codeword, where inference is drawn on the observation of

{yµ, · · · , yµ+L−1}. The frame synchronizer diagram is illustrated in Fig. 5.2. Implementation
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Figure 5.2: Diagram of frame synchronizer.

issues will be discussed in the following section.

5.2 LDPC codes and gaussian approximation

LDPC codes are based on low-density parity-check matrices H. The dimension of H is M×L.

M is the number of parity-check bits. K = L −M is the data word length. Regular codes

are considered in this context where the row weight Wr and column weight Wc are constants

for all rows and columns respectively. The proposed method is also applicable to irregular

codes. Assuming BPSK modulation and additive white Gaussian noise (AWGN) channel,

then the received signal y ignoring blanks is a sequence of antipodal signals corrupted by

additive noise.

Let Ri denotes the set of indices that Ri = {j : hij = 1} and ci = {cj : j ∈ Ri} where cj

is the jth bit in c. The parity check equation is satisfied when there are an even number of

ones in ci. This probability can be computed by the decoder using

qi = Pr [Even number of 1’s in ci] =
1

2
+

1

2

∏
j∈Ri

(1− 2pj). (5.4)
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where

pj = Pr [cj = 1 |yj ] (5.5)

In the log-domain, the log-likelihood ratio (LLR) is

Qi = log

(
qi

1− qi

)
=

∏
j∈Ri

αj · φ
[∑

j∈Ri

φ (βj)

]
(5.6)

where

αj = sign

[
log

(
pj

1− pj

)]
, βj =

∣∣∣∣log

(
pj

1− pj

)∣∣∣∣ .

and

φ (x)
∆
= − log tanh

(
1

2
x

)
= log

ex + 1

ex − 1

Due to the low-density property of the parity-check matrix, there are only a few entries

involved in each parity-check equation.

Provided c is a valid codeword, then {Qi} is a set of identically distributed random

variables, which can be approximated as Gaussian distributed random variables, denoted as

N (mc, 2mc) [25]. The statistics about Qi are derived from simulations as shown in Fig. 5.3.

The mean and the variance of Qi with variant row weights are recorded. It is verified that

the variance is exactly twice as much as the mean. Both the mean and the variance increase

when SNR grows. Even though that the above Gaussian approximation is not accurate

for large Wr, we can use central limit theorem to approximate the distribution of
∑

Qi as

N (Mmc, κMmc). This approximation is valid because M is large. The coefficient κ is related

to Wc because for a regular LDPC code, each variable node is connected to Wc adjacent
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check nodes. Therefore the Qi’s related to these Wc check nodes are not independent.

κ0 = (2Wc − 1) is found to be a good approximation of κ.

The statistic ν (µ) =
∑

Qi is of great importance in the following discussion. It is

denoted as a function of µ because given samples of y, ν (µ) changes along with µ. Under

the assumption of correct frame synchronization, ν (µ0) are tested for three regular LDPC

codes. These codes are generated using the code definition of MacKay [31] and generated

from the codes available at [54]. Code I has a parity check matrix H of size (511, 1022)

with Wr = 8. H of code II is (512, 1024) with Wr = 6. H of code III is (900, 1200)

with Wr = 4. The analytical curves and simulation results about the mean and variance of

ν (µ0) are presented in Fig. 5.4. The analytical mean is found by plotting Mmc, while the

analytical variance is κ0Mmc. The values of mc are read from corresponding curves shown

in Fig. 5.3. The analytical and simulation curves are very close.

If c is not a valid codeword, which happens when symbol slips exist µ 6= µ0, then the

parity check equations will yield positive or negative values. This randomness is due to H.

This leads to |E [Qi]| = mc, however E [Qi] is randomly positive or negative. Hence we have

E [ν (µ)] ≈ 0, and ν (µ) ∝ N (0, κMmc).

The distribution of ν (µ) when c is synchronized and not synchronized are illustrated

as the histogram in Fig. 5.5. ν (µ) is apparently Gaussian distributed in the two cases.

The distance between the distribution helps the proposed frame synchronization, which is

described and analyzed below.
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Figure 5.3: Statistics about Qi found by simulations.
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Figure 5.4: Statistics about ν (µ0) found by simulations for code I, II, and III.
H of code I has the dimension of 511 × 1022 and Wr = 8. H of code II has
the dimension of 512× 1024 and Wr = 6. H of code III has the dimension of
900× 1200 and Wr = 4.
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Figure 5.5: Distribution of ν (µ) for LDPC code with code I at Es/N0 = 0 dB.
H of code I has the dimension of 511× 1022 and Wr = 8.
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5.3 Frame synchronization implementation

5.3.1 Optimum frame synchronizer

Using Gaussian approximation presented in Section 5.2, the distribution of ν (µ) under H0

is

fe (x) =
1√

2πκMmc

exp

(
− [ν (µ)−Mmc]

2

2κMmc

)
. (5.7)

The likelihood function is

L (µ) =

(
1√

2πσ2

)lL−L µ−1∏
i=0

exp

(
− y2

i

2σ2

) lL−1∏
i=µ+L

exp

(
− y2

i

2σ2

)

· 1√
2πκMmc

exp

(
− [ν (µ)−Mmc]

2

2κMmc

)
(5.8)

After elimination of unrelated terms, the logarithm of the above likelihood function, or the

log-likelihood function, is

log [L (µ)] = −
µ−1∑
i=0

y2
i

2σ2
−

lL−1∑
i=µ+L

y2
i

2σ2
− [ν (µ)−Mmc]

2

2κMmc

. (5.9)

The computation of (5.9) involves two recursive parts and one decoding part. The last term

can only be calculated using decoder. The optimum estimate of µ in MAP sense is

µ̄ = arg max
µ
{log [L (µ)]} (5.10)
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5.3.2 High-SNR approximation

When SNR is high,

Pr [{d0, · · · , dµ̄−1} = 0 |Y = y ] ≈ Pr [dµ̄−1 = 0 |Y = y ] (5.11)

Likewise, we have

Pr [{dµ̄+L, · · · , dlL−1} = 0 |Y = y ] ≈ Pr [dµ̄+L = 0 |Y = y ] (5.12)

Therefore we modify the log-likelihood function to high-SNR approximation as

Lhigh (µ) = −y2
µ−1

2σ2
− y2

µ+L

2σ2
− [ν (µ)−Mmc]

2

2κMmc

. (5.13)

5.3.3 Low-SNR approximation

When SNR is low, the first two terms in (5.9) becomes insignificant because signals are

“buried” in noises. Therefore we can use the low-SNR approximation

L1
low (µ) = − [ν (µ)−Mmc]

2

2κMmc

. (5.14)

Furthermore, if the occurance of the events of having a large ν(µ) value that is greater

than Mmc when µ 6= µ0 is scarce, i.e. Pr {µ |ν (µ) > Mmc, µ 6= µ0} ≈ 0, then the following

likelihood function is viable,

Llow (µ) = ν (µ) . (5.15)
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5.3.4 Frame sync failure rate

The frame synchronization failure rate is evaluated

Pr [Failure] = Pr [L (µ′) > L (µ0) |µ = µ0 ] . (5.16)

Without loss of generality, we consider the situation where µ′ < µ0.

log [L (µ′)]− log [L (µ0)]

=

µ0−1∑

i=µ′

y2
i

2σ2
−

µ0+L−1∑

i=µ′+L

y2
i

2σ2
− [ν (µ′)−Mmc]

2

2κMmc

+
[ν (µ0)−Mmc]

2

2κMmc

(5.17)

The first and second summations have (µ0 − µ′) terms of central χ2-distributed random

variables respectively. The third term is a non-central χ2-distributed random variable. The

forth term is a central χ2-distributed random variable.

Ignoring the first two terms in (5.17), the following probability is evaluated

Pr

{
[ν (µ0)−Mmc]

2

2κMmc

>
[ν (µ′)−Mmc]

2

2κMmc

}
, (5.18)

which is reduced to

Pr {[ν (µ0) + ν (µ′)− κMmc] [ν (µ0)− ν (µ′)] > 0} . (5.19)

The probability presented in (5.19) is an approximation of (5.16) in low SNR, and it becomes

an upper bound of (5.16) in high SNR. Note that ν (µ0) is N (Mmc, κMmc), and ν (µ′) is
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N (0, κMmc).

Pr [Failure]

=

∫ ∞

0

2√
2πκMmc

exp

(
− x2

2κMmc

)[
Ψ

(
Mmc + x√

2Mmc

)
−Ψ

(
Mmc − x√

2Mmc

)]
dx (5.20)

where Ψ (x) is the cumulative distribution function of a standard normal distribution

Ψ (x) =

∫ x

−∞

1√
2π

exp

(
−t2

2

)
dt. (5.21)

5.4 Parity-check characteristics of turbo codes

In order to apply the frame synchronizer described above to turbo codes, the code structure

of turbo codes is defined in this section. While most work to date has viewed turbo codes

from the literal perspective of being parallel concatenated recursive systematic convolutional

(RSC) codes, Engdahl and Zigangirov provide an alternative way to view turbo codes as low

density parity check (LDPC) codes [55]. The connection is established by the structure

of convolutional codes. As early as 1973, Forney [56] suggested to transform truncated

convolutional codes into linear block codes. Unlike usual LDPC codes that are defined on

random sparse parity-check matrices, the linear block codes derived from turbo codes are

highly structural, and in particular, they are quasi-cyclic. By “quasi-cyclic” we mean that

the pattern in the parity-check matrix is repeated in the rows though the shift may be greater

than one symbol.

5.4.1 Turbo encoder

Fig. 5.6 presents a diagram of a typical turbo encoder. A turbo encoder has two identical

constituent RSC encoders. Encoder I uses x as its systematic input, while Encoder II uses
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Figure 5.6: Diagram of a turbo encoder.

an interleaved version of x as input. The parity outputs z1 and z2, together with x enter

a multiplexer so that the bits are assembled into a codeword. In the multiplexer, some bits

in z1 and z2 are punctured in order to increase the code rate. A scrambler, also called

a channel interleaver, permutates the codeword so that sequential symbols are interleaved.

The permutation helps to combat burst errors which turbo codes are not good at dealing

with. It also enables the frame synchronization technique proposed in this chapter. All

these components in the encoder determine the parity-check matrix H. The code structure

is analyzed as following.

5.4.2 Constituent RSC codes

We start with non-systematic convolutional (NSC) codes. If an NSC code has the gen-

erating matrix as G (D) = [g1 (D) g2 (D)], then its dual code is defined by the matrix

H (D) = [g2 (D) g1 (D)]. For example, let G (D) = [1 + D + D2 1 + D2], the correspond-



5.4. PARITY-CHECK CHARACTERISTICS OF TURBO CODES 97

ing H (D) = [1 + D2 1 + D + D2], and the matrix in numerical form is [57]

H =




1 1 0 1 1 1 0 0 0 0 0 0

0 0 1 1 0 1 1 1 0 0 0 0

0 0 0 0 1 1 0 1 1 1 0 0

0 0 0 0 0 0 1 1 0 1 1 1

0 0 0 0 0 0 0 0 1 1 0 1

· · ·

· · ·




. (5.22)

Most entries in H are “0”. This sparseness of H makes it resemble the parity check matrix of

an LDPC code except that it is cyclic. Each NSC code has its equivalent recursive systematic

convolutional (RSC) code. In the field of GF (2), if the NSC code is G (D) = [g1 (D) g2 (D)],

then the generating matrix of the RSC code is G1 (D) = [1 g2 (D) /g1 (D)]. Because the

code space remains the same, the H matrix of the RSC code is the same as that of the NSC

code.

5.4.3 Puncturing

Puncturing is frequently used to increase the coding rate. The puncturer deletes some of the

parity bits. Those columns in H corresponding to these bits should not be included in any

parity check equation. Puncturing reduces the number of parity-check equations, as well as

the number of rows in the parity-check matrix. For example, if the puncturing rule is to

delete every other parity bit, and the original codeword is c = [x0 p0 x1 p1 x2 p2 x3 p3 x4 p4],

then the puncturing result is c′ = [x0 p0 x1 x2 p2 x3 x4 p4]. Using H in (5.22) as an example,
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the new parity-check matrix is

H′ =




1 1 1 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 0

· · ·

· · ·




. (5.23)

The number of rows in H′ reduces to one half of the original H. The density of the parity-

check matrix is also increased after puncturing, especially the number of 1’s in every row.

5.4.4 Permutation and interleaving

The parity-check matrix H, as shown in (5.22), is cyclic. Therefore any shift of a valid code-

word still satisfies all parity-check equations. This is undesirable for frame synchronization

because the synchronizer needs to distinguish the correct frame starting point from other

positions. The interleaver and the scrambler permutate the bit sequence so that the resulting

codeword is no longer cyclic. At the receiver, the bit sequence is rearranged to recover its

original order.

Let c0 be the original codeword before the scrambler, and H0 be the corresponding

parity-check matrix. The permutation is an elementary operation

c = cP (5.24)

The new parity-check matrix is then H = P−1H0.
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5.5 Simulation results

Simulation results are reported to verify the feasibility of proposed frame synchronization

technique and represent the performance in terms of sync-failure rate.

The three codes introduced in Section 5.2 are used. H of code I has the dimension of

511 × 1022 and Wr = 8. H of code II has the dimension of 512 × 1024 and Wr = 6. H

of code III has the dimension of 900 × 1200 and Wr = 4. BPSK modulation is used with

AWGN channel. The observing window size is 30 bits longer than the codeword length.

Fig. 5.7 illustrates the synchronizers’ performance in terms of sync failure rate. For all

three codes, the proposed synchronizer achieves frame sync failure rates lower than 10−2 at

Eb/N0 < 2 dB. Analytical results are provided using (5.20), where κ0 = (2Wc − 1) is used in

the places of κ. The analytical curves are close to simulation results at low SNR and serve

as upper bounds at high SNR as stated in Section 5.3.4.

Code I and code II has the same code rate and similar dimension of H. However, code

I has greater Wc and Wr. Therefore, the synchronizer works better for code II because the

distributions of synchronized ν (µ0) and offset ν (µ0) fall farther apart than those of code I.

Although code III has the smallest Wr and a very large M , the performance is inferior

to code II because its code rate is only 1/4. Therefore the values of Eb/N0 are translated

into much lower Es/N0.

It is necessary for the frame synchronizers to produce a frame sync failure rate that

is acceptable for the decoders. Fig. 5.8 shows frame error rates of LDPC decoders with

perfect frame synchronization and with ML frame synchronizers for code I, II, and III. For

all the codes, the frame error rates are close to the frame error rates with perfect frame

synchronization. Therefore the frame sync failure rate only has negligible effect on the

overall frame error performance.

Packet transmission of turbo codes in AWGN channels is simulated with BPSK modula-
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Figure 5.7: Frame synchronization failure rates. H of code I has the dimension
of 511× 1022 and Wr = 8. H of code II has the dimension of 512× 1024 and
Wr = 6. H of code III has the dimension of 900× 1200 and Wr = 4.
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Figure 5.8: Frame error rate with perfect frame synchronization and frame
sync failure rate with ML synchronizer.
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Figure 5.9: Frame sync failure rate of turbo codes with code rate 1/3. Constraint
lengths of constituent RSC codes are kc = 3 and kc = 4 respectively. Random
interleaver and scramblers are used.
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tion. Simulation results of rate 1/3 turbo codes are plotted in Fig. 5.9. Two families of turbo

codes are tested with random interleaver and scrambler. One family of codes have constraint

length mc = 3. The constraint length of the other family is kc = 4. The interleaver sizes

considered are K = 512 and K = 1024 respectively. κ = (2Wc − 1) is used, where Wc is the

row weight of H. A sync failure is counted when the decision made by the frame synchronizer

is not the same as the actual frame starting point. The sync failure rate curves show that

the failure rate is related to both the interleaver size and constraint length. Generally, the

failure rate grows when the density of H increases. Longer constraint length corresponds

to higher density of H. The interleaver size determines the number of check nodes. If the

weight of rows and columns in H keeps the same, a greater interleaver size leads to lower

density of H. Therefore the frame sync failure rate is lower for codes with smaller constraint

length and greater interleaver size. In all cases of interest, a frame sync failure rate lower

than 10−4 is achieved when Eb/N0 < 2.5 dB.

Fig. 5.10 compares the frame sync failure rate of punctured and original turbo codes

that are not punctured. The constraint length is kc = 3. Half parity bits are removed by the

puncturer. Puncturing increases the density of H. Hence it increases the sync failure rate

as expected. Frame sync failure rates lower than 10−4 are achieved when Eb/N0 < 3 dB.

Fig. 5.11 shows the frame error rate performance of punctured turbo codes. Every other

parity bits in y1 and y2 are punctured to increase the code rates to 1/2. The interleaver

size is 1024. It is shown that punctured turbo codes are weaker than the original codes.

The performance of the proposed frame synchronizer is also affected by puncturing. When

kc = 4, the greatest gap between the curves of the system using the proposed synchronizer

and the system with perfect synchronization is about 1 dB and the curves converge when

Eb/N0 > 3.4 dB. When kc = 3, the curves of the system using the proposed synchronizer and

the system with perfect synchronization overlap. Hence when kc = 3, the proposed frame

synchronizer has negligible effects on the performance of the overall system.
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Figure 5.10: Frame sync failure rate of punctured turbo codes and original turbo
codes that are not punctured. The punctured codes have code rate 1/2. Constraint
lengths of constituent RSC codes are kc = 3. Random interleaver and scramblers are
used.
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Figure 5.11: Frame error rate of turbo codes with code rate 1/2, interleaver size =
1024. Random interleavers and scramblers are used.

5.6 Conclusion

The optimum frame synchronization method based on low-density H is proposed for packet

transmission. This method does not require insertion of sync words and performs much more

reliable than conventional autocorrelation-based method. Frame synchronization is acquired

before the LDPC decoder, so that no coding power is consumed by the frame synchronization

module. Thereafter, the LDPC decoder can fulfill its decoding capability without coding gain

loss.



Chapter 6

Conclusions: Putting It All Together

6.1 Dissertation summary

This dissertation confronts the problem of time synchronization in capacity-approaching

coded systems. In this research, turbo codes are more intensively studied than LDPC codes

because

• Turbo codes have clearly defined structures;

• Optimized LDPC codes are not directly available;

• Turbo codes have been used in 3G wireless communication systems.

However, all the principles are directly applicable to LDPC codes. The unknown time delay

τ in (1.4) is estimated and recovered by techniques described in Chapter 3, 4, and 5.

This dissertation proposed to combine symbol timing recovery and SNR estimation. With

a sampling rate as low as four samples per symbol, the bit error rate is very close to the

system with ideal timing and perfect SNR knowledge. Turbo principle is applied to joint

time delay and SNR estimation. With sampling rates of two or three samples per symbol, the

106
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iterative refinement greatly improves the overall system performance at the cost of minimum

additive complexity.

Random time walks may degrade the system performance severely in low SNR. Their

effects are mitigated by overlapped sliding windows and iterative processing.

MAP frame synchronization in the sense to minimize frame sync failure probability is

proposed for LDPC codes and turbo codes. The frame synchronizer explores the low-density

parity-check attributes of LDPC codes and turbo codes. The frame synchronization utilizes

the code structure and achieves reliable performance with minimum loss of coding gain.

6.2 System integration

A receiver diagram with complete timing synchronization is depicted in Fig. 6.1. To begin

receiving a codeword, the switch is placed in position 1. The receiver employs a coarse frame

estimator to find a rough estimation of the frame position. The frame starting point remains

unknown though it is bounded in a known range. The received signal in a observation

window is sampled multiple times each symbol period. The samples are used to recover

proper timing and to estimate channel SNR. A frame synchronizer finds the most probable

starting point and generates the desired input to the iterative decoder. After a few decoding

iterations, the switch is placed at position 2. The decision is fed back to a decision aided

synchronizer to refine the timing estimation. A descrambler is needed because the frame

synchronizer is bypassed.

6.3 Simulation results

Integrated turbo coded systems are simulated in AWGN channels. The turbo encoders use a

constraint length kc = 4 where the generating polynomial coefficient is (15, 13). Two flavors
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Figure 6.1: A system block diagram with integrated symbol timing synchro-
nization and frame synchronization.

of the turbo codes are examined. One is the original with a code rate of 1/3, and the other

is punctured to the code rate of 1/2. BPSK modulation is used with raised cosine roll-off

pulse shaping with α = 0.5. Random interleavers are used with interleaver size K = 1024.

A regular or random interleaver is used.

Fig. 6.2 plots the BER curves of the rate 1/3 codes. In the legend of Fig. 6.2 and the

figures hereafter, the following definitions are used.

• “Perfect” means perfect symbol timing and frame synchronization unless specifically

stated.

• “Integrated” means that the system estimates both symbol timing and frame starting

point.

• “Regular” means that a regular scrambler is used.

• “Random” means that a random scrambler is used.

It is shown in Fig. 6.2 that the system with perfect symbol and frame synchronization and

a random scrambler has the best BER performance. The system that estimates the symbol
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Figure 6.2: Bit error rate of turbo codes with code rate 1/3, interleaver size
= 1024. Random interleavers are used. A regular or random scrambler is
used. BPSK modulation with raised-cosine roll-off pulse shaping is used with
α = 0.5.

timing with perfect frame synchronization has a BER curve close to those of the systems

with perfect symbol timing and frame synchronization. When perfect frame synchronization

is not available, the integrated systems tend to have degraded BER performance at very low

SNR because if a codeword is misaligned then the whole codeword is completely lost and

cannot be recovered by any means. The BER curve of the system with a regular scrambler is

about 1 dB away from the BER curve of the system with perfect synchronization at the BER

of 10−4. This curve converges to the one of perfect synchronization at Eb/N0 > 2.5 dB. A

random scrambler helps to recover the BER performance by about 0.5 dB. The BER curve of

the system with a random scrambler converges to the BER curve of perfect synchronization

at Eb/N0 > 2 dB.

Fig. 6.3 depicts the FER curves of the turbo coded systems with a code rate 1/3. The
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Figure 6.3: Frame error rate of turbo codes with code rate 1/3, interleaver
size = 1024. Random interleavers are used. A regular or random scrambler is
used. BPSK modulation with raised-cosine roll-off pulse shaping is used with
α = 0.5.

MAP frame synchronizer has performance close to the perfect synchronization. With a

regular scrambler, the integrated system has FER performance that is about 0.5 dB away

from the system with perfect synchronization. When a random scrambler is used, the gap

is less than 0.1 dB. Fig. 6.3 shows that the systems with random scramblers are superior to

systems with regular scramblers. This phenomenon happens because errors caused by ISI

are mitigated.

Fig. 6.4 and Fig. 6.5 show the BER and FER curves of integrated turbo coded systems

with code rate 1/2. Puncturing makes the code less powerful than the original rate 1/3 code.

Therefore the BER and FER curves shift to the right into higher Eb/N0 regions. Similar to

the curves in Fig. 6.2 and Fig. 6.3, the system that estimates symbol timing with perfect

frame synchronization has BER and FER performance close to the performance of systems
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Figure 6.4: Bit error rate of turbo codes with code rate 1/2, interleaver size
= 1024. Random interleavers are used. A regular or random scrambler is
used. BPSK modulation with raised-cosine roll-off pulse shaping is used with
α = 0.5.

with perfect symbol timing and frame synchronization.

Puncturing not only increases the code rate, but also increases the density of the parity-

check matrix of codes. As stated in Chapter 5, the proposed MAP frame synchronizer

suffers from the increased density of the parity-check matrix. It is shown that the gap

between the BER curves of perfect synchronization and estimated synchronization is wider

than 1 dB in Fig. 6.4 at the BER of 10−4. The random scrambler improves the performance

of the system with a regular scrambler by about 0.5 dB. In Fig. 6.5, the FER curve of the

integrated systems with a random scrambler is less than 1 dB away from the curve of perfect

synchronization. It converges to the curve of perfect synchronization when Eb/N0 > 3 dB.

It is found that frame synchronization is more critical to the BER performance of the

integrated systems than symbol timing synchronization. This happens because the decoder
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Figure 6.5: Frame error rate of turbo codes with code rate 1/2, interleaver
size = 1024. Random interleavers are used. A regular or random scrambler is
used. BPSK modulation with raised-cosine roll-off pulse shaping is used with
α = 0.5.

tries to decode the received codeword even if the frame synchronizer fails to give a reliable

decision. Therefore if a codeword is misaligned, then random errors are present in the

entire codeword. This problem may be solved by apply automatic request for retransmission

(ARQ).

6.4 Future work

6.4.1 Insertion/deletion channel

In a practical communication system, the sampler may skip a symbol or sample one symbol

more than required times due to unexpected timing jitter. This causes insertion or deletion

of symbols. Research in this dissertation considers the situation that each symbol in a
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codeword is received in ideal order, where no insertion or deletion happens. It is of interest

to test techniques proposed in this dissertation and/or create new techniques to cope with

insertion and deletion channels.

6.4.2 Cycle slips

Chapter 4 shows that random time walk may cause great performance degradation. The

degradation is caused by cycle slips. The symbol timing synchronizer must be designed to

track cycle slips and mitigate their effect. A code structure capable of dealing with cycle

slips may be required to tackle this problem.
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List of Symbols

Symbol Definition

α Roll-off factor of raised-cosine roll-off function

β Effective SNR

δ Gate width of the early late gates

ε Estimation timing error

γ1 Coefficient of linear time walk

γ2 Coefficient of random time jitter

γ3 Residue random time jitter

Γ Log-likelihood ratio of data bits

Γ2 Log-likelihood ratio of data bits from the lower decoder

Γi Log-likelihood ratio of ith bit

κ Constant related to row weight

ν(µ) Parity-check metrics

ω Feedback scale factor

ρ Correlation coefficient of online statistics

ρ′ Correlation coefficient of colored noise variances
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ψ Time delay modification produced by M & M TED

σ2 Variance of additive noise

σ2
t Variance of random jitter

σ2
τ̂ Variance of estimation errors

τ Time delay

τ̂ Estimated time delay

τ0 Initial time delay

τ1 Linear time walk

τ2 Accumulated random time jitter

τs Symbol time delay

a(t) Channel gain in the continuous domain

c Binary code word

ĉ Hard decision on received codeword

C Channel capacity

C The set of all valid codewords in GF(2)

C̃ The modulated version of C
C(β) Slope of effective SNR

CDA(β) Slope of decision-aided estimation results of effective SNR

cj The jth variable node in a Tanner’s graph

ci Neighborhood of the i-th check node

dk Transmitted antipodal data symbols

di
k Soft decision of k-th symbol in the i-th decoding iteration

dmin Minimum distance

e Error vector

e(τ, β) Error function
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ei
k Error signal produced by M & M TED

E Expected value

Es Energy per symbol

Eb Energy per bit

fi The ith check node in a Tanner’s graph

g(t) Pulse shape function

G Generating matrix

G(D) Generating polynomial of a convolutional code

gT () Transmission pulse shape function

gR(t) Receive pulse shape function

GR(f) Fourier transform of gR(t)

H Parity-check matrix

H(D) Parity-check polynomial of a convolutional code

H0 Null hypothesis of frame synchronization

H1 Alternative hypothesis of frame synchronization

I Identical matrix

K Interleaver size of turbo codes

kc Constraint length

l Normalized observation window size

L Codeword length

Li
e Input extrinsic information

Lo
e Output extrinsic information

LB Decision feedback observation window size

LF Feedforward observation window size

Li
k Log-likelihood ratio of the k-th symbol in the i-th decoding iteration
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L(µ) (Log-)likelihood function for frame synchronization

M(τ) Mean square error caused by time delay

mc Mean of Qi when there are an even number of 1’s in ci

mk Autocorrelation of random data

Mw Length of the sync word

N The number of samples per symbol

N (m,σ2) Normal distribution with mean m and variance σ2

N0 One-sided power spectrum density of additive noise

nk Data word length

nm Number of parity check bits

nn Code word length

pj Probability of cj = 1

qi Probability of receiving an even number of 1’s in ci

Qi Logarithm likelihood of receiving an even number of 1’s in ci

r Code rate

R Data rate

r(t) Matched filter output

r[n] Sampled matched filter output

Rw(ν) Auto-correlation of colored additive noise

sn Online statistics of the nth sample sequence

si
k Interpolation result of the k-th symbol in the i-th decoding iteration

T Symbol duration

v Parity-check bits

V Variance

w Noise vector
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w(t) Additive noise

Wc Column weight

wn Weight of the nth sample

Wr Row weight

Ws The sync word

wM(t) Matched filter output additive noise

x Binary data word vector

x̂ Hard decision on x

X The Fourier transform result of x[n]

x[n] Square of samples r[n]

x(t) The transmitted signal

xi Binary data bit

x̂k Hard decision for xi

y(t) Received signal

z1 Parity bits generated by the upper RSC encoder in a turbo encoder

z2 Parity bits generated by the lower RSC encoder in a turbo encoder
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List of Abbreviations

Abbreviation Definition

AGC Automatic gain control

APP a posteriori probability

appro. Approximately

ARQ Automatic request for retransmission

AWGN Additive white Gaussian noise

BCH Bose & Chaudhuri & Hochquenghem

BCJR Bahl & Cocke & Jelinek & Raviv

BER Bit-error rate

BPSK Binary phase-shift keying

CSI Channel state information

DF Decision-feedback

DSP Digital signal processing

FEC Forward error correction

FER Frame error rate

FPGA Field programable gate array
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i.i.d. independent, identically distributed

ISI Inter-symbol interference

ITR Interpolation timing recovery

LDPC Low-density parity-check (codes)

LLR log-likelihood ratio

LMSE Least mean square error

M & M Mueller and Müller’s

MLSE Maximum likelihood sequence estimation

MSE Mean square error

MAP Maximum a posteriori probability

ML Maximum likelihood

NDA Non-data aided

NSC Non-systematic convolutional (codes)

NTSC National Television Systems Committee

OFDM Orthogonal frequency division multiplexing

PAL Phase Alternating Line

PCCC Parallel concatenated convolutional codes

P/S Parallel-to-serial convertor

RC Raised-cosine

RDL Random data limit

RF Radio frequency

RSC Recursive systematic convolutional (codes)

SISO Soft-input soft-output

SNR Signal-to-Noise ratio

STC Space-time codes
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TDMA Time division multiple access

TED Time error detector

VA Viterbi algorithm

VLSI Very large scale integrate (circuits)



Appendix C

BCJR decoding algorithm

The coding structure of a convolutional code can be expressed by a trellis. Considering a

binary RSC code, which has a memory size of m, there are 2m states. In the kth section of

the trellis, each state u has 2 paths coming in for xk = 0 and xk = 1 as shown in Fig. C.1(a).

Also each state has 2 paths going out for input xk+1 = 0 and xk+1 = 1 as in Fig. C.1(b).

)(1 uSb

)(0 uSb

)(/1 1 uVx bk =

)(/0 0 uVx bk =

u

����� � � �	��
 �  � � ����� � � �	���

(a) Forward transition in a trellis.

)(1 uS f

)(0 uS f

)(/1 1
1 uVx fk =+

)(/0 0
1 uVx fk =+

u

����� � � �	��
 ����� � � ���� 
 ��� �

(b) Backward transition in a trellis.

Figure C.1: State transition and output values.

The definitions of the variables in Fig. C.1 are

• Si
b(u) — The state that goes to u when the input xk = i;

• V i
b (u) — The output associated with the transition Si

b(u) → u when xk = i;

122



123

• Si
f (u) — The state that comes from u when the input xk+1 = i;

• V i
f (u) — The output associated with the transition u → Si

f (u) when xk+1 = i.

Also the following definitions are needed

• Yk — The kth received symbol in a codeword;

• Y j
i — The symbols in the received codeword from position i to j. Specifically, Y K

1 is

the whole codeword;

• Sk — The state in the kth section of the trellis.

The a posteriori probability (APP) of a data bit xk = i on condition of Y N
1 is

Pr
(
xk = i

∣∣Y N
1

)
=

2m−1∑
u=0

λi
k (u) (C.1)

where

λi
k (u) = Pr

(
xk = i, Sk = u

∣∣Y K
1

)
(C.2)

λi
k (u) can be decomposed into two probabilities

λi
k (u) = αi

k (u) βi
k (u) (C.3)

where

αi
k (u) = Pr

(
xk = i, Sk = u, Y k

1

)

βi
k (u) = Pr

(
Y K

k+1 |xk = i, Sk = u
)

(C.4)
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αi
k (u) is obtained recursively by

αi
k (u) = exp

(
x̂ki + ẑkV

i
f (u)

σ2/2

)
1∑

j=0

αi
k−1

(
Sj

b (u)
)

(C.5)

where the received codeword is divided into symbols x̂k associated with data bits xk, and ẑk

associated with parity bits zk. βi
k (u) can also be found recursively as

βi
k (u) =

1∑
j=0

βj
k+1

(
Si

f (u)
)
exp

(
x̂k+1j + ẑk+1V

j
f

(
Si

f (u)
)

σ2/2

)
(C.6)

The decoding algorithm is summarized in below

1. Initialize for i = 0, 1

αi
0 (Si

b (0)) = 1 and αi
0 (Si

b (u)) = 0 for u 6= 0;

βi
K (Si

b (0)) = 1 and βi
K (Si

b (u)) = 0 for u 6= 0.

2. After the whole codeword is received, for all states u, i = 0, 1 and k = 1, . . . , K,

compute αi
k(u) and βi

k(u) using (C.5) and (C.6) respectively.

3. Compute Λk with

Λk = log




2m−1∑
u=0

α1
k (u) β1

k (u)

2m−1∑
u=0

α0
k (u) β0

k (u)




(C.7)

Let Lc = 2/σ2, which is called the channel reliability. If extrinsic information Li
e (k)

about xk is available, then (C.5) and (C.6) become

αi
k (u) = exp

[(
Lcx̂k + Li

e (k)
)
i + LcẑkV

i
f (u)

] 1∑
j=0

αi
k−1

(
Sj

b (u)
)

(C.8)
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and

βi
k (u) =

1∑
j=0

βj
k+1

(
Si

f (u)
)
exp

[(
Lcx̂k+1 + Li

e (k + 1)
)
j + Lcẑk+1V

j
f

(
Si

f (u)
)
σ2/2

]
. (C.9)



Appendix D

Message-passing decoding in

probability domain

The following denotations are needed

• qij — messages to be passed from bit node ci to check nodes fj.

• rji — messages to be passed from check node fj to bit node ci.

• Rj = {i : hji = 1} — the set of column locations of the 1’s in the jth row

• Rj\i = {i′ : hji′ = 1} \ {i} — the set of column locations of the 1’s in the jth row,

excluding location i.

• Cj = {i : hji = 1} — the set of row locations of the 1’s in the ith column

• Ci\j = {i′ : hj′i = 1} \ {j} — the set of row locations of the 1’s in the ith column,

excluding location j.

• pi = Pr(ci = 1|yi)

The decoding algorithm is summarized below.
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Compute for ∀i, j that satisfies hij = 1.

1. Initialize

qij (0) = 1− pi = Pr (ci = 0 |yi ) =
1

1 + e−2yi/σ2

qij (1) = pi = Pr (ci = 1 |yi ) =
1

1 + e2yi/σ2 (D.1)

2. First half round iteration

rji (0) =
1

2
+

1

2

∏

i′∈Rj\i

(1− 2qi′j (1))

rji (1) = 1− rji (0) (D.2)

3. Second half round iteration

qij (0) = Kij (1− pi)
∏

j′∈Ci\j

rj′i (0)

qij (1) = Kijpi

∏

j′∈Ci\j

rj′i (1) (D.3)

where constants kij are selected to ensure

qij (0) + qij (1) = 1 (D.4)

4. Soft decision

Qi (0) = Ki (1− pi)
∏
j∈Ci

rij (0)

Qi (1) = Kipi

∏
j∈Ci

rij (1) (D.5)
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where constants ki are selected to ensure

Qi (0) + Qi (1) = 1 (D.6)

5. Hard decision

ĉi =





1 if Qi (1) > 0

0 elsewhere
(D.7)

If ĉHT = 0 or number of iterations exceeds limitation then stop, else go to Step 2.



Appendix E

Characteristics of online statistics

The online statistics are calculated using the received signal without knowledge of the data

sequence.

r =
√
Esx + n (E.1)

where x = {±1}, and n is additive white gaussian noise with two-sided power spectral

density σ2. It is desirable to work with only |r| and r2 since we do not know what x is.

It is found that R = |r| has probability density function (pdf)

fR (r) =
1√
2πσ

[
e−

(r−√Es)
2

2σ2 + e−
(r+

√Es)
2

2σ2

]
r ≥ 0 (E.2)

The distribution of U = r2 has pdf

fU (u) =
1

2
√

2πσ2u

[
e−

(
√

u−√Es)
2

2σ2 + e−
(
√

u+
√Es)

2

2σ2

]
u ≥ 0 (E.3)

The online statistics is computed using (3.10). Assume that the numerator and the

129



130 APPENDIX E. CHARACTERISTICS OF ONLINE STATISTICS

denominator in the upper equation are independent, then we have the expected value

E [s] = E

[
1

K

K∑
i=1

r2
i

]
E


 1[

1
K

∑K
i=1 |ri|

]2


 (E.4)

The distribution of U in (E.3) is a non-central chi-square distribution. Therefore
∑K

i=1 r2
i is

a non-central chi-square distribution with K degrees of freedom. The first and second order

statistics of 1
K

∑K
i=1 r2

i are as below.

E

[
1

K

K∑
i=1

r2
i

]
= σ2 + Es (E.5)

V

[
1

K

K∑
i=1

r2
i

]
=

2

K
σ4 +

4

K
σ2 (E.6)

From the central limit theorem, we know that 1
K

∑K
i=1 |ri| has (approximately) a normal

distribution where

m1 = E

[
1

K

∑
|ri|

]
= σ

√
2

π
exp

(
− 1

2σ2

)
+ erf

(√
1

2σ2

)
(E.7)

σ2
1 = V

[
1

K

∑
|ri|

]
=
Es + σ2

K
− 1

K

[
σ

√
2

π
exp

(
− 1

2σ2

)
+ erf

(√
1

2σ2

)]2

. (E.8)

Y =
(

1
K

∑K
i=1 |ri|

)2

has a non-central chi-square distribution. We need to compute the

statistics of E
[

1
Y

]
and V

[
1
Y

]
. It is not possible to give a closed form expression for E

[
1
Y

]

and E
[

1
Y 2

]
. However, when σ2

1 << 1, E
[

1
Y

]
approaches (1/m2

1 + σ2
1), and V

[
1
Y

]
converges

to (2σ4
1 + 4σ2

1). If K is sufficiently large, then σ2
1 << 1. Hence the expected value and
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variance of the online statistic is

E [s] =
(Es + σ2

)




 1

σ
√

2
π

exp
(− 1

2σ2

)
+ erf

(√
1

2σ2

)




2


+
(Es + σ2

)

Es + σ2

K
− 1

K

[
σ

√
2

π
exp

(
− 1

2σ2

)
+ erf

(√
1

2σ2

)]2

 (E.9)

V [s] =

[
2σ4

K
+

4σ2

K
+

(
σ2 + Es

)2
] (

4σ2
1 + 2σ4

1

)

+

(
2σ4

K
+

4σ2

K

)





 1

σ
√

2
π

exp
(− 1

2σ2

)
+ erf

(√
1

2σ2

)




2

+ σ2
1





. (E.10)
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