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for Turbo Codes in AWGN Channels
Jian Sun, Member, IEEE, and Matthew C. Valenti, Member, IEEE

Abstract—Turbo codes are sensitive to both (timing) synchro-
nization errors and signal-to-noise ratio (SNR) mismatch. Since
turbo codes are intended to work in environments with very
low SNR, conventional synchronization methods often fail. This
paper investigates blind symbol-timing synchronization and SNR
estimation based on oversampled data frames. The technique is
particularly suitable for low-rate turbo codes operating in addi-
tive white Gaussian noise at low SNR and modest data-transfer
rates, as in deep space, satellite, fixed wireless, or wireline com-
munications. In accordance with the turbo principle, intermediate
decoding results are fed back to the estimator, thereby facili-
tating decision-directed estimation. The analytical and simulated
results show that with three or more samples per symbol and
raised cosine-rolloff pulse shaping, performance approaches that
of systems with perfect timing and SNR knowledge at the receiver.

Index Terms—Channel coding, channel estimation, iterative de-
coding, synchronization, turbo codes.

I. INTRODUCTION

TURBO codes are capable of remarkable performance in
very low signal-to-noise ratio (SNR) environments [1].

However, the full potential of turbo codes is only achieved if
the channel state is known by the receiver. In addition to esti-
mating the SNR of the channel [2], the receiver must synchro-
nize with the bit epochs. Without a synchronization algorithm,
the matched filter will (almost always) not be sampled at the
proper instant. While timing synchronization is an issue for any
digital transmission system, it is especially important for turbo
codes, which operate at SNRs that are often too low for conven-
tional synchronization techniques to work reliably.

Because of the challenge of capacity-approaching codes, syn-
chronization has received renewed interest in the recent liter-
ature. Liu et al. [3] and Nayak et al. [4] discuss the perfor-
mance of Mueller and Müller’s synchronization method [5] with
a phase-locked loop (PLL), and use it to track timing in systems
that are protected by turbo or low-density parity-check (LDPC)
codes. Nayak et al. [6] derived a lower bound for iterative timing
recovery with a PLL-based structure, which has a gap of 7 dB to
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the Cramer–Rao bound (CRB) [7]. Wu et al. [8] discuss the ef-
fect of interpolation timing recovery (ITR) using the minimum
mean-square error (MMSE) algorithm over a sliding window;
the accuracy of the estimator increases with larger window sizes
and higher SNR, but the complexity of this algorithm grows ex-
ponentially with the window size. In [9], Lu and Wilson pro-
pose a front-end synchronizer that uses a combination of an
early–late gate and decision feedback (DF) using hard decisions
on the code symbols (i.e. soft outputs from the turbo decoder are
not exploited). In [10], Mielczarek and Svensson investigate the
distribution of extrinsic information within a turbo decoder as
a function of timing offset, and introduce a soft-bit combining
method for synchronization that employs two separate turbo de-
coders and generates the likelihood of each data bit by com-
bining the two decoder’s soft outputs.

Another widely used technique is equalization [11]. An
equalizer can compensate for the signal distortion caused not
only by the channel and modulation, but also from the timing
offset. However, the channel must be precisely estimated. Fur-
thermore, symbol-rate equalizers cannot recover signal energy
loss due to improper timing.

In this paper, we propose symbol timing-synchronization
techniques for low-rate, capacity-approaching turbo codes
operating over additive white Gaussian noise (AWGN) chan-
nels with random timing offset, bandlimited pulse shapes, and
modest data rates. The proposed solutions are suitable for deep
space, satellite, fixed wireless, or wireline communications.
The goal of our study is to develop a synchronization algorithm
with performance that is comparable to the one proposed in
[10], but requires only a single turbo decoder. Our method
jointly estimates SNR and timing of the received signal. In the
first part of this paper, symbol synchronization using Gardner’s
method [12] and ITR is achieved separately from decoding,
i.e., without requiring information from the decoder to be
fed back to the estimator. This strategy is an extension of
the SNR-estimation work of Summers and Wilson [2]. In the
second part of this paper, soft estimates of the codeword are fed
back from the decoder to the estimator and used to refine the
joint timing/SNR estimate. It will be shown that this improves
performance, although at the cost of additional complexity.

The remainder of this paper is organized as follows. Section II
presents the system model. Section III discusses our approach
to combined synchronization and SNR estimation. Section IV
considers iterative decoding and timing estimation. Section V
gives simulation results, and Section VI concludes the discus-
sion. An Appendix is included that derives the mean and vari-
ance of the online statistic that forms the foundation of the pro-
posed technique.
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Fig. 1. Proposed receiver structure featuring joint timing/SNR estimation and iterative decoding/estimation.

II. SYSTEM MODEL

The turbo-coded system considered in this paper is shown in
Fig. 1. The system consists of a matched filter, whose output
is sampled times per symbol period, where is assumed to
be an integer with typical values between 2 and 4. For clarity,
the diagram shows samplers, each clocked at the symbol rate
at sample instants that are shifted from one sampler to the next
by , where is the symbol period. A practical synchonous
sampling implementation would use a single sampler clocked at

times the symbol rate [12]. Each of the samplers passes its
samples of the entire codeword to an algorithm that calculates
an online statistic for that sampler. All the samples are stored in
memory according to their sampling order, forming sample
sequences. The online statistics are then passed to an estimator
that jointly performs timing estimation and SNR estimation.

With the switches being placed in position 1, the timing es-
timate is used to control an interpolator which combines the
samples from the matched filter to yield a sufficient statistic for
each symbol. The turbo decoder uses the interpolated samples
as input. The turbo decoder is implemented with the maximum
a posteriori (MAP) algorithm [1], so it needs an SNR estimate.
We assume that the receiver has perfect carrier and phase syn-
chronization. Furthermore, we assume that perfect frame syn-
chronization is achieved, so that the channel is quasi-static in
the sense that it behaves as an AWGN channel for the duration
of the frame, and that the timing offset is constant for the entire
frame (although the channel SNR and timing offset may vary
from frame to frame).

The part enclosed by dotted lines is the subsystem for
decision-aided estimation. Due to the iterative nature of turbo
processing, timing and SNR estimates can be refined using
data-aided methods. In order to do this, intermediate decoding
results are used as a reference to the transmitted code word. The
turbo decoder runs a few decoding iterations (local iterations),
and then feeds intermediate decisions back to a DF estimator,
forming a global iteration. The switches flip to position 2.
The new timing estimate is used to reinterpolate the samples,

reconstructing a new input to the turbo decoder. The turbo
decoder reuses the extrinsic information from previous local
iterations, but uses the new reconstructed samples and SNR
estimates for further decoding. The DF estimation requires
knowledge of the energy transmitted per symbol (if the
code rate is , then the energy per information bit is

), therefore, an automatic gain control (AGC) block is
needed. We assume that perfect AGC is available, so that
is normalized to unity.

Assuming that bandlimited pulse shaping is used, the output
of the matched filter is

(1)

where is the transmitted code sequence, which for binary
phase-shift keying (BPSK) is , is the pulse
shape, and is additive Gaussian noise. The variance of
is , where is the one-sided power spectral den-
sity of the Gaussian noise prior to matched filtering (under the
assumption that ). In the following discussion, we as-
sume that is a (root) raised cosine-rolloff (RC-rolloff) pulse
shape with rolloff factor [13], although we note that our re-
sults can be generalized to other pulse shapes.

The received signal is sampled times per symbol pe-
riod, and the th sample taken by the th sampler is

(2)

where is the timing offset. The assumption of perfect frame
synchronization implies that . With per-
fect timing (i.e., ), only one sample per symbol is needed
(i.e., ), and the output of the matched filter has no inter-
symbol interference (ISI) if the pulse shape satisfies the Nyquist
criteria [13]. Thus the SNR of the samples is exactly .
However, when perfect timing is not available, the performance
may degrade significantly. For RC-rolloff pulse shaping, the per-
formance degradation is not only due to the loss in received
signal power, but also due to the presence of rather severe ISI.
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When the received signal is free of noise, the error caused
by imperfect timing is . The timing offset
results in interference from adjacent symbols and a loss in re-
ceived signal energy. This interference can be characterized by
the normalized mean squared error (MSE). When a Nyquist
pulse shape is used and the timing offset , this MSE is
[14]

(3)

where is the autocorrelation of the coded sequence .
Assuming that the ’s are independent and zero mean, the au-
tocorrelation of the coded sequence is if , and
zero elsewhere. Therefore, the normalized MSE is

(4)

Note that this is an even function of . For RC-rolloff pulses,
, and therefore, .

Because the ISI is independent of the channel noise, it can
be modeled as an additional Gaussian noise component [10].
More specifically, we define the effective SNR as the SNR
at a particular timing offset when all the effects are counted,
including the additive noise, the ISI, and the loss of signal power.
The effective SNR can be expressed as a function of both the
channel SNR and the timing offset

(5)

where .

III. FRAME-BASED SYNCHRONIZATION

A. Online Statistics

Since multiple samples per symbol are taken, they can be used
to first estimate the effective SNR and then solve (5) for and

. If a set of effective SNRs and the timing differences
between them are known, an equation array can be established
using (5). Now with equations and two unknowns, it is
possible to jointly determine and . Interpolation can help to
recover the loss in signal energy when there are multiple sam-
ples available.

Successful implementation of the joint estimation strategy re-
quires fairly accurate estimates of the effective SNRs for each of
the sample positions averaged over the entire frame. To com-
pute the effective SNR estimate, we use the approach proposed
by Summers and Wilson [2] which computes online statistics
using sample means of and , i.e.,

(6)

where is the number of symbols in a frame. This particular
online statistic is of interest because it is directly related to the

Fig. 2. Effective SNR in the presence of improper timing, both using the NDA
estimation and DF methods (100 trials with a frame size 4590). RC-rolloff pulse
shaping is used with rolloff factor � = 0:5.

SNR, yet does not require knowledge of the data (which cannot
be achieved until after the first pass of decoding). As ap-
proaches infinity, the sample means become expected values [2]

(7)
where , .
Since is a function of and , is also related to and .

Fig. 2 shows the results of a simulation that compares the esti-
mated and analytical effective SNRs. Analytical effective SNRs
are calculated from (5). Nondata-aided (NDA) estimates of ef-
fective SNRs are obtained by calculating and inverting (7).
In Fig. 2, the NDA-estimated effective SNR fits the analytical
results well for . The NDA estimation produces pes-
simistic results of effective SNRs when ,
because, as discussed shortly, the online statistic generates a bi-
ased estimator of the effective SNR.

The received sequence , is a discrete random
process, therefore online statistics calculated by (6) are random
variables. Before the synchronizer can be designed and evalu-
ated, the online statistics must first be characterized. Detailed
derivations are shown in the Appendix. The expected value of

is

(8)

The first term in (8) is exactly the same as the right-hand side
of (7). However, the second term in (8) is greater than zero,
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thus, the online statistics are inevitably biased. Since the online
statistic is a decreasing function of , the estimated effective
SNR is always less than the real value. If either or is large,
then the second term is negligible and is approximately an
unbiased estimator. The variance of the online statistic is

(9)

where is the variance of . de-
creases when grows. Intuitively, this is reasonable because
an estimate becomes more reliable with a larger observation
window.

B. MMSE Algorithm

The estimation problem is to find the timing offset and SNR
of the channel, based on multiple sequences of samples ob-

tained from the matched filter. Online statistics are calculated
using these sample sequences. The relationship between
and the pair of parameters and is

(10)

where . Intuitively, the optimal MMSE
solution to this problem would result in a curve-fitting algo-
rithm. The idea is to find the effective SNR curve with a certain
pair of and that best fits the existing series of . An ex-
ample is shown in Fig. 3 for samples per symbol, when

and dB. The error is defined as the
Euclidean distance of the candidate curve to the values in .
The goal is to pick and that minimizes the following error
function:

(11)

The corresponding optimization equations are

(12)

Direct solution of (12) is difficult. Alternatives are to solve the
problem numerically, or to make assumptions that simplify it.
The numerical approach requires a large library of entries to be
stored in lookup tables, and is sensitive to noise. Hence, we seek
an approach to simplify the problem by applying a linearized
approximation to the relationship of effective SNR and the pair
of parameters , as shown in Fig. 3. Since the online sta-
tistics are directly available without needing to compute
each , and uniquely map to the effective SNR as in (10), the
algorithm can be directly applied to .

Fig. 3. Example series of online statistics fŝ g, the corresponding best-fit
curve, and a linearized approximation.

C. Reduced-Complexity Estimation of and

Because the exact MMSE solution is complex and sensitive
to noise, we have developed the following reduced-complexity
method for estimating and . An initial estimate of is
found by selecting the minimum and then inverting (7)

(13)

For the curve-fitting method, this estimate is used to select the
initial candidate curve. In the linearized approximation, is
used to determine the slope, i.e., the linearized approximation
is

(14)

where is the slope and . Values of are
found by evaluating the relationship between online statistics
and . For a specific

(15)

Simulations are used to obtain empirical values of . More
specifically, for each value of ranging from 4.8 dB to

1.8 dB in 0.1 dB increments, 1000 realizations of the online
statistic are simulated and the average is used to
determine the slope , which is stored in a lookup table.

The optimization function for is

(16)

is found by setting (16) equal to zero. The slope
is, hence

(17)
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Fig. 4. RMS timing error when K = 4590, with N = 2; 3; 4, uncoded data
sequence with BPSK modulation and rolloff factor � = 0:5.

Under the linearized approximation, the true value of should
satisfy

(18)
where . The mean square error (MSE) of the timing
estimate is found to be

(19)

where is the correlation coefficient of and , ,
. This coefficient is symmetric, , and is periodic

due to the fact that the online statistics count all the samples in
a frame. When , 0.1657, 0.3229, and 0.4792
when 2, 3, and 4, respectively.

The root-mean square (RMS) timing error with two, three,
and four samples per symbol using the proposed joint estimation
algorithm is shown in Fig. 4. The analytical curves are found by
plotting (19). The simulated and analytical results agree, espe-
cially as the SNR and number of samples per symbol gets large.

D. Interpolation

Once the estimate of is available, the interpolator combines
information from candidate samples to construct what the
samples would have been had the waveform been sampled at
one sample per symbol at exactly the proper instant. This is
equivalent to reconstructing the waveform and sampling it with
proper timing. These samples are input to the turbo decoder. The
simplest interpolator is a linear interpolator, which generates
a weighted summation of selected samples. In the proposed
strategy, just the two samples that are closest to the estimated
timing offset are selected. The other samples, if available, are not
used because they are subject to higher ISI, and consequently,
are not reliable. Assuming that the two samples come from the

th and th samplers, then the sampling times associated
with these samples are
and , respectively. The result of the linear
interpolation is the following statistic for the th symbol:

(20)

where the weights and
.

This simple interpolation method results in a signal energy
loss. However, this loss is negligible when . We have
also tested higher order polynomial interpolators [15]. The per-
formance of more complex interpolaters is usually worse than
with using simple linear interpolation, because these interpo-
laters are too sensitive to noise, so they are not suitable for the
low-SNR environment where turbo codes are implemented.

E. Final Estimation of

As shown in Fig. 3, the linearized approximation reaches its
minimum value at

(21)

When is available, a final estimate of is found

(22)
This estimate is used in the turbo decoder to generate the
channel reliability information. Turbo codes are not sensitive
to moderate errors in the estimation of the SNR [2]. Our simu-
lation also shows that the performance loss due to estimating

is negligible.

IV. ITERATIVE SYNCHRONIZATION

A. Data-Aided (DA) SNR Estimation

When the data is known (or can be accurately estimated),
the variance of the additive noise can be estimated as proposed
by Reed and Asenstorfer in [16]. The additive noise includes
the effects of both the channel noise and the ISI. Let be the
additive noise on the th sample sequence. Assuming that the
transmitted data is available at the receiver, the variance of the
additive noise is a function of , and can be expressed as

(23)

is an even function of and . The effec-
tive SNR is

(24)

The ideal AGC block in the system model normalizes . There-
fore, in the following. The validity of (23) is veri-
fied by simulation, as shown in Fig. 2. This simulation uses
the estimated variance derived below and the actual data
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for DF. When implemented in a turbo decoder, the feedback
simply uses a hard decision of the log-likelihood ratio (LLR)

, where is the LLR of the th information
bit. We also considered soft-DF by using ,
but found essentially no performance difference when compared
with hard-DF.

For limited-length sequences, an estimate of can be found
by replacing the expected value with the sample mean

(25)

The point estimator defined in (25) is an unbiased estimator for
. Its variance is

(26)

Similar to NDA estimation, we establish the following error
function:

(27)
which we wish to minimize with respect to and .

B. Estimation of and

Since , we select the estimate of as
. Thus, the corresponding estimate of the

channel SNR is

(28)

The linearized approximation of (23) is

(29)

As with the feedforward case, empirical values for are
found by evaluating (29) through simulation and then stored in
a lookup table.

Similar to the process of (16) and (17), we find the following
DA estimate of :

(30)

The MSE of the timing estimate is

(31)

When , the correlation values 0.537, 0.779,
and 0.874 when 2, 3, and 4, respectively. These values
were calculated using the sample mean and sample variances
of the simulation results. The noise is correlated because the

Fig. 5. Root MSE of the DF timing estimate for uncoded BPSK modulation
with rolloff factor� = 0:5, frame sizeK = 4590, andN = f2; 3; 4g samples
per symbol.

matched filter colors the additive noise. Therefore, has an
autocorrelation function equal to . The RMS timing-estima-
tion error is shown in Fig. 5. The analytical curves are found by
plotting (31). It is found that with knowledge of the transmitted
data, the estimation error is close to the CRB, but the perfor-
mance is sensitive to the accuracy of linearized approximation.
When , or when the channel SNR is high, the linearized
approximation turns inaccurate.

V. SIMULATION STUDY

A simulation campaign was completed in order to illustrate
the effectiveness of the proposed estimation techniques. In
the simulations, BPSK modulation was used over an AWGN
channel. The timing error was quasi-static in the sense that the
offset was constant throughout the frame, but varied indepen-
dently from frame to frame according to a uniform distribution.
The timing offset was estimated using the linearized approxi-
mation, and a lookup table with 31 candidate slope values was
used, with ranging from 4.8 dB to 1.8 dB in 0.1 dB
increments. This range corresponds to between 0–3 dB
when the coding rate is 1/3. This range was selected because
this is where the bit-error rate (BER) performance of typical
turbo codes changes most rapidly, i.e., the range contains the
so-called “waterfall.” Turbo decoding is performed using the
log-MAP algorithm [1].

We define two types of iteration, local and global. A local it-
eration is merely an iteration within the turbo decoder. On the
other hand, a global iteration is an iteration between the turbo
decoder and the estimator. The number of times the SNR and
timing offset are estimated is equal to the number of global it-
erations. In all simulations, the total number of local iterations
is set to 10. Systems that do not use DF only execute one global
iteration, while systems with DF execute two global iterations
(with five local iterations per global iteration). The balance be-
tween the number of global and local iterations is important. On
the one hand, decision-directed estimation works better when
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Fig. 6. Performance of turbo code 1 using the proposed joint timing/SNR
algorithms and N = f2; 3; 4g samples per symbol. The interleaver size is 256,
overall code rate is 1/2, RSC generators (37, 33), and decoding uses 10 total
iterations of log-MAP algorithm.

the intermediate decision is accurate, and thus, it is important to
not feed back information prematurely. On the other hand, it is
important not to wait too long before feeding back information
to the estimator, or else the benefits of the DF estimator will not
be realized.

As in [10], the first turbo code tested uses a 256-bit random
interleaver. The constituent recursive systematic convolutional
(RSC) code uses octal generators (37, 33), and the parity bits
are alternatively punctured to obtain a coding rate of 1/2. The
two constituent codes are terminated independently. The BER
performance is shown in Fig. 6 for 2, 3, and 4 samples per
symbol, and both the NDA and the decision-directed estimation
techniques. The performance with perfect timing and SNR es-
timates is also shown for comparison purposes. With only two
samples per symbol and NDA estimation, the BER performance
is within 0.8 dB of perfect timing at a BER of . If a second
global iteration is used (DF estimation), then this loss is reduced
to only about 0.4 dB. With four samples per symbol and NDA
estimation, performance is within 0.2 dB of perfect timing at
a BER of , and with DF estimation, the loss is less than
0.1 dB.

The second code that we consider is one of the turbo codes de-
fined in the cdma2000 standard [17]. In particular, an interleaver
size of 1530 and overall code rate of 1/3 is selected, which will
make this code significantly stronger than the first code. This
code uses RSC constituent codes with octal generator (15,13)
and interleaver as defined in the standard. The BER performance
is shown in Fig. 7, again for 2, 3, and 4 samples per symbol
and both estimation techniques. The BER losses in this case
are very similar to the losses observed with the first code, in-
dicating that the estimation technique is robust enough to work
with stronger codes, and at the corresponding low SNRs. In par-
ticular, with and at a BER of , the loss relative to
perfect timing with the NDA estimator is 0.8 dB, and with the
decision-directed estimator is about 0.4 dB. With , these
two losses are 0.2 and 0.1 dB, respectively. In the above systems,
it is shown that the BER performance improves as increases if

Fig. 7. Performance of turbo code 2 using the proposed joint timing/SNR
algorithms and N = f2;3; 4g samples per symbol. Code is as specified in
the cdma2000 standard with overall code rate 1/3 and interleaver size 1530.
Decoding uses 10 total iterations of log-MAP algorithm.

Fig. 8. Comparison of Mielczarek’s soft-combining method and joint
estimation of SNR and timing-offset method with four samples per symbol.
Code 1: interleaver size = 256, coding rate = 1=2, constituent RSC code is
(37, 33). Code 2: interleaver size = 1530, coding rate = 1=3, constituent RSC
code is (15, 13). Random interleaver is used, and 10 iterations.

perfect timing is not available. Data-directed estimation helps to
close the gap, thereby approaching the BER performance with
perfect timing.

In Fig. 8, we compare the performance of both codes using
our proposed estimation techniques with the previously pro-
posed soft-combining method of [10] with four samples per
symbol. While soft-bit combining works better with the weaker
code, the proposed joint estimation techniques outperform it
when using the stronger code. This is due to the fact that the esti-
mation error of the proposed frame-based estimator is inversely
proportional to the window (frame) size. Recall, however, that
the method in [10] requires two turbo decoders running in par-
allel, while our method only requires a single turbo decoder. The
overall system complexity of the proposed approach is, there-
fore, significantly less than the one proposed in [10].
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Fig. 9. Performance of turbo code 3 using the proposed joint timing/SNR
algorithms and N = f2; 3; 4g samples per symbol. Code is as specified in
the cdma2000 standard with overall code rate 1/3 and interleaver size 20730.
Decoding uses 10 total iterations of log-MAP algorithm.

We also considered a third code, shown in Fig. 9, which is
much stronger than the first two. This code is also defined in
cdma2000 standard [17]. The interleaver size is 20730. The code
can get a BER of at a SNR of 0.23 dB with perfect timing.
With only two samples per symbol and NDA estimation, the
coding gain loss is within 0.8 dB of the BER performance of
perfect timing at a BER of . When and two global
iterations are invoked, the coding gain loss is about 0.3 dB at
a BER of . With four samples per symbol and NDA esti-
mation, the coding gain loss is within 0.05 dB of the BER of
perfect timing at a BER of . When two global iterations
are called, the coding gain does not improve much because of
the low SNR.

In all of the above simulations, it is found that the perfor-
mance of with two global iterations is comparable to
that of with only one global iteration. The performance
gain is achieved at the cost of one call of decision-aided joint es-
timation and reinterpolation. This means we can design a system
with a lower sampling rate and additional system complexity to
achieve a similar performance to higher sampling rate and lower
complexity.

VI. CONCLUSIONS

Imperfect timing causes a loss in effective SNR, which re-
sults in a severe BER performance degradation for timing shifts
greater than about 10% of the symbol period. This performance
loss can be recovered by a proper estimation algorithm. How-
ever, the situation is complicated by the fact that the channel
SNR over which turbo codes operate is both very small and not
known to the receiver. Also, practical systems are likely to use
Nyquist pulse shaping, which introduces ISI in the presence of
timing errors. Our approach to synchronization and SNR esti-
mation involves sampling the signal multiple times per symbol
period, and computing an online statistic for each of the sample
instances over the entire frame. These online statistics are then
used to simultaneously estimate the channel SNR and timing
offset. A simple linear interpolation algorithm is then used to

reconstruct the matched-filter samples at the estimated timing
instants. Tentative decisions from the decoder can be fed back
and used to refine the timing and SNR estimates.

The proposed algorithm recovers much of the loss due to poor
synchronization, and does so with negligible added complexity
and latency (compared with that of the turbo decoding algorithm
itself). With feedback from the decoder to the estimator, the
simulated coding gain loss is negligible, i.e., about 0.1 dB with
four samples per symbol when the interleaver size at a
BER of . The DF technique provides a method to improve
coding gain by implementing iterative timing/SNR estimation
with a complexity much smaller than the turbo decoder. When
the sampling rate is critical, this technique recovers the coding
gain comparable to a system with a higher sampling rate, but
does not use DF. Finally, it is noted that the proposed technique
is suitable for more than just turbo codes. Indeed, any system
can use the NDA technique. Furthermore, since only hard de-
cisions were fed back from the decoder to the estimator, the
proposed iterative synchronization strategy is suitable for any
error-control code, not just those that use soft-output decoders.

APPENDIX

The online statistics are computed with (6). At high SNR,
is approximately Gaussian. For Gaussian random vari-

ables, first-order statistics are independent from second-order
statistics [18], and so we may assume that the numerator and
denominator in (6) are independent. Then, we have the expected
value

(A.1)

is a noncentral chi-square distribution with
degrees of freedom. The first- and second-order statistics of

are

(A.2)

(A.3)

From the central limit theorem, has (ap-
proximately) a normal distribution, where

(A.4)

(A.5)
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has a noncentral chi-square dis-
tribution. If is sufficiently large, then , and conse-
quently, and are approximately
and , respectively. Hence, we have the expected
value of online statistic

(A.6)

where is the SNR. The term in the last line of (A.6)
represents a bias, which is unavoidable due to the division of two
random variables.

The variance of the statistic is

(A.7)
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