The Transmission Capacity of Frequency-Hopping Ad Hoc Networks

Matthew C. Valenti Lane Department of Computer Science and Electrical Engineering West Virginia University

June 13, 2011

- From the state of Maryland, in the United States.
- Educated at
 - Virginia Tech
 - Johns Hopkins University.
- Worked as an Electronics Engineer at the U.S. Naval Research Laboratory.
- Professor at West Virginia University.

Funding Sources:

- National Science Foundation (NSF).
- U.S. Army Research Laboratory (ARL).

People:

- Dr. Don Torrieri, ARL.
- Dr. Shi Cheng.
- Mr. Salvatore Talarico, Ph.D. student.

Outline

D Ad Hoc Networks

2 Spread Spectrum

- Outage Probability
- Transmission Capacity
- **5** CPFSK Modulation
- 6 Optimization Results
- Conclusion and Future Directions

Outline

1 Ad Hoc Networks

- 2 Spread Spectrum
- 3 Outage Probability
- 4 Transmission Capacity
- 5 CPFSK Modulation
- Optimization Results
- Conclusion and Future Directions

Ad Hoc Networks

- Transmitters are randomly placed in 2-D space.
 - X_i denotes 2-D location of i^{th} node.
 - Spatial model important (usually Poisson Point Process).
- Each node transmits to a random receiver.
 - Reference receiver located at the origin.
 - $|X_i|$ is distance to i^{th} node.
 - X_0 is location of reference transmitter.
 - M interfering transmitters, $\{X_1, ..., X_M\}$.

Ad Hoc vs. Cellular

- In a cellular network, the reference receiver will associate with the closest transmitter (base station).
 - $|X_0| < |X_i|, \forall i \neq 0.$
 - The desired signal is usually stronger than any interferer.
- In an ad hoc network, some interferers may be closer than reference transmitter.
 - $|X_i| < |X_0|$ possible for some transmitters.
 - Near-far effect.

Guard Zones

- To prevent close interferers, interference-avoidance protocols are used.
 - Carrier-sense multiple access with collision avoidance (CSMA-CA).
- If one transmitter is too close to another, it will deactivate.
 - Each transmitter is surrounded by a circular guard zone of radius r_{min} .
 - Other nodes in the guard zone are forbidden to transmit.
- Equivalent to *thinning* the spatial model.
 - Thinned PPP.
 - Matern-hard process.

SINR

The performance at the reference receiver is characterized by the signal-to-interference and noise ratio (SINR), given by:

$$\gamma = \frac{g_0 \Omega_0}{\Gamma^{-1} + \sum_{i=1}^M I_i g_i \Omega_i}$$
(1)

where:

- Γ is the SNR at unit distance.
- g_i is the power gain due to fading (i.e. Rayleigh or Nakagami fading).
- I_i is the fraction of X_i 's power in the same band as X_0 .
- $\Omega_i = \frac{P_i}{P_0} 10^{\xi_i/10} ||X_i||^{-\alpha}$ is the normalized receiver power.
- P_i is the power of transmitter i.
- ξ_i is the dB shadowing gain (i.e. log-normal shadowing).
- α is the path loss.

Outline

1 Ad Hoc Networks

2 Spread Spectrum

- 3 Outage Probability
- 4 Transmission Capacity
- 5 CPFSK Modulation
- Optimization Results

7 Conclusion and Future Directions

Spread Spectrum

- To control interference, spread spectrum is often used in ad hoc networks.
- There are several types of spread spectrum
 - Direct sequence (DS).
 - Frequency hopping (FH).
 - Hybrid DS/FH.

Direct Sequence

- Spread bandwidth of each signal by a factor G.
- Amount of power in the reference channel is effectively reduced.
- G is called the *processing gain* and is the amount of reduction.
- $I_i = 1/G, \forall i \neq 0.$
- Interference averaging.
- Preferred for cellular networks.

Frequency Hopping

- \bullet Transmitters randomly pick from among L frequencies.
- I_i is a Bernoulli random variable with probability p = 1/L.
- Interference avoidance.
- Preferred for ad hoc networks.

Hybrid DS/FH

- Spread bandwidth of each signal by a factor G.
- Sent DS-spread signal over randomly selected frequency.
- G > 1 and p < 1.

Outline

- Ad Hoc Networks
- 2 Spread Spectrum
- Outage Probability
 - 4 Transmission Capacity
 - 5 CPFSK Modulation
 - Optimization Results
- 7 Conclusion and Future Directions

Information Outage Probability

- The frame-error rate (FER) is a practical performance metric.
- Assuming the use of a capacity-approaching code (turbo, LDPC), the *information outage probability* is a good predictor for the FER.
- The IOP is given by:

$$\epsilon = P[C(\gamma) \le R] = P\left[\gamma \le \underbrace{C^{-1}(R)}_{\beta}\right].$$
 (2)

where

- $C(\gamma)$ is the *capacity* of an AWGN system with SNR γ .
- R is the *rate* of the error-correcting code.
- β is the SINR threshold.

Evaluating IOP

• Substituting (1) into (2) and rearranging yields

$$\epsilon = P \Big[\underbrace{\beta^{-1} g_0 \Omega_0 - \sum_{i=1}^M I_i g_i \Omega_i}_{\mathbf{Z}} \le \Gamma^{-1} \Big].$$

• The outage probability is related to the cumulative distribution function (cdf) of Z,

$$\epsilon = P\left[\mathsf{Z} \le \Gamma^{-1}\right] = F_{\mathsf{Z}}(\Gamma^{-1}).$$

• To find the IOP, we should find an expression for the cdf of Z.

Rayleigh Fading

• When all links are subject to Rayleigh fading,

$$F_{\mathsf{Z}}(z) = 1 - e^{-\beta z} \prod_{i=1}^{M} \frac{G + \beta(1-p)\Omega_i}{G + \beta\Omega_i}.$$

where it is assumed that:

- The reference transmitter is at unit distance, $|X_0| = 1$.
- There is no shadowing.

(3)

Nakagami Fading

If the channel from the i^{th} node to the receiver is Nakagami-m with parameter m_i , then for integer m_0 ,

$$F_{\mathsf{Z}}(z) = 1 - \exp\left\{\beta z \frac{m_0}{\Omega_0}\right\} \sum_{s=0}^{m_0-1} \left(\beta z \frac{m_0}{\Omega_0}\right)^s \sum_{r=0}^s \frac{z^{-r} V_r(\Psi)}{(s-r)!}$$

$$V_r(\Psi) = \sum_{\substack{\ell_i \ge 0\\ \sum_{i=0}^M \ell_i = r}} \prod_{i=1}^M U_{\ell_i}(\Psi_i)$$

$$U_\ell(\Psi_i) = \begin{cases} 1 - p(1 - \Psi_i^{m_i}), & \text{for } \ell = 0\\ \frac{p\Gamma(\ell+m_i)}{\ell \Gamma(m_i)} \left(\frac{\Omega_i}{Gm_i}\right)^\ell \Psi_i^{m_i+\ell} & \text{for } \ell > 0 \end{cases}$$

$$\Psi_i = \left(\beta \left(\frac{m_0}{\Omega_0}\right) \left(\frac{\Omega_i}{Gm_i}\right) + 1\right)^{-1}, \quad \text{for } i = \{1, ..., M\}.$$

An Example

- Reference (source) transmitter placed at distance $|X_0| = 1$.
- M = 50 interferers randomly placed in a circle of radius $r_{max} = 4$.
- L = 200 hopping frequencies, i.e. p = 1/200 = 0.005.
- $\beta = 3.7$ dB SINR threshold.
- Three fading models considered:
 - Rayleigh fading: $m_i = 1$ for all i.
 - Nakagami fading: $m_i = 4$ for all *i*.
 - Mixed fading: $m_0 = 4$ for source and $m_i = 1$ for interferers.
- Path-loss coefficient $\alpha = 3$.
- No shadowing.

Example #1

Figure: Outage probability ϵ as a function of SNR Γ . Analytical curves are solid, while • represents simulated values. The network geometry is shown in the inset, with the reference receiver represented by \star and interferers by •.

Reducing Outage

- The outage probability can be reduced several ways:
 - **1** Impose a **guard zone** of radius r_{min} .
 - 2 Increase number of hopping frequencies L, which reduces p = 1/L.
 - **③** Decrease the **threshold** β , which can be done by using a lower rate channel code.
- For example, by using a guard zone with $r_{min} = 1$, the number of interferers decreases to 21.

Performance with a Guard Zone

Figure: Outage probability ϵ over the mixed fading channel when a guard zone of radius r_{min} is imposed. Note that although ϵ is reduced, the network now supports far fewer transmissions.

Outline

- Ad Hoc Networks
- 2 Spread Spectrum
- Outage Probability
- Transmission Capacity
 - 5 CPFSK Modulation
 - Optimization Results
- Conclusion and Future Directions

Transmission Capacity

- Reducing M reduces ϵ , which improves the per-link throughput.
 - However, fewer links are supported, so less total data might be transmitted within the network.
- Transmission capacity is a metric that quantifies this tradeoff.
- The transmission capacity is defined as

$$\tau = \zeta (1-\epsilon)\lambda$$

where

- ζ is the *throughput efficiency* of the link (bps/Hz).
- $\lambda = M/A$ is the *density* of the network.
- A is the *area* of the network.
- It is interpreted as the *area spectral efficiency* of the network.
 - Units of bps/Hz/ $m^2.$
 - The rate that bits are successfully transmitted over 1 Hz BW and 1 square meter of area.

Example #2

- M = 100 interferers placed randomly on circle of radius $r_{max} = 4$.
- Guard zone r_{min} gradually increased, thinning the network.
- Channel and network parameters:
 - Path-loss exponent $\alpha = 3.5$.
 - Mixed fading, i.e. $m_0 = 4$ and $m_i = 1$ for all interferers.
 - SINR threshold $\beta = 0$ dB.
 - Collision probability p = 0.5.
 - SNR $\Gamma = 25 \text{ dB}$ (high SNR regime).
 - Bandwidth efficiency $\zeta = 1$.

Example #2

Figure: Performance of Example #2.

Spatial Averaging

- Until now, we have only considered *specific* network topologies.
 - The network is drawn once from a random process.
- However, we may be interested in performance of a system across a wide range of realizations.
- Can draw multiple realizations of the network and average the outage probabilities.
 - Draw ${\cal N}$ networks, each of size ${\cal M}.$
 - Let Ω_j be the set of Ω_i 's for the j^{th} network.
 - Let $F_{\mathsf{Z}}(z|\Omega_j)$ be the the cdf of Z for the j^{th} network.
 - Take the average of the $N\ {\rm cdfs}$

$$F_{\mathsf{Z}}(z) = \frac{1}{N} \sum_{j=1}^{N} F_{\mathsf{Z}}(z | \mathbf{\Omega}_j).$$

• As before, the outage probability is $\epsilon = F_{\mathsf{Z}}(\Gamma^{-1}).$

Shadowing can be modeled by including the factor 10^{ξi/10} in each Ω_i.
 For log-normal shadowing ξ_i is zero mean Gaussian with variance σ_s².

Example #3

Figure: Performance averaged over N = 1000 network realizations. Parameters are the same as used in Example #2.

Outline

- Ad Hoc Networks
- 2 Spread Spectrum
- 3 Outage Probability
- 4 Transmission Capacity
- **5** CPFSK Modulation
 - Optimization Results
- 7 Conclusion and Future Directions

SINR Threshold

- Until now, we have picked the SINR threshold β arbitrarily.
- β depends on the choice of modulation.
 - For *ideal* signaling

$$C(\gamma) = \log_2(1+\gamma)$$

 β is the value of γ for which $C(\gamma)=R$ (the code rate),

$$\beta = 2^R - 1$$

- For other modulations, the *modulation-constrained* capacity must be used.
- The code rate and modulation influence ζ , the throughput efficiency.

Modulation Choices for Frequency Hopping

$$s_d(t) = \frac{1}{\sqrt{T_s}} e^{j2\pi dt/T_s}, \ d = 0, 1, \cdots, q-1$$

- Philosophy #1: Orthogonal FSK
 - Suitable for noncoherent reception.
 - Reasonable energy efficiency.
 - $\bullet\,$ Poor bandwidth efficiency because adjacent tones are $1/T_s$ apart.
- Philosophy #2: Nonorthogonal CPFSK
 - Reduce bandwidth by using modulation index h < 1.
 - Adjacent frequency tones are h/T_s apart.
 - Continuous-phase constraint controls the spectrum.
 - Transmitted $x(t) = e^{j\phi}s_d(t)$ where phase ϕ is accumulated

$$\phi = \phi' + 2\pi dh$$

Modulation Choices for Frequency Hopping

$$s_d(t) = \frac{1}{\sqrt{T_s}} e^{j2\pi dht/T_s}, \ d = 0, 1, \cdots, q-1$$

- Philosophy #1: Orthogonal FSK
 - Suitable for noncoherent reception.
 - Reasonable energy efficiency.
 - $\bullet\,$ Poor bandwidth efficiency because adjacent tones are $1/T_s$ apart.
- Philosophy #2: Nonorthogonal CPFSK
 - Reduce bandwidth by using modulation index h < 1.
 - Adjacent frequency tones are h/T_s apart.
 - Continuous-phase constraint controls the spectrum.
 - Transmitted $x(t) = e^{j\phi}s_d(t)$ where phase ϕ is accumulated

$$\phi = \phi' + 2\pi dh$$

Bandwidth of CPFSK

Matthew C. Valenti

CPFSK Modulation

Capacity of Noncoherent Binary CPFSK

(a) channel capacity versus \mathcal{E}_S/N_0

(b) minimum \mathcal{E}_b/N_0 versus coding rate

Reference: S. Cheng, R. Iyer Sehshadri, M.C. Valenti, and D. Torrieri, "The capacity of noncoherent continuous-phase frequency shift keying, in *Proc. Conf. on Info. Sci. and Sys. (CISS)*, (Baltimore, MD), Mar. 2007.

Matthew C. Valenti

Throughput Efficiency

• The throughput over the frequency subchannel is:

$$T = \eta R W$$

where

- R is the rate of the channel code.
- η the (uncoded) modulation's spectral efficiency (bps/Hz).
- W = B/L is the bandwidth of the subchannel.
- Throughput efficiency is throughput divided by the overall bandwidth $B_{\rm r}$

$$\zeta = \frac{T}{B} = \frac{\eta R}{L}$$

and has units of bps/Hz.

• For a given L, there is a tradeoff between R, η , and β .

Outline

- Ad Hoc Networks
- 2 Spread Spectrum
- 3 Outage Probability
- 4 Transmission Capacity
- 5 CPFSK Modulation
- 6 Optimization Results
 - 7 Conclusion and Future Directions

Design Considerations

Design # 1

- Wideband hopping channels.
- Large W.
- Fewer hopping channels L = B/W.
- More collisions: Higher p = 1/L.
- Lower β due to lower R and higher h.
- Better AWGN performance.

Design # 2

- Narrowband hopping channels.
- Small W.
- More hopping channels L = B/W.
- Fewer collisions: Lower p = 1/L.
- Higher β due to higher R and lower h.
- Worse AWGN performance.

Optimization Objectives

- The parameters L, R, and h are related in a complicated manner.
- Our goal is to find the set of these parameters which provides the best performance.
- We use *transmission capacity* as the objective function for an optimization.
- For each value of M, determine the parameters that maximize τ .
- Due to the large search space, the optimization is computationally demanding.
- We use a 208-core cluster computer to perform the optimization.

Optimization Algorithm

- Oraw N networks, each of size M, according to the spatial distribution.
- 2 Determine the set Ω_i for each network and store it.
- Pick a value of L.
- Pick a value of β .
- Sompute the outage probability averaged over the Ω_j .
- For each h, determine the rate R corresponding to the current β. This is found by setting R = C(β), where C(γ) is the modulation-constrained capacity for this h.
- For the set of (h, R) found in the last step, determine the normalized transmission capacity τ .
- **(3)** Return to step 3 until all β are considered.
- Seturn to step 4 until all L are considered.

Optimization Results

r_{max}	σ_s^2	m_0	m_i	L	R	h	$ au_{opt}$	$ au_{sub}$
2	0	1	1	31	0.61	0.59	15.92	3.31
		4	4	42	0.66	0.59	17.09	4.05
		4	1	36	0.65	0.59	19.82	4.13
	8	1	1	31	0.63	0.59	15.98	3.31
		4	4	41	0.66	0.59	17.43	4.04
		4	1	36	0.66	0.59	20.11	4.12
4	0	1	1	12	0.54	0.59	9.73	0.89
		4	4	15	0.50	0.59	10.65	1.12
		4	1	14	0.51	0.59	11.85	1.12
	8	1	1	12	0.53	0.59	9.41	0.89
		4	4	16	0.51	0.59	10.26	1.12
		4	1	14	0.52	0.59	11.46	1.12

Table: Results of the Optimization for M=50 interferers. The transmission capacity τ is in units of bps/kHz- m^2 . τ_{opt} is TC with the optimizer parameters, while τ_{sub} is TC with (L,R,h)=(200,1/2,1).

Matthew C. Valenti

Outline

- Ad Hoc Networks
- 2 Spread Spectrum
- 3 Outage Probability
- 4 Transmission Capacity
- 5 CPFSK Modulation
- Optimization Results

Conclusions

- The performance of frequency-hopping ad hoc networks is a function of many parameters.
 - Number hopping channels L.
 - Code rate R.
 - Modulation index h (if CPFSK modulation).
 - Guard-zone radius r_{min} .
- These parameters should be jointly optimized.
 - Transmission capacity is the objective function of choice.
 - TC quantifies the tradeoffs involved.
- The approach is general enough to handle a wide variety of conditions.
 - Frequency-hopping and direct-sequence spread spectrum.
 - Rayleigh and Nakagami fading (or mixtures).
 - Shadowing.
 - Any spatial model.

Future Work

- Effect of adjacent-channel interference.
- Cellular networks.
- Influence of location of reference receiver.
- Nonbinary modulation; multisymbol reception.
- Hybrid FH/DS systems.
- Diversity and multiple antennas.
- Cooperative communications.
- Adaptive hopping and cognitive radio systems.

どうもありがとうございます