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Abstract 

In this paper, we demonstrate the perform-
ance of space-time block codes when the 
decoding is performed using  imperfect 
estimates of the channel. A brief explanation 
of the system model is given and the results 
of performance simulations discussed. 
Simulation results are introduced to charac-
terize the performance of a space-time block 
code using two transmit antennas, one 
receive antenna, and QPSK modulation. The 
performance of this system is shown when 
there is perfect channel state information, 
and also when there are amplitude and/or 
phase errors in the channel estimates.  

1. Introduction 

In order to adequately demonstrate the 

performance of a system via simulation, 

it is necessary to develop an accurate 

model of the system as it would be 

physically implemented. The assumption 

that perfect channel state information 

(CSI)  would be available to the receiver 

is inappropriate when simulating a 

physical system, because in a real 

system the effects of the channel can 

never be known exactly. Rather, some 

form of estimation is performed to find 

an approximation to the channel.  

Under the assumption that perfect 

CSI is available to the decoder, the 

performance of space-time block codes 

has been shown in [1-4].  In this paper, 

the performance of space-time block 

codes is analyzed under the constraint 

that the receiver must rely on imperfect 

estimates of the channel conditions. This 

is done in order to verify the perform-

ance that can be expected in practice by 

an actual block space-time coded 

system.   

The sensitivity and robustness of 

space-time block codes to varying levels 

of error in the amplitude and phase of 

the estimates is illustrated using a series 

of simulations.  This new information 

could be used to help design and verify 

the performance of a channel estimation 

scheme based on the insertion of pilot 

sequences into the data stream of each 

antenna.   

 



The imperfect channel estimates are 

created by taking the actual fading 

coefficients that characterize the channel 

and applying some degree of error into 

the magnitude and/or the phase of those 

coefficients before decoding. This 

simulates the inability of an estimation 

scheme to predict the complex channel 

gain with perfect accuracy.  

The effects of errors in the estimate 

of the gain and the phase are initially 

analyzed separately for two reasons. 

First, it is difficult to represent the 

resulting changes in BER when errors in 

both gain and phase occur simultane-

ously, especially when we have no clear 

understanding of what specific effects 

either type of error will have. Second, it 

is important to understand what effects 

each of the two components has on 

performance when its estimate is not 

exact. This way it is possible to deter-

mine if either gain or phase is more 

important to the decoding and estimating 

process in terms of Bit Error Rate 

performance. Also, certain modulation 

formats may be more or less vulnerable 

to phase estimation errors than they are 

to gain estimation errors, and vice versa. 

 

2. System Model 

The system model that we use to 

analyze the performance of space-time 

block codes with channel estimation 

errors can be seen in Figure 1.  It  

consists of two transmit antennas and 

one receive antenna operating in a 

Rayleigh fading environment.  Symbol 

mapping uses a QPSK or BPSK signal 

constellation and the generator matrix 

G2, developed by Tarokh et al. in [1].   

The fading coefficient, or path gain, 

between the ith transmit antenna and the 

receive antenna is given as 

c a ji i i= exp θ� �  (1) 

Figure 1: Transmission system consisting of two transmit antennas and one receive antenna. 
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We ran simulations of the system 

with errors in the amplitude and phase of 

the channel estimates.  A channel 

estimate with phase error is of the form  

 � expc a ji i i i= +θ φ� �  (2) 

where φi  is the error introduced into the 

phase. An estimate with errors in the 

amplitude is of the form 

  � expc K a ji i i i= θ� �   (3) 

where Ki  is the error introduced into the 

amplitude.  

The channel is assumed to undergo 

flat fading and the fading is independent 

between different transmit antennas.  It 

is also assumed that the fading over a 

channel is constant over a frame. The 

assumption of constant fading over a 

frame is justified if the data rate is high 

and/or the channel fades relatively 

slowly. In order to justify the assumption 

that the fading gains between antennas 

are uncorrelated requires that the differ-

ent antennas be physically separated by 

approximately ten wavelengths.  

The path gains are considered to be 

independent samples of a complex 

Gaussian distribution. The variance of 

the path gains is 0.5 per real dimension. 

The noise at the receiver is an additive 

Gaussian noise produced from samples 

of another Gaussian random variable 

with a mean of zero and a variance equal 

to n/(2*SNR). Here, n is the number of 

transmit antennas and SNR is the signal 

to noise ratio at the receiver. The aver-

age energy is normalized to be one for 

each symbol leaving each of the n 

transmitting antennas. This gives the 

energy of the received signal as n 

(assuming no path loss) and SNR is 

measured at the receiver. 

The received signal at time t is  
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Since we are using generator matrix G2 , 

there will be two sets of transmissions 

for each set of two input symbols. 

Therefore in matrix notation we can 

express the received signal as  
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The decoding for this system is 

rather simple and consists of minimizing 

the metric 
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over all possible combinations of 

transmitted symbols.  For the simula-

tions using imperfect channel estimates 

the metric becomes 
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3. Simulation Results 

In this section we provide simulation 

results for the performance of space-time 

block codes with channel estimation 

errors as described in the previous 

sections. Figure 2 shows the perform-

ance of uncoded QPSK and QPSK using 

G2, under the assumption that perfect 

CSI is available at the receiver. All 

further figures correspond to a QPSK 

signal constellation, the generator matrix 

G2, two transmit antennas, and one 

receive antenna. Figures 3, 4, and 5 

show the bit error rates of our transmis-

sion scheme against the phase error in 

each channel for fixed levels of received 

SNR of 10, 20, and 25 dB, respectively. 

The phase errors are measured in radi-

ans, with a maximum phase error of π/4 

radians. 

These figures show that as the SNR 

is increased the system can tolerate a 

larger degree of error and still retain 

reasonable performance. However, as 

the degree of error in the phase ap-

proaches π/4, the system performance 

breaks down regardless of  SNR. This is 

to be expected as the decision regions 

for QPSK are defined by boundaries that 

are π/4 radians between different signals.  

Figure 6 shows the bit error rate of 

our system when the channel estimates 

contain amplitude, or gain, errors as high 

as 1.5. If the gain errors are equal in 

each channel than there is little perform-

ance degradation. It is for this reason 

that further results conserning gain 

errors will only be concerned with what 

we call the normalized gain error. This is 

simply the ratio of the gain error in 

channel one to the gain error in channel 

two, or K1/K2. 

Figures 7 and 8 show the Bit Error 

Rates for the normalized gain error at 

fixed SNR of 10 and 20 dB. The per-

formance becomes extremely degraded 

only when the difference between the 

gain errors of each channel differ by an 

order of magnitude. This shows that a 

large degree of error can be tolerated in 

the amplitude estimate, especially if the 

degree of error is relatively equal in each 

channel. 

The results of bit error rate perform-

ance with various levels of average 

phase error per channel are shown in 

Figure 9. When the average phase error 

in both channels exceeds 0.6 radians the 



performance is not acceptable even at 

large values of SNR.  

Figure 10 is a plot of BER versus 

received SNR for several values of 

average normalized gain error. Regard-

less of the degree of error in any 

individual channel, if the normalized 

error is close to one, the performance is 

very close to that of having perfect 

channel estimates.  Even when the error 

in one channel is nearly double that of 

the error in the other channel, acceptable 

performance can still be achieved.  

Figure 11 shows the bit error rate 

performance of the system when there 

are errors present in both the gain and 

the phase of the channel estimate. This is 

a plot of BER versus normalized gain 

error at several values of average phase 

error per channel. Once the average 

phase error exceeds approximately 0.5 

radians the degree of gain error is 

irrelevant, because the performance is 

already too degraded. When there are 

relatively small phase errors the degree 

of gain error can be relatively high 

without a large performance penalty.
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Figure 2.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

perfect CSI, two transmit antennas, and one receive antenna. 
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Figure 3.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, a fixed SNR of 10 dB, and  
a maximum phase error of  π/4 radians. 
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Figure 4.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, a fixed SNR of 20 dB, and  
a maximum phase error of  π/4 radians. 
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Figure 5.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  
two transmit antennas, one receive antenna, a fixed SNR of 25 dB, and  

a maximum phase error of  π/4 radians. 
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Figure 6.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, a fixed SNR of 10 dB, and  
a maximum gain error of  1.5. 
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Figure 7.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, a fixed SNR of 10 dB, and  
a range of gain error. 
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Figure 8.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, a fixed SNR of 20 dB, and  
a range of gain error. 

 
 
 



0 5 10 15 20 25
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Received SNR

B
E

R

avg. phase error/channel = 0.2 radians
avg. phase error/channel = 0.4 radians
avg. phase error/channel = 0.6 radians
avg. phase error/channel = 0.8 radians

 
Figure 9.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, and  
various levels of phase errors per channel. 
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Figure 10.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, and  
various levels of gain errors per channel. 
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Figure 11.  BER versus normalized gain error for STBC in Rayleigh flat fading  

with QPSK modulation, two transmit antennas, one receive antenna,  
a fixed SNR of 20 dB and various levels of phase errors per channel. 

 
4. Conclusions 

In this paper we have shown the per-

formance of space-time block codes 

when decoded using imperfect estimates 

of the channel. For the case of a two 

transmit antenna system employing a 

QPSK constellation we have shown that 

errors in the amplitude of the channel 

estimate have a relatively minor effect 

on the bit error rate performance. If the 

amount of gain error in each channel is 

approximately the same there is almost 

no performance degradation. However, 

errors in the phase have the predominant 

effect, as would be expected when using 

Phase Shift Keying. The amount of error 

that can be tolerated in the phase of the 

channel estimate before the performance 

completely breaks down, is approxi-

mately 0.5 radians. Even when the level 

of error in the phase is 0.4 radians the 

performance has been greatly degraded. 
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