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Wearable communication networks 

u  The next frontier for wireless communications 
ª Multiple devices in and around human body 
ª Low-rate fitness monitors to high-rate infotainment devices 

u  Critical challenge 
ª Supporting Gbps per user in dense environments 
ª Effective operation in finite areas like trains, trolleys, or buses 
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[1] http://www.bombardier.com/en/transportation/products-services/railvehicles/metros.html 
[2] “Smart wearable devices: Fitness, healthcare, entertainment & enterprise 2013-2018,” Juniper Research, Oct. 2013. 



u  High bandwidth and reasonable isolation 
u  Compact antenna arrays to provide array gains via beamforming 
u  Commercial products already available: IEEE 802.11ad,  WirelessHD 
 
 

1 47 CFR 15.255; 2 ARIB STD-T69, ARIB STD-T74; 3 Radiocommunications Class License 2000; 4 CEPT : Official journal of the EU; 

 

MmWave as solution for wearable networks 
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Motivating prior work 
u  Stochastic geometry models for mmWave cellular networks [1]-[3] 

ª  Infinite spatial extent and number of nodes 
ª Did not consider people as a source of blockage 

u  Performance analysis for finite ad-hoc networks [4] 
ª Does not include directional antennas or blockage 

u  Self-blockage model for mmWave [5] 
ª Considers a 5G cellular system 
ª User's own body blocks the signal, not other users 
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[1] T. Bai and R. W. Heath Jr., “Coverage and rate analysis for millimeter wave cellular networks,” IEEE Trans. Wireless Comm., 2014. 
[2] S. Singh, M. N. Kulkarni, A. Ghosh, and J. G. Andrews, “Tractable model for rate in self-backhauled millimeter wave cellular networks,” online 
[3] T. Bai, A. Alkhateeb, and R. W. Heath Jr., “Coverage and capacity of millimeter-wave cellular networks,” IEEE Commun. Magazine, 2014. 
[4] D. Torrieri and M. C. Valenti, “The outage probability of a finite ad hoc network in Nakagami fading,” IEEE TCOM, 2012.  
[5] T. Bai and R. W. Heath Jr., “Analysis of self-body blocking effects in millimeter wave cellular networks,” in Proc. Asilomar 2014. 



What is different for mmWave wearable networks? 

 

u  Finite number of interferers in a finite network region 
ª Realistic assumption for the indoor wearable setting w/ mmWave 
ª Fixed/random location of interferers (extended in journal version) 

u  Blockages due to other human bodies  
u  Both interferer and blockage associated with a user 
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Contributions 

u  Model interferers as also potential blockages 

u  Analyze SINR distribution and rate 
ª Finite-sized mmWave-based wearable networks 
ª  Initially, conditioned on a fixed location for the interferers 
ª Conditioning can be removed by averaging over the spatial distribution 
 

u  Assess impact of antenna parameters on performance 
ª Factor in array size and gain 
ª  Incorporate antenna directivity and orientation 
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SYSTEM MODEL 
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Modeling antenna pattern using a sectored antenna 

u  Use a 2D sectored antenna model to simplify the analysis 
ª  Parameterize via a uniform planar square array w/ half-wavelength spacing	
  

u  Incorporates	
  omni-­‐direcHonal	
  antennas	
  as	
  a	
  special	
  case	
  
ª N	
  = 1 à omni-directional antenna, G = g = 1 
ª Of interest for inexpensive wearable 
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Network topology 

u  Finite sized network region     , area =      ,  K+1 users 
u  One interferer per user transmits at a time 

ª K interferers + reference transmitter-receiver pair 

u                    , location of transmitters relative to reference receiver 
ª X0 is location of the reference transmitter 
ª X1, ..., XK are the locations of the interferers. 
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Modeling human body blockages 

u  Associate diameter W circle with each user – denoted Yi  
u  Determine blocking cone for each Yi  
u  Xi blocked if it falls in one of the blocking cones 
u  Assume Yi does not block Xi, i.e., no self-blocking 

10 

Reference Rx 

Reference Tx 

Interfering Tx 

Xi Yi 



SIGNAL  MODEL 
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Received signal model 

u  hi - Nakagami fading with parameter mi from Xi 

u  Link is NLOS if blocked and LOS otherwise 
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Path-loss model and power gains 

u  αi - path-loss exponent from Xi 

u  Define 
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Signal from reference transmitter  

u  h0 – Nakagami fade gain from reference with parameter m0  
u  Assume that there is always LOS communication 
u  Reference Tx is within the main beam of the reference Rx 
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Relative transmit power 

u  Xi transmits with probability pt (Aloha-like medium access) 
u  Xi points its main-lobe in a (uniform) random direction 
u  Define 
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SINR and ergodic spectral efficiency 

u  SINR is  
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CCDF of SINR 

u  SINR coverage probability for a given  
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threshold 



CCDF of SINR 

u  SINR coverage probability for a given  

           where 
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Rate (Spectral Efficiency) 

u  For a threshold    , the spectral efficiency is 

u  The ccdf of the spectral efficiency is found by defining equivalent 
rates 

u  Since they are equivalent 

u  And the ergodic spectral efficiency is found from: 
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NUMERICAL RESULTS: 
(FIXED NETWORKS) 
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Setting 

u  5 X 9 rectangular grid 
u  Separation between nodes = 2R0 

u  No reflection from boundaries 
u  All nodes transmit with same Pi 
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Parameter
s	
   Value	
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   -­‐20	
  dB	
  

K	
   44	
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CCDF of SINR: Dependence on pt 
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u  Higher transmission probability pt results in smaller SINR 
u  Similar trend with other antenna configurations 



Spectral efficiency for different antenna configurations 
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Effect of receive antenna orientation 
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Rate trends with Nt and Nr  

 

25 

Nt	
  	
   Nr	
  

Ergodic	
  spectral	
  efficiency	
  (bits/s/Hz)	
   Rate	
  (Gb/s)	
  

Receiver	
  at	
  center	
   Receiver	
  at	
  a	
  corner	
   Receiver	
  at	
  center	
   Receiver	
  at	
  a	
  corner	
  

1	
   1	
   0.499	
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Contour plot of ergodic spectral efficiency 

 
 
 
 
 
 
 
 
 
*Units in bits/s/Hz 
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RANDOM NETWORKS 
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Stochastic Geometry of the Network 
u  Can model user location as being drawn from a point process. 

ª Poisson Point Process (PPP) or Binomial Point Process (BPP). 
 

u  Actually two processes: 
ª One process for interferers {Xi} 
ª Another for the blockages {Yi} 
ª The processes are correlated. 

u  Analytical approach: 
ª Simulation-based: Simulate the location, but use the analytical 

expressions for coverage and rate for each location. 
ª Or, make some approximations for analytical tractability. 
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Model 1: Orbital Model 
u  Orbital model for human body blockage. 

ª Blockage Yi is drawn from a point process. 
ª  Its transmitter Xi is located randomly on 

the perimeter of a radius-d circle. 
ª Probability of self-blocking easily found. 

u  Simulation based analysis: 
ª Place each blockage 
ª Randomly locate each interferer 
ª Compute outage probability for each 

network realization 
ª Repeatedly draw many such networks 
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Model 2/3: Independent Processes 

u  Draw the interferers and blockages 
from independent point processes. 
ª Assume interferers must be at least 

distance rin from the reference receiver. 

u  Under this assumption, we can 
determine the probability of blocking at 
distance r when there are K interferers. 
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Model 4:  All LOS Interferers are Inside a Ball 

u  Since pb(r) curve is sharp, can assume all 
interferers within some critical distance 
RB are LOS, and outside are NLOS. 

u  RB found as the average blocking 
distance. 

u  Under this model, the analysis is 
tractable by way of stochastic geometry 
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Comparison of Models 

u  Parameters: 
ª Binomial Point Process 
ª K = 36 
ª σ2 = -20 dB 
ª Nt = Nr = 4  
ª pt = 1 

u  Models are reasonable 
ª Overestimates rate. 
ª LOS ball even more so. 
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Concluding remarks 
u  Human-body blockages should be taken into account at mmWave 

ª  Proper stochastic models of blockages and interferers is important 

u  Receive antenna configuration and orientation is critical 
ª Users located at a corner can point the antenna away from the “crowd” 

u  Future work 
ª  Further analysis of random networks and refinement of their models 
 

u  For more information: 
ª K. Venugopal, M.C. Valenti, and R. W. Heath, Jr., “Interference in finite-sized 

highly dense millimeter wave networks,” in Proc. Information Theory and 
Applications (ITA) Workshop, (San Diego, CA), Feb. 2015 
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QUESTIONS? 
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