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Abstract— This paper addresses some critical implemen-
tation issues involved in the development of a turbo de-
coder, using the UMTS specification as a concrete example.
The assumption is that the decoder is to be implemented
in software rather than hardware, and thus a variable num-
ber of decoder iterations is not only possible, but desirable.
Three twists on the decoding algorithm are proposed: (1)
A linear approximation of the correction function used by
the max* operator which reduces complexity with only a
negligible loss in BER performance; (2) A method for nor-
malizing the backward recursion which yields a 12.5% sav-
ings in memory usage; and (3) A simple method for halting
the decoder iterations based only on the log-likelihood ra-
tios.
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I. INTRODUCTION

Turbo codes have received a considerable amount of
attention since their introduction [1]. They are particu-
larly attractive for cellular communication systems, and
have been included in the specifications for both WCDMA
(UMTS) and cdma2000. At this time, the reasons for the
superior performance of turbo codes and the associated
decoding algorithm are, for the most part, understood.

The purpose of this paper is neither to explain the phe-
nomenal performance of turbo codes, nor to rigorously
derive the decoding algorithm. Rather, the purpose is to
clearly explain an efficient decoding algorithm suitable for
immediate implementation in a software radio receiver. In
order to provide a concrete example, the discussion will
be limited to the turbo code used by the UMTS spec-
ification. The decoding algorithm is based on the log-
MAP algorithm [2], although many parts of the algorithm
have been simplified without any loss in performance. In
particular, the branch metrics used in the proposed algo-
rithm are much simpler to compute, and the amount of
storage is reduced by 12.5% by an appropriate normal-
ization process. Some critical implementation issues are
discussed, in particular the computation of the max* op-
erator and the dynamic halting of the decoder iterations.
Simple, but effective solutions to both of these problems
are proposed and illustrated through simulation.

This work was supported by the Office of Naval Research under
grant N00014-00-0655.

II. THE UMTS TUrBO CODE

This section presents a brief overview of the turbo code
used in the UMTS specification, as published by the Third
Generation Partnership Project (3GPP). A more detailed
explanation can be found in [3].

The UMTS turbo encoder is comprised of two rate
1/2, counstraint length 4 recursive systematic convolu-
tional (RSC) codes concatenated in parallel. The feed-
forward generator is (15) and the feedback generator is
(13), both in octal. The number of data bits at the in-
put of the turbo encoder is K, where 40 < K < 5114.
Data is encoded by the first (i.e. upper) encoder in its
natural order, and by the second (i.e. lower) after be-
ing interleaved (details of the interleaving are found in
the specification). The data bits are transmitted together
with the parity bits generated by the two encoders. Thus,
the overall encoder code rate is r = 1/3, not including the
tail bits (discussed below). The output of the encoder is
in the form: Xi, 71,71, Xa, Zo, Z},, where X}, is the kth
systematic (i.e. data) bit, Zy is the parity output from
the upper (uninterleaved) encoder and Zj is the parity
output from the lower (interleaved) encoder.

The trellises of both encoders are forced back to the all-
zeros state by the proper selection of tail bits. Unlike con-
ventional convolutional codes, which can be terminated
with a tail of zeros, the RSC encoder is terminated with
the bits that are fed back (which are determined by the
state of the encoder and the feedback polynomial). The
tail bits are then transmitted at the end of the encoded
frame according to XK+1, ZK+1, XK+27 ZK+2, XK+3,
Zk+3y X1 Dy Xkqor Ziver Xicyss Jiqs, Where
X represents the tail bits of the upper encoder, Z repre-
sents the parity bits corresponding to the upper encoder’s
tail, X’ represents the tail bits of the lower encoder, and
7’ represents the parity bits corresponding to the lower
encoder’s tail. Thus the number of coded bits is 3K + 12,
and the code rate is K/(3K + 12) when tail bits are taken
into account.

III. CHANNEL MODEL

BPSK modulation is assumed along with either an
AWGN or flat-fading channel. The output of the matched
filter is Yy = arSi + ng, where Sy = 2X; — 1 for
the systematic bits and S = 2Z; — 1 for the parity
bits, ns is Gaussian noise with variance o2 = (3K +
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Fig. 1.

Proposed turbo decoder architecture.

12)/(2K(Ep/N,)), and ay, is the channel gain (ax = 1 for
AWGN and is a Rayleigh random variable for Rayleigh
flat-fading).

The input to the decoder is assumed to be in log-
likelihood ratio (LLR) form, which assures that the chan-
nel gain and noise variance have been properly taken
into account. Specifically, the decoder input is Ry =
2a;Yy/0?. For the remainder of the discussion, the no-
tation R(X}) denotes the received LLR corresponding to
systematic bit Xy, R(Zx) denotes the received LLR for
the upper parity bit Z;, and R(Z},) denotes the received
LLR corresponding to the lower parity bit Z;.

IV. DECODER ARCHITECTURE

The architecture of the decoder is as shown in Fig. 1.
As indicated by the presence of a feedback path, the de-
coder operates in an iterative manner. Each full-iteration
consists of two half-iterations, one for each constituent
RSC code. The timing of the decoder is such that RSC
decoder #1 operates during the first half-iteration, and
RSC decoder #2 operates during the second half itera-
tion. The operation of the RSC decoders is fully described
in section VI.

The value w(X}) is the extrinsic information produced
by decoder #2 and introduced to the input of decoder
#1. Prior to the first iteration, w(Xy) is initialized to all
zeros. Because of the way that the branch metrics were
derived, it is sufficient to simply add w(Xj) to the sys-
tematic LLR input R(X%), which forms a new variable
denoted V1 (X}). The input to RSC decoder #1 is both
V1(Xy) and R(Zy), and the output is the LLR A1(X}). By
subtracting w(Xy) from A;(Xx), a new variable Vo (X})
is formed. Similar to V1(X}), V2(X}) contains the sum of
the systematic channel LLR and the extrinsic information
produced by decoder #1 (note however that the extrinsic
information for RSC decoder #1 never has to be explicitly
computed). The input to decoder #2 is V5(X},), which is
the interleaved version of Vo(Xy), and R(Z},), which is
the channel LLR corresponding to the second encoder’s
parity bits. The output of RSC decoder #2 is the LLR

A2(X{), which is deinterleaved to form Ag(Xy). The ex-
trinsic information w(Xy) is then formed by subtracting
Va(X%) from Ay(Xy) and is fed back to use during the
next iteration. Once the iterations have been completed,
a hard bit decision is taken using Aa(X}), where X, =1
when Ag(Xj) > 0 and X1, = 0 when Ao (Xy) <O0.

V. THE MAX* OPERATOR

The RSC decoders in Fig. 1 are each executed using a
version of the classic MAP algorithm implemented in the
log-domain [2]. As will be discussed in Section VI, the
algorithm is based on the Viterbi algorithm with two key
modifications: First, the trellis must be swept through not
only in the forward direction, but also in the reverse direc-
tion, and second, the add-compare-select (ACS) operation
of the Viterbi algorithm is replaced with the Jacobi log-
arithm, also known as the max™* operator [4]. Because
the max™ operator must be executed twice for each node
in the trellis during each half-iteration, it constitutes a
significant, and sometimes dominant, portion of the over-
all decoder complexity. The manner that max* is imple-
mented is essential to the performance and complexity of
the decoder, and several methods have been proposed for
its computation. Below, we consider four variants of the
algorithm: log-MAP, max-log-MAP, constant-log-MAP,
and linear-log-MAP. The only difference between these
algorithms is the manner in which the max* operation is
performed.

A. Log-MAP Algorithm

With the log-MAP algorithm, the Jacobi logarithm is
computed exactly using:

max(z,y) = In(e” +eY)
= max(z,y) +In (1 + e—ly—z\)
= max(m,y)-l-fc(\y—x‘)v (1)

where the correction function f.(|y — z|) can be imple-
mented using either the log and exp functions in C or a
look-up table. The log-MAP algorithm is the most com-
plex of the four algorithms, but offers the best BER per-
formance. The correction function used by log-MAP is
illustrated in Fig. 2, along with the correction functions
used by constant-log-MAP and linear-log-MAP.

B. Mazx-log-MAP algorithm
With the max-log-MAP algorithm, the Jacobi algo-

rithm is loosely approximated using:

max*(z,y) ~ max(z,y), (2)
i.e., the correction function of the log-MAP algorithm is
not used. The max-log-MAP algorithm is the least com-
plex of the four algorithms (it has twice the complexity



0.7

0.6
constant-log-MAP

0.5
0.4r

0.3F linear-log-MAP

f.Cly-x)

0.2

0.1r log-MAP

oF

-0.1

0 0.5 1 1.5 2 25 3 35 4
[y-x]

Fig. 2. Correction function used by log-MAP, linear-log-MAP, and

constant-log-MAP algorithms.

of the Viterbi algorithm for each half-iteration), but offers
the worst BER performance (about 0.4 dB worse than log-
MAP). The max-log-MAP algorithm has the additional
benefit of being almost completely tolerant of imperfect
noise variance estimates when operating on an AWGN
channel.

C. Constant-log-MAP algorithm

The constant-log-MAP algorithm, approximates the Ja-
cobi algorithm using [5]:

max *(z,y) ~ max(z,y)+ { g g IZ B i} z ; (3)
where it is shown in [6] that the best values for the UMTS
turbo code are C' = 0.5 and T' = 1.5. This algorithm is
equivalent to the log-MAP algorithm, with the correction
function implemented by a 2-element lookup table. The
performance and complexity is between that of the log-
MAP and max-log-MAP algorithms, although the BER
performance is only about 0.03 dB worse than log-MAP.
However, a disadvantage of constant-log-MAP is that it is
more susceptible to noise variance estimation errors than
is log-MAP.

D. Linear-log-MAP algorithm

The linear-log-MAP algorithm, first introduced in [7],
uses the following linear approximation to the Jacobi al-
gorithm:

max(z,y)

0
+{ aly—z|+b

In [7], the values of the parameters a, b, and T were picked
for convenient fixed point implementation. Since we are
assuming a floating-point processor is available, a bet-
ter solution would be to find these parameters by mini-

max *(z,y) ~
ifly—z|>T
ifly—z| <T (4)

Fig. 3. Trellis section for the RSC code used by the UMTS turbo
code. Solid lines indicate data 1 and dotted lines indicate data 0.
Branch metrics are indicated.

mizing the total squared error between the exact correc-
tion function and its linear approximation. By perform-
ing this minimization, we have found that a = —0.236,
b =0.592, and T' = 2.508. The linear-log-MAP offers per-
formance and complexity between that of the log-MAP
and constant-log-MAP algorithms. As will be shown in
the simulation results, a key advantage of the linear-log-
MAP algorithm is that it converges faster than constant-
log-MAP.

VI. MAP ALGORITHM IN THE LOG DOMAIN

The RSC decoders operate by sweeping through the
code trellis in both the forward and reverse directions us-
ing the modified Viterbi algorithm (the modification is
that the ACS operations are replaced with max*). Then,
LLR values can be computed for each stage of the trellis.
Two key observations should be pointed out before going
into the details of the algorithm: First, it does not matter
whether the forward sweep or the reverse sweep is per-
formed first; second, only the partial path metrics for the
entire first sweep (forward or backward) must be stored
in memory. The LLR values can be computed during the
second sweep, and thus partial path metrics for only two
stages of the trellis (the current and previous stages) must
be maintained for the second sweep.

A. Trellis Structure and Branch Metrics

The trellis of the RSC encoder used by the UMTS turbo
code is shown in Fig. 3. Solid lines indicate data X =
1 and dotted lines indicate data Xz = 0. The branch
metric associated with the branch connecting states S;
(on the left) and S; (on the right) is v;; = V(Xz) X (4,5)+
R(Z)Z(i,7), where X (i, 7) is the data bit associated with
the branch and Z (%, j) is the parity bit associated with the



branch. Because the RSC encoder is rate 1/2, there are
only 4 distinct branch metrics:

Y = 0

n o= V(X)

v2 = R(Z)

73 = VI(Xi)+ R(Z), (5)

where for decoder #1 V(Xj) = V1(X}) and for decoder
#2 V(Xy) = Va(X}) and R(Zy) = R(Z}).

B. Backward Recursion

The proposed decoder begins with the backward recur-
sion, saving normalized partial path metrics at all the
nodes in the trellis (with an exception noted below), which
will later be used to calculate the LLRs during the forward
recursion. The backward partial path metric for state S;
at trellis stage k is denoted (i (S;) with 1 < k < K + 3
and 0 <4 < 7. The backward recursion is initialized with
Br+3(S0) =0 and Bg43(S;) = —oo Vi > 0.

Beginning with stage k = K+2 and proceeding through
the trellis in the backward direction until stage k = 1, the
partial path metrics are found according to:

Be(Si) = maz x {(Bry1(Ss,) + vijy )5

(Br+1(85,) +%iga )} (6)

where the tilde above (;(S;) indicates that the metric
has not yet been normalized, and S;, and S;, are the two
states at stage k + 1 in the trellis that are connected to
state S; at stage k. After the calculation of 8;(Sp), the
partial path metrics are normalized according to:

Be(S:) = Br(S:) — Br(So)- (7)

Because after normalization G (Sp) = 0 Vk, only the other
seven normalized partial path metrics G, (S;), 1 < i <
7, need to be stored. This constitutes a 12.5% savings
in memory relative to either no normalization or other
common normalization techniques.

C. Forward Recursion and LLR Calculation

During the forward recursion, the trellis is swept
through in the forward direction in a manner similar to
the Viterbi algorithm. Unlike the backward recursion,
only the partial path metrics for two stages of the trellis
must be maintained: The current stage k£ and the previ-
ous stage k — 1. The forward partial path metric for state
S; at trellis stage k is denoted ay(S;) with0 <k < K —1
and 0 < ¢ < 7. The forward recursion is initialized by
setting ap(Sp) = 0 and ag(S;) = —oo0 Vi > 0.

Beginning with stage ¥ = 1 and proceeding through
the trellis in the forward direction until stage k = K!, the

INote that ay does not need to be computed when k = K (it is
never used), although the LLR A(X}g) must still be found.

unnormalized partial path metrics are found according to:

ax(S;) = maz x{(ar-1(5) + Vi )

(ar-1(Siy) + Yz )} 5 (8)

where S;, and S;, are the two states at stage k — 1 that
are connected to state S; at stage k. After the calculation
of @ (Sy), the partial path metrics are normalized using:

ak(Sl) = dk(Si)—o?k(So). (9)

As the o’s are computed for stage k, the algorithm can
simultaneously obtain an LLR estimate for data bit Xj.
This LLR is found by first noting that the likelihood of
the branch connecting state S; at time k — 1 to state .S
at time £ is:

The likelihood of data 1 (or 0) is then the Jacobi logarithm
of the likelihood of all branches corresponding to data 1
(or 0), and thus:

ak—1(S:) +7i5 + Be(S;5) (10)

AMXe) = maze {0 5))

- Ny
siﬁ%‘f%:o{ k(,9)}

(11)
where the max™* operator is computed recursively over the
likelihoods of all data 1 branches (S; — S; : X; = 1)
or data 0 branches (S; — S; : X; = 0). Once A(Xy)
is calculated, ay_1(S;) is no longer needed and may be
discarded.

VII. SIMULATION RESULTS

Simulations were run to illustrate the performance of all
four variants of the decoding algorithm. For the simula-
tion, the frame/interleaver size of K=5114 bits was used,
and up to 14 decoder iterations were performed. Results
for both AWGN and fully interleaved Rayleigh flat-fading
channels were produced. Fig. 4 shows the bit error rate
(BER) and Fig. 5 shows the frame error rate (FER) in
both AWGN and Rayleigh flat-fading, while Fig. 6 shows
the average number of iterations required for the decoder
to converge in AWGN (a value of 15 on this curve in-
dicates that the decoder did not converge). In order to
present a fair comparison, all four algorithms decoded the
same received codewords, and thus the data, noise, and
fading were the same for all four curves.

In all cases, the performance of max-log-MAP is notice-
ably worse than the other three algorithms: At BER =
1075, max-log-MAP is 0.412 dB worse than log-MAP in
AWGN. The other three algorithms have roughly the same
performance, although linear-log-MAP is always better
than constant-log-MAP: In AWGN and at BER = 1072,
constant-log-MAP is 0.028 dB worse than log-MAP, while
linear-log-MAP is only 0.008 dB worse than log-MAP. At
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E,/N, = 0.4 dB, max-log-MAP required about 13 iter-
ations, log-MAP about 5.63, linear-log-MAP about 5.67,
and constant-log-MAP about 5.98. Thus an additional
benefit of linear-log-MAP is that it requires fewer decoder
iterations than constant-log-MAP.

VIII. DyNaMIC HALTING CONDITION

The simulation results from the previous section as-
sumed that the decoder halted as soon as it converged,
i.e. when the BER for the frame went to zero. This
requires knowledge of the data, which is available when
running a computer simulation. However, in practice, the
decoder will not have knowledge of the data, and thus a
blind method for halting the iterations must be employed.
Because the decoder rarely requires the maximum number
of iterations to converge, using an early stopping criterion
will allow a much greater throughput in a software radio
implementation.

Several other early stopping criteria have been proposed
based on cross entropy between iterations or on the sign-
difference ratio [8]. The decoder considered here uses a
simpler, but effective, stopping criteria based only on the
log-likelihood ratio. The decoder stops once the absolute
value of all of the LLRs are above a threshold, Ar, i.e.
the decoder halts once

min {|A2(Xk)|} > AT.

1<k<K (12)

The performance of the stopping condition is highly
dependent on the choice of A7. If it is too small, then
the decoder will tend to not perform enough iterations
and BER performance will suffer. If, however, it is too
large, then the decoder will tend to overiterate, and the
throughput will suffer. Through simulation, a value of
A7 = 10 was found to be acceptable.

The K=640 bit UMTS turbo code was simulated in
AWGN using both ideal halting (i.e. halt once the decoder
converges) and halting using various values for Ap. The
decoder used a maximum of 10 iterations of the constant-
log-MAP algorithm and each curve was generated using
the same received code words. BER results are shown in
Fig. 7, FER results are shown in Fig. 8, and the average
number of decoder iterations is shown in Fig. 9. As can be
seen, Ar = 1 and A; = 5 are too small and raise the BER
floors, while Ap = 10 raises the FER floor only slightly
and has only a negligible effect on the BER floor. Using
the threshold Ap = 10 requires, on average, less than one
extra iteration compared to ideal halting.

It is interesting to note that the BER is sometimes lower
with Ap = 10 than with ideal halting. The reason for this
is as follows: The number of errors at the output of a
turbo decoder will sometimes oscillate from one iteration
to the next. If the received codeword is too corrupted to
successfully decode, “ideal halting” will always run the full
number of iterations; thus, the number of bit errors will be
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dictated by the performance at the last iteration, which
due to the oscillatory nature of the decoder, could be quite
high. On the other hand, the early halting decoder will
stop the iterations when the LLRs are high, even if the
BER is not identically zero. Thus, although early halting
cannot lower the FER, it can lower the BER by having
fewer bit errors when there is a frame error.

IX. CONCLUSIONS

Three aspects regarding the implementation of the
UMTS turbo codec have been discussed in this paper.
First, a simple, but effective, linear approximation to the
Jacobi algorithm was proposed. This approximation of-
fers better performance and faster convergence than the
constant-log-MAP algorithm at the expense of only a
modest increase in complexity. Second, a method for nor-
malizing the partial path metrics was proposed that elim-
inates the need to store the metrics for state Sy. Finally,
a method for halting the decoder iterations based only on
the current value of the LLR’s was proposed.

One weakness of the constant-log-MAP algorithm dis-
cussed in [6] is that it is more vulnerable to incorrect noise
variance estimates than is the log-MAP algorithm. An ad-
ditional benefit of the linear-log-MAP algorithm, which is
not shown here, is that it is more tolerant of noise vari-
ance estimate mismatch than is constant-log-MAP. Future
work should carefully examine how the linear-log-MAP
algorithm behaves in the presence of imprecise noise vari-
ance estimates.
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