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Abstract: This paper considers the problem of
iterative multiuser detection and decoding of coded
asynchronous multiple-access signals. This work dif-
fers from previous work in three respects: (1) the
soft-output multiuser detection algorithm is imple-
mented using the MAP algorithm rather than o sub-
optimal approzimation, (2) observations from M spa-
tially separated locations can be used, rather than ob-
servations from just one location, and (3) the model
is general enough to be used for not only CDMA sys-
tems, but TDMA systems as well.
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1. INTRODUCTION

Since the introduction of the turbo concept, con-
siderable attention has been given to the problem of
jointly detecting and decoding coded multiple-access
signals. In general, these “turbo multiuser” detec-
tion algorithms have employed suboptimal multiuser
detection strategies to accommodate heavily loaded
systems (see for example [1], [2], and [3]). The focus
on suboptimal multiuser detection was predicated by
the fact that the complexity of the optimal multi-
user detector is exponential in the number of users
and therefore impractical for the large number of
cochannel users present in typical CDMA systems.
However, there are applications such as TDMA cellu-
lar systems, certain wideband CDMA scenarios, and
combined CDMA /TDMA systems where the number
of interferers is sufficiently small enough to warrant
the use of an optimal multiuser detection algorithm.

This paper provides an overview of the optimal
soft-input, soft-output (SISO) asynchronous multi-
user detection algorithm. The algorithm is a mod-
ification of Verdu’s optimal hard-output multiuser
detector [4] that has been implemented using the
MAP algorithm [5] in the log-domain [6]. Due to
space limitations, some of the details of the algorithm
have been left out. For a more complete description,
please see [7].

The proposed algorithm can be applied to the
general problem of the joint detection and decod-
ing of coded asynchronous multiple-access networks
composed of K transmitters and M receivers. A

SISO multiuser detector is used to jointly detect sig-
nals at each of the M receivers, and the outputs of
the multiuser detectors are combined to form an in-
put to a bank of SISO decoders (one for each of the
K users). The soft-output of each of the decoders is
fed back to the M multiuser detectors and process-
ing proceeds in an iterative fashion according to the
turbo principle.

2. SYSTEM MODEL

Consider a multiple-access network comprised of
K transmitters and M receivers. The input to trans-
mitter k,1 < k < K, isaset {my;},0<i<L-1,0f
random binary data my; € {0,1}. The bits are en-
coded by a rate r encoder.! The code bits {zy;},0 <
I < L/r—1, are reordered by an interleaving func-
tion oy, to form the set of interleaved code bits {Zx},
where Ty o, (1) = Tk,1-

The interleaved code bits are passed to a signal
mapper, which creates a stream of symbols {vy »}, 0 <
n < N — 1. To clarify the exposition, we will restrict
our attention to the BPSK mapping vi n = 2Zx,n—1,
where N = L/r. The symbols are passed through
a pulse shaping filter with impulse response gg(t).
Each transmitter k& can have its own unique pulse
shape?, but all pulses have energy Es (we adjust the
channel gains to account for different received pow-
ers). The output of transmitter k is then

N-—1

Sk(t> = Z 'Ukyngk(t - nTs) (1>

n=0

We adopt a complex multi-input, multi-output
channel model. In particular, the impulse response
of the channel between transmitter & and receiver m
is

hke®) = cmp®)0(t — Tm k), (2)

INote that the encoder can be of any type, i.e. we do not
restrict our attention to turbo coded systems.

2For DS-CDMA, g;(t) incorporates both the spread-
ing waveform (used to distinguish among users) and the
pulse/chip shaping waveform (used to control the power spec-
trum). For TDMA, gx(t) is the same for all cochannel users
and is merely the pulse shaping waveform.




where ¢, 1(t) is a complex fading process and 7y,
is the propagation delay, which is assumed to be less
than one symbol period, 0 < 7, < T.

The signal at the input to receiver m is the noisy
sum of the K transmitted signals convolved with
their respective channel impulse responses

ym(t) = Z Sk

Z Cm,k(t>5k(t - TmJﬂ) +nm(t), (3)

) P i (8) + 1 (2)

where n,, (¢) is a complex white Gaussian noise process
with variance N, /2.

The front end of receiver m contains a bank of
K matched filters. The matched filter output for a
particular user k' is

1 T
Ym,k',n = E_ / gk’ (t)ym (t + T, k' + TLTS>dt
s J0

= Vm}k’,n + fm,k’}n + Z Igz]z’nv (4>
kAK

where Vi, 1/ n is the contribution due to desired user
k', &m i n is the contribution from the Gaussian noise,

and I( )

m.k.n 18 the contribution from interfering user
k.

The notation can be greatly simplified by using a
vector and matrix notation. In particular, the output
of the bank of matched filters can be expressed as:

Y™ — R Ay N, (5)

In the above, Y("™) is a KN column vector that con-
tains all output samples of the bank of K matched
filters at receiver m listed in “round-robin” fash-
ion, Y™ = (ym,1,07---vym,K,07ym,1,17---vym,K,N—l)-
A = diag(C™), where C(™) contains the KN
channel gain coefficients between each transmitter
and receiver m, and V contains all KN modulated
code bits (also in round-robin order). R(™ is a
KN x KN autocorrelation matrix whose definition
follows the convention of [8]. Finally, N(™ is a
colored Gaussian noise vector with autocorrelation
E [NM/(Nm)H] = 62R(™) where N¥ denotes the
Hermitian transpose of N and 0% = N,/(2E;).

Because the noise samples are colored, it is cum-
bersome to compute the exact log-likelihood ratios of
the symbols using the statistic Y (™). However, be-
cause R(™ is positive definite, there exists a lower
triangular matrix F(") with positive diagonal ele-
ments such that [8]

RM™ = (F(m))TF(m)_ (6)

F(™) is found by performing a Cholesky decompo-
sition of R(™), and only has nonzero entries in di-
agonals -K through 0. The whitened matched filter

outputs are then

¥ (m)

(F(m) ) —Ty(m)
FMAMYVY 4 NM), (7)

where F~7" = (F?)~! and the autocorrelation of the
noise component is E [N(™(N(™)#] = 521. Thus,
N(™) is a white Gaussian noise process with variance
0% = E;/(2N,).

By taking advantage of the structure of F(™) and
A(™) which are both sparse matrices, (7) can be
expressed more efficiently as

min (¢, K—1)

o~y

Jj=0

zz ]C(m)vl J +N£m)(8>

A secondary benefit of whitening the matched filter
outputs is that the decision statistic Yl(m) is only
a function of the current and past K — 1 symbols
observed through noise. This is in contrast to the
unwhitened statistic Yl(m), which is a noisy function
of not only the current and past K — 1 symbols, but
also the next K — 1 symbols. This property of the
whitened matched filter output will be exploited in
the development of the SISO MUD algorithm in the

next section.

3. OPTIMAL SISO MUD
The Soft-Input, Soft-Output (SISO) MUD algo-

rithm for receiver m computes the log-likelihood ra-
tio

PV, = +1|Y™)]
P[V; = —1|Y(m)]’

Al — (9)
By considering the whitened multiple access in-
terference channel to be a time-varying Markov process,

a suitable SISO MUD algorithm can be developed.
To see this, first define a one-to-one mapping be-
tween the state of the Markov process and the set of

K — 1 past symbols

si <= {Vi-1,Vio,..,Vi_g}

Likewise, there is a one-to-one mapping between the
state transition s; — s;11 and the union of the sets
containing the past K — 1 symbols and the set con-
taining the current symbol

(i = sit1) <= {Vy Vo1, Vieo, .., Vi_k}.

Finally, define a function that reconstructs the noise-
less whitened matched filter output, given the state
transition

min (i, K—1)

fi(m)(si%5i+1> _ Z FET)]C(m)V
=0



Because the noiseless reconstruction of the whitened-
MALI channel output depends only on the state tran-
sition, we can conclude that it is indeed a Markov
process. Note that the irregular nature of F(™) and
C(™) causes the Markov process to be time-varying,
and thus knowledge of the index i associated with
the state transition (s; — s;41) is implicitly required
to reconstruct the signal.
Now define a branch metric

)\z(sz — Si+1> = In P[Yl(m) ‘Z, S; — 8i+1]
—|—1n P[Si+1‘5i]. (10)

Note that this branch metric is similar to the metric
defined in [6], except now the function can also de-

pend on the index ¢. The term P[ng)ﬂ, Si = Six1]
is Gaussian with mean fi(m)(si — 8;+1) and variance

0% = N,/2E;, and thus
1, (1
2 E,
E,

R N VN L
N i fi (8¢ = si41) - (11)

In P[Yl(m) |’i, S — 8¢+1]

The transition probability P[s;y1|s;] is identical to
the probability P[V;] of the symbol that causes the
transition. In situations that the multiuser detec-
tor is working in isolation, without any side infor-
mation, it is generally assumed that the symbols are
equiprobable. However, if there is side information
available from another process, such as a channel
decoder, then the SISO MUD algorithm can incor-
porate this information as an a priori input. For
BPSK, the a priori input Z; can be expressed as a
log-likelihood ratio, and is related to the transition
probability by

Plsiyils;] = P[Vi:(si = siy1)]
2.
¢~ forV; =1
= 14e%i ¢ 12
{ 1+1ezi for V, = —1, (12)
and thus
7z,V, Z;
InPls;+1]s:] = 12 -t ?l —In(1 4 e%).
(13)
Substituting (11) and (13) into (10) yields
Z;V;
/\i(si — 5i+1) =
2
ES vatul m 2
N Y - s 5i+1)‘ +n, (14)

with

The log-MAP algorithm [6] can be used to cal-
culate the LLR (9). When used to perform SISO
multiuser detection, the branch metric (14) is used,
with 1 set to any arbitrary value (either zero or a
normalization constant chosen to improve numerical
stability).

4. APPLICATION EXAMPLES

Because of the generality of the system model,
there are many applications that are suited for the
proposed algorithm. The main limitation of the al-
gorithm is that its complexity is exponential in the
number of users and thus it is not recommended for
systems with more than perhaps 10 users.

4.1. Turbo-MUD

The algorithm can be used to perform conven-
tional “turbo-multiuser detection” at a single receiver.
In this, case K > 1 and M = 1. The algorithm
has been applied to lightly loaded CDMA systems
(K =5) in [9] and to TDMA systems (KX = 3 for
120 degree sectorized antennas at the base station
and one tier of interferers) in [10]. In each situation,
coded performance close to the single-user bound can
be achieved.

4.2. Antenna arrays

The proposed algorithm can be used with an an-
tenna array at the receiver by setting M equal to the
number of antenna elements. Care must be taken
to incorporate correlation among antenna elements
into the channel model. Each antenna element would
have a MUD module associated with it, and the soft
outputs of the M MUD modules are combined ac-
cording to?:

P[V; =41 YD, .. YD)
PV, = 1Y, . YOI
ey PIVi = +1[Y ()]

M PV =—1Y(m)]

Ai = In

= i A, (16)

That is, the LLR outputs of the M MUD modules
are simply added together. For the single user case
(K = 1), this is equivalent to maximal-ratio combin-
ing. For multiuser systems (K > 1), then multiuser

3Note that (16) assumes that the signals at the input to
the M antenna elements are independent which may not be a
realistic assumption.



detection is performed prior to combining. If the sys-
tem is coded, then the combined soft output can be
fed into a bank of K SISO channel decoders whose
soft-outputs can in turn be fed back to the multiuser
detectors.

4.3. Distributed MUD

The channel model and MUD algorithm are not
limited to the situation where the M receivers are in
close physical proximity (as with an antenna array).
Instead, the M receivers could be spatially separated
over a wide geographic region. For example, in a cel-
lular communication system, observations from the
base stations serving M neighboring cells could be
used. Such a technique is particularly effective for
TDMA systems where a desired user in one cell is an
interferer to a neighboring cell.

Take for example a situation where the base sta-
tion employs 120 degree sectorized antennas. The
base station will receive not only the signal from a
desired user from within its cell, but also strong in-
terference from the two cochannel users located in
the first tier of cochannel cells. A similar situation
exists at the base stations serving the two cochan-
nel users. By placing a SISO multiuser detector at
each of three adjacent cell sites, all three users can
be jointly detected. Performance is further improved
for coded TDMA systems by passing the output of
a bank of SISO channel decoders back to the multi-
user detectors. The combination of macrodiversity
and multiuser detection, also known as “distributed
MUD,” has been considered for the uncoded case in
[11] and [12] and for the coded case in [13].

5. CONCLUSION

An optimal soft-output multiuser detector can
be derived from a whitened version of Verdu’s op-
timal hard-output multiuser detector implemented
with the MAP algorithm. The algorithm can be ap-
plied to a wide variety of problems involving the joint
detection and decoding of coded multiple access net-
works comprised of K transmitters and M receivers.
Future work involves the application of the proposed
processing architectures to space-time coded systems
and to practical situation whereby the channel coe-
ficients might not be known at the receivers.
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