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Iterative Multiuser Detection, Macrodiversity
Combining, and Decoding for the TDMA Cellular

Uplink
Matthew C. Valenti, Member, IEEE,and Brian D. Woerner, Member, IEEE

Abstract—A soft-input soft-output (SISO) multiuser detector
(MUD) suitable for inclusion in iterative processing architectures
is presented and applied to the detection of the coded time division
multiple access (TDMA) cellular uplink. A SISO-MUD processor
is located at each base station in the network, and adjacent base
stations share information concerning the mobiles they serve. Be-
cause the MUD outputs are soft, they are suitable for postdetection
macrodiversity combining. The combined signals are then passed
to a SISO forward error correction (FEC) decoder, and the soft
outputs are fed back to the multiuser detectors. Processing con-
tinues in an iterative fashion in accordance with the turbo prin-
ciple. Simulation results are presented that indicate that use of such
a scheme enables cellular systems to be overloaded with more than
just one cochannel user per cell at the price of a minimal loss in
signal-to-noise ratio (SNR). The proposed implementation assumes
the availability of both perfect channel state information and a high
capacity backhaul.

Index Terms—Channel coding, diversity reception, multiuser
detection, turbo principle.

I. INTRODUCTION

FADING and multiple-access interference (MAI) are two
factors that limit the performance of multiple-access net-

works. There exists a host of techniques to mitigate these prob-
lems either individually or jointly. In particular, multiuser de-
tection (MUD) can be used to combat MAI, while receive an-
tenna diversity can be used to combat fading. The combination
of strong forward error correction (FEC) codes and interleaving
can be used to combat both MAI and fading. However, until
recently, the various signal processing operations (MUD, FEC
decoding, diversity combining, etc.) tended to operate in isola-
tion from one another. The lack of cooperation among processes
in conventional receiver design translates into performance that
is far from ideal. Recently, several authors have proposed tech-
niques for performing iterative detection and decoding of coded
multiple-access signals [1], [2]. These algorithms are an ex-
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tension of the turbo-processing concept originally proposed in
conjunction with turbo codes [3]. Likewise, the combination of
diversity reception and multiuser detection has attracted atten-
tion [4]. In this paper, we apply the turbo concept to the itera-
tive combination of all three processes: diversity reception, mul-
tiuser detection, and error correction coding with interleaving.
We will show by example and simulation that such a strategy is
particularly well suited for coded time division multiple-access
(TDMA) networks.

While MUD is usually considered for use with direct se-
quence code division multiple-access (DS-CDMA), it can also
be used to improve the performance of TDMA cellular sys-
tems [5], [6]. When used for DS-CDMA systems, the objec-
tive of MUD is to jointly detect signals that originate from the
same cell (i.e., intracell interference). When used for TDMA
systems, however, the objective of MUD is to jointly detect
the desired signal and cochannel interferers originating from
nearby cells (i.e., intercell interference). The key difference is
that with DS-CDMA all the signals of interest (SOI) are in the
same cell and, hence, all serviced by the same base station (BS),
while with TDMA, the SOI are more distributed and served
by different BSs. With DS-CDMA, there is little to be gained
by having neighboring BSs share information (aside from soft
handoff). However, with TDMA, there is the potential for an
enormous performance gain by allowing adjacent BSs to share
information.

The approach we take regarding TDMA multiuser detection
is as follows. First, each BS in a group of cochannel cells
performs soft-output multiuser detection of the desired signal
(originating from its cell) and the interfering signals (origi-
nating from the other cells in the group). The multiuser detector
thus produces an estimate [in the form of a log-likelihood ratio
(LLR)] of each mobile in the group. The LLRs for each user
are then summed across the BSs, which in effect produces a
diversity combined signal. Because the BSs, and hence their
antennas, are widely separated, this is a form of macrodiversity
(as opposed to microdiversity, where the antennas are all in
close proximity). The approach of combining the outputs of
multiple BSs considered here is similar to the multiply-detected
macrodiversity (MDM) scheme of [7], which is a method
of combining the hard bit decisions made by conventional
receivers at multiple BSs. Our method differs from [7] in that
a soft-output multiuser detector is employed at each BS and
diversity combining uses LLRs rather than hard bit decisions.

Once multiuser detection and postdetection combining has
taken place, the signal may be deinterleaved and decoded. If the
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decoder also produces soft outputs, then this output may be rein-
terleaved and fed back to the multiuser detectors to be used as a
priori information. Thus, the whole process of multiuser detec-
tion, macrodiversity combining, and decoding can be iterated a
second or third time (or more).

It should be noted that the proposed system places an extra
burden on the backhaul links. Since soft information is now
shared among BSs, a wider data path will be required from the
individual BSs to the base station controller (BSC). If the mul-
tiuser detectors are physically located at the BSs, then iterative
processing will require soft information to be passed back from
the BSC to the BSs. However, a better solution would be for the
BSs to simply pass the matched filter outputs to the BSC. This
would allow both multiuser detection and channel decoding to
be performed at the BSC, which in turn would eliminate the need
for a return path from the BSC to each BS.

We continue this paper with a mathematical description of the
system. Next, an optimum soft-input soft-output (SISO) mul-
tiuser detector is derived which is suitable for use in TDMA sys-
tems. The soft-output MUD algorithm bears some resemblance
to the one presented in [8], although our exposition is more de-
tailed and uses the concept of noise whitening. The basis of the
algorithm is the optimal multiuser detection algorithm of [9]
which has been modified to produce soft-outputs by utilizing
the BCJR algorithm of [10] rather than the Viterbi algorithm.
We presented an overview of this algorithm in [11]. Although
the complexity of this multiuser detector is exponential in the
number of users, we are justified in using it because the number
of cochannel users in a TDMA network is typically rather low.
Next, we discuss how the outputs of the multiuser detectors of
adjacent BSs can be combined. At this point, we show some sim-
ulation results to illustrate the potential of using multiuser detec-
tion with post-detection macrodiversity combining in a TDMA
uplink. The results that we show here are extensions of our pre-
liminary work presented in [12] and [13]. Next, we discuss how
coding can be used to improve performance further and suggest
an iterative structure for combined multiuser detection and FEC
decoding. Simulation results are presented to illustrate the per-
formance of iterative MUD and FEC, and are extensions of our
work presented in [5] and [14]. Finally, we conclude with a dis-
cussion of the limitations of our approach and suggestions for
future work.

Throughout this paper, scalars are denoted by italicized
lowercase letters (e.g.,), vectors by boldface lowercase letters
(e.g., ), and matrices by boldface uppercase letters (e.g.,).
The th element of is denoted and the th element of

is denoted . To be consistent with the literature, is
used to denote a vector of LLRs. The complex conjugate of
is denoted and is the transpose of the inverse of.

II. SYSTEM MODEL

In this section, we briefly outline a discrete-time model of a
multiple-access communication system comprised oftrans-

mitters and receivers. The system model is similar to the
one used in [15] except that we have allowed for multiple re-
ceivers and constrain all the TDMA users to transmit with the
same waveform.

A. Transmitter

The input to transmitter is a set
of random binary data . The bits are

encoded by a rate encoder. The code bits
are reordered by an interleaving function to form

the set of interleaved code bits where .
The interleaved code bits are passed to a signal mapper, which

creates a stream of symbols . For pur-
poses of establishing a discrete-time model, it is convenient to
place the symbols into a vector in a “round-robin” fashion ac-
cording to

(1)

The symbols are passed through a pulse-shaping filter with
impulse response producing the sequence

(2)

The average energy per symbol of the modulated sequence is
. Note that, because we are restricting our attention to TDMA

systems, all users in the system are characterized with the same
impulse response. Had we considered DS-CDMA systems, then

would not only be a function of the chip-shaping waveform
but would also be a function of the different users’ signature
sequences.

B. Channel Model

The signal transmitted from each user is passed through a
Rayleigh flat-fading channel. The signals from thetransmit-
ters arrive asynchronously at receiver, giving rise to the re-
ceived signal

(3)

where
complex white Gaussian noise process with two-
sided noise spectral density ;
complex fading process;
relative propagation delay, which is assumed to be
less than one symbol period and
sorted in ascending order for .

The channel coefficients corresponding to receiverare
placed into a vector in round robin fashion, see (4) at the
bottom of the page, where are the
sampled values of the channel gain between transmitterand

(4)
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receiver . The gains are also placed into a diagonal matrix
.

The discrete-time model requires a set of crosscorrelations at
the channel output, which are defined for

(5)

(6)

where . The crosscorrelations are stored in
a symmetric matrix

...
...

...
(7)

and an upper triangular matrix

...
...

...
...

(8)

Finally, a global correlation matrix [see (9) at
the bottom of the page] is defined with nonzero entries only on
diagonals through .

C. Receiver

The front end of receiver contains a bank of matched
filters whose output for a particular useris

(10)

If the matched filter coefficients are placed into a vector ,
which is defined the same way as only with replaced
with , then the output of the matched filter can be ex-
pressed as

(11)

In the above expression, is a Gaussian noise vector with
autocorrelation , with .

D. Whitened Matched Filter

Because the noise samples are colored, it is cumbersome to
compute the exact LLRs of the symbols using the statistic .
However, because is positive definite, there exists a lower
triangular matrix with positive diagonal elements such
that [15]. The matrix is found
by performing a Cholesky decomposition of , and only
has nonzero entries in diagonals through 0. The whitened
matched filter outputs are then

(12)

where is a white Gaussian noise process with variance
.

By taking advantage of the structure of and ,
which are both sparse matrices, (12) can be expressed more
efficiently as

(13)

A benefit of whitening the matched filter outputs is that the de-
cision statistic is only a function of the current and past

symbols observed through noise. This is in contrast to the
unwhitened statistic , which is a noisy function of not only
the current and past symbols, but also the next sym-
bols. This property of the whitened matched filter output will be
exploited in the development of the SISO MUD algorithm in the
next section.

III. SISO MUD ALGORITHM

The SISO MUD algorithm for receiver computes the LLR

(14)

By considering the whitened MAI channel to be a time-
varying Markov process, a suitable SISO MUD algorithm can
be developed by generalizing the BCJR algorithm of [10]. To
see this, first define a one-to-one mapping between the state of
the Markov process and the set of past symbols

(15)

Likewise, there is a one-to-one mapping between the state tran-
sition and the union of the sets containing the past

symbols and the set containing the current symbol

(16)

...
...

. . .
. . .

. ..

(9)
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Finally, define a function that reconstructs the noiseless
whitened matched filter output, given the state transition

(17)

Now define a branch metric

(18)
Note that this branch metric can depend on the index. The term

is Gaussian with mean

and variance , and thus

(19)

The transition probability is identical to the proba-
bility of the symbol that causes the transition. In situa-
tions that the multiuser detector is working in isolation, without
any side information, it is generally assumed that the symbols
are equiprobable. However, if there is side information available
from another process, such as a channel decoder, then the SISO
MUD algorithm can incorporate this information as an a priori
input . For BPSK, the a priori input can be expressed as a
log-likelihood ratio, and is related to the transition probability by

for
for

(20)

and thus

(21)

Substituting (19) and (21) into (18) yields

(22)

with

(23)

The log-MAP algorithm [16] can now be used to calculate
the LLR (14). When used to perform SISO multiuser detection,
the branch metric (22) is used, withset to any arbitrary value
(either zero or a normalization constant chosen to improve nu-
merical stability).

IV. DISTRIBUTED MULTIUSER DETECTION

The SISO MUD algorithm can be applied to the problem of
jointly detecting multiple-access signals observed by multiple

receivers. This is a form of diversity combining, with the LLR
outputs of the multiuser detectors at thereceivers combined
in an appropriate manner.

A. Diversity Combining

Maximal ratio combining (MRC) the output of multiple re-
ceivers is a classic means of improving performance in a fading
channel. Given the set of matched filter outputs and channel
gains, the maximal ratio combined statistic without multiuser
detection is

(24)

The MRC rule (24) provides optimal symbol decisions when
there is no MAI. In a MAI channel, it is desirable to first sepa-
rate the users before applying the diversity combining rule. With
distributedmultiuser detection, the goal is to produce the LLR

(25)

that is, to find the LLR given the observations at allreceivers.
For independent observations, (25) becomes

(26)

Thus, the combining rule for distributed MUD is to simply add
the LLR outputs of the multiuser detectors at thereceivers.

B. Distributed MUD for the TDMA Uplink

In TDMA systems, each mobile station (MS) transmits
during a preassigned time slot using a designated carrier fre-
quency. When the BS uses an isotropic antenna, only one MS
in that cell is allowed to transmit in a particular time/frequency
slot. Adjacent cells generally do not use the same time/fre-
quency slots. However, distant cells reuse the time/frequency
slots. For each time/frequency slot, each BS receives the trans-
mission from one MS within the cell, along with interfering
transmissions from other clusters. The performance of the
cellular system is limited by the out-of-cell interference and
the effects of the fading channel. With isotropic antennas, the
interference is dominated by the six adjacent clusters that make
up thefirst tier of cochannel transmitters.

The capacity of a cellular system can be increased by re-
ducing the number of cells in a cluster. A common method for
achieving this is to use 120-degree sectorized antennas, which
reduces the number of first-tier interferers to two. Because of
the reduced interference, it is generally possible to decrease the
number of cells per cluster to three or four. With 120-degree sec-
torized antennas, it is appropriate to model the system as a grid
of hexagons with BSs located on three equally-spaced corners
of the hexagon. An example layout with three cells per cluster
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Fig. 1. Topology of an edge-excited cellular system with 120-degree sector-
ized antennas and three hexagonal cells per cluster.

and 120-degree sectorized antennas is shown in Fig. 1. In this
figure, the center of each antenna beam pattern is indicated by
an arrow. For each time/frequency slot assigned to the cell, there
will be one mobile in the cell, which will be served by the closest
of the three BSs. However, because of the proximity of the two
other BS associated with the cell, a macrodiversity effect can
be achieved on the uplink by MRC the outputs of all three BSs.
This is particularly beneficial when the mobile is near the center
of the cell, and thus, the received signal powers at the three BS
are approximately equal.

With the judicious use of both multiuser detection and macro-
diversity, it is possible to overload the cell with more than one
cochannel user at the cost of a slight reduction in SNR, the need
for a wider data path from BS to BSC, and the need for accu-
rate channel estimates. Thus, the capacity of a TDMA cellular
system with 120-degree sectorized antennas can be greatly in-
creased by incorporating a SISO MUD algorithm at each BS
and combining the MUD outputs of all three BSs located on the
corner of each cell. We shall now illustrate the potential gains
of such a scheme through simulation.

V. SIMULATION STUDY: UNCODED CASE

Consider a TDMA system with topology shown in Fig. 1.
Within each cell, there are cochannel users that share the
same time/frequency slot. The transmitters are uncoded, and
transmit frames of BPSK symbols. The channel is
a fully-interleaved Rayleigh flat-fading channel1 . The signals
arrive at each BS asynchronously with relative delay

(27)

Note that in practice the relative delays may be any arbitrary
value. However, our goal here is merely to illustrate the poten-

1Fully interleavedimplies that the autocorrelation of the channel gainc(t) is
R (�) = 0:5�(�) in each complex dimension.

tial benefits of the combination of multiuser detection with post-
detection macrodiversity combining.

Four reception techniques are compared.

a) The conventional matched filter with hard bit decisions
produced by hard limiting the phase corrected matched
filter output

sign (28)

where is the BS closest to the MS that transmitted the
symbol and the term is necessary to
coherently detect the BPSK signal.

b) MRC the matched filter outputs of the three BSs that
border the cell according to (24), followed by hard lim-
iting the MRC statistic

sign (29)

where the receivers are the three BSs that border
the cell.

c) Performing multiuser detection at each BS, and hard lim-
iting the MUD output of the BS closest to the MS

sign (30)

d) Combining the SISO MUD outputs of the three BSs that
serve the cell according to (26)

sign (31)

Two scenarios are considered. In the first scenario, themo-
biles are all located in the center of the cell, and thus, the average
power received at the three BSs are equal. Such a scenario is in-
teresting from a theoretical perspective but does not reflect the
behavior of actual cellular systems. In the second scenario, the

MSs are located randomly within the cell, which is a more
realistic assumption. The number of mobiles was varied from

to 9. In all simulations, enough trials are run to generate
100 independent error events.

A. Mobiles in Center of Cell

In the first test scenario, all cochannel mobiles are located
in the center of the cell. This represents a worst-case situation
for the conventional reception system (a), since the received car-
rier-to-interference power ratio (CIR) averaged over theBSs
is minimized over all possible MS placements. In particular, the
CIR at each BS is [17]

(32)

which is prohibitive even for . However, the test scenario
is a best-case situation for the proposed distributed MUD tech-
nique (d). This is for two reasons. First the signal transmitted by
any one MS will be received with equal power at all three BSs,
which will lead to the best macrodiversity improvement of all
possible MS placements (see Appendix D of [18] for an illustra-
tion of this property); second, the signals received at each BS
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Fig. 2. Performance of conventional MF reception and MUD in fully-interleaved Rayleigh flat-fading withK mobiles placed in the center of the cell and only
one receiver used.

have equal power, and thus, thenear–far problemis avoided. The
reason that such a MS placement can be a worst case scenario
for the conventional technique (a) and a best-case scenario for
the distributed MUD technique (d) can be intuitively explained
as follows. Withconventional reception, signalsoriginating from
transmitters other than the desired transmitter are regarded as in-
terference and, thus, small carrier to interference levels are to be
avoided; however, with MUD, the transmissions from all users
are regarded as useful information, and thus it is desirable for the
received signals of all users to have identical power.

The performance of the conventional matched filter (a) and
multiuser detector (c) is shown in Fig. 2. In each case, the hard
bit decision is made using the output from the BS that is closest
to the MS (i.e., macrodiversity is not used).2 For the conven-
tional MF receiver, the bit-error performance is extremely poor.
The bit-error ratio (BER) quickly flattens out, reaching a BER
floor of between 0.2 and 0.3. The floor rises with increasing,
but in all cases is unacceptable. The performance using MUD is
much improved and for high SNR approaches the performance
of the single user system (derived in Appendix D of [18]). For
lower SNRs, performance degrades with increasing. How-
ever, even for , performance is within 5 dB of the single
user bound at low SNR (i.e., in the region ).

The performance of the two macrodiversity combining tech-
niques is shown in Fig. 3. For the matched filter results (b), the
outputs of the three BSs are MRC. For the MUD results (d),

2Since the mobiles are centrally located, any one of the three BSs can be used
for the decision.

the LLRs produced by the MUDs at the three BSs are added.
For the MRC-MF system (b), performance is improved slightly
compared to the MF receiver at only the closest BS (a). How-
ever, there is a BER floor on the order , and thus, perfor-
mance is unacceptable for all . The performance for the
distributed MUD system (d) is dramatically superior to that of
the system that uses the MUD output from the closest BS (c).
Most of this improvement is due to the diversity effect of the
system, as the performance bound for three-branch diversity is
about 20 dB superior to the single receiver at [19].
Performance for is close to the theoretical bound for
three-branch diversity, but degrades with increasing. Perfor-
mance comes closer to the bound with increasing SNR, although
not as quickly as with the single BS case. However, even for

, performance is within 2 dB of the single-user bound at
.

A different representation of the simulated data is shown in
Fig. 4. Here dB and the number of transmitters is
varied from to 9. The performance of all four reception
techniques is shown. When the performance of the con-
ventional MF is identical to the performance of the MUD, with
diversity reception offering a BER reduction of about two or-
ders of magnitude. As increases, the performance of the con-
ventional MF both with and without macrodiversity combining
quickly deteriorates, and for large the BER with macrodi-
versity is about half that without. For MUD at the closest BS,
the BER rises only slightly with increasing. For distributed
MUD, the BER increases at a slightly faster rate, but acceptable
performance is still achieved with .
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Fig. 3. Performance of conventional MRC macrodiversity and distributed MUD in fully-interleaved Rayleigh flat-fading withK mobiles placed in the center of
the cell and the outputs of all three receivers diversity combined.

Fig. 4. Performance as a function ofK for four reception techniques withK mobiles placed in the center of the cell andE =N = 10 dB.
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Fig. 5. Performance of conventional MF reception and MUD in fully-interleaved Rayleigh flat-fading withK randomly placed mobiles and only one receiver
used.

B. Mobiles Randomly Placed in Cell

In the second test scenario, thecochannel mobiles are ran-
domly placed within the hexagonal cell. After each Monte Carlo
trial consisting of one TDMA frame from each transmitter, the
mobiles are randomly repositioned. The mobiles arepower con-
trolled by the BS closest to it such that the average SNR at the
closest BS is . Define the average SNR of MSreceived
at BS as

(33)

Then, the power control will ensure that ,
where is the BS closest to MS. The SNR at the other two
BSs will depend on the geometry of the MS and BS placements
and thepath loss exponent. If the three BSs are placed on a
normalized plane at coordinates , , and

, and MS is placed at coordinate , then
the distance between BS and MS will be

(34)

(35)

(36)

The received SNRs will then be

(37)

(38)

(39)

where is the BS closest to MS and is the path loss
exponent. For free space, . However, field measurements
have shown that the exponent varies considerably in outdoor
cellular systems, and for this experiment we chose [20].

This scenario is better than the first for the conventional re-
ception system (a), since the CIR will, on average, be higher.
However, the performance of the distributed MUD system (d)
will not be as impressive as it was in the first scenario. This is
because now the signal from each BS is no longer received with
equal power at the three BSs, and thus, the improvement from
macrodiversity combining is reduced. Also, the signal powers
of the signals received by each BS are no longer equal, and
thus, the near–far problem is not necessarily avoided.

The performance of the conventional matched filter (a) and
multiuser detector (c) is shown for this scenario in Fig. 5. These
results were generated by making a hard bit decision using the
output from the BS that is closest to the MS (i.e., macrodi-
versity is not used). For the conventional MF receiver, the bit-
error performance is once again very poor. The BER reaches
a floor, which is only slightly lower than the floor reached in
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Fig. 6. Performance of conventional MRC macrodiversity and distributed MUD in fully-interleaved Rayleigh flat-fading withK randomly mobiles placed and
the outputs of all three receivers diversity combined.

the equal power case of scenario one. The reduced BER floor
can be attributed to increased average CIR. The performance
is improved by using MUD, with performance again degrading
with increasing . For high SNR, the performance approaches
that of the single-user case, although this convergence occurs at
higher SNR than was observed in scenario one. This can be at-
tributed to the imbalance of received powers at each BS.

The performance of the two macrodiversity combining tech-
niques for this scenario is shown in Fig. 6. For the matched
filter results (b), the outputs of the three BSs are maximal ratio
combined. For the MUD results (d), the LLRs produced by the
MUDs at the three BSs are added. Again, we observe improved
performance for the MRC-MF system, although the absolute
performance is comparable to the same system under scenario
one. The performance for the distributed MUD system is supe-
rior to that of the system that uses the MUD output from only
the closest BS. However, the improvement is much less dramatic
than that observed for the same reception technique under sce-
nario one. This is primarily due to the fact that the macrodiver-
sity effect is less beneficial when the signal from each MS is
received with different powers at the three BSs. Nevertheless,
an improvement of about 8 dB can be achieved at
by using macrodiversity (compared to MUD without macrodi-
versity). Again, performance degrades with increasing, but
converges to the single-user bound for high SNR.

In Fig. 7, the number of transmitters is varied from
to , while is held at the constant value of 20 dB.
The performance of all four reception techniques is shown. For

, macrodiversity reception provides an order of mag-
nitude reduction of BER. Again, we see that asincreases,
the performance of the conventional MF both with and without
macrodiversity combining quickly deteriorates. For MUD at the
closest BS, the BER rises slightly with increasing. For dis-
tributed MUD, the BER increases at a slightly faster rate, but
acceptable performance is still achieved with .

VI. COOPERATIVEDECODING FORTDMA NETWORKS

When the transmission is encoded by an FEC code, it is pos-
sible pass the output of a SISO FEC decoder back to the MUD
algorithm in an iterative manner. A proposed cooperative de-
coding architecture is shown in Fig. 8. At receiver, the re-
ceived signal is passed through a bank of matched fil-
ters, each matched to and synchronized with one of the trans-
mitters. The matched filter output is passed to a SISO
multiuser detector, which produces the LLR (the su-
perscript now denotes the iteration number). Thea priori in-
formation is subtracted from the LLR output of the MUD
to produce the extrinsic information

(40)

The extrinsic information from the multiuser detectors are
then combined according to

(41)
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Fig. 7. Performance as a function ofK for four reception techniques withK randomly placed mobiles andE =N = 20 dB.

Fig. 8. Architecture for TDMA cooperative decoding.

Next, is deinterleaved and decoded by a bank ofSISO
channel decoders, each implemented with the log-MAP algo-
rithm [16]. The channel decoders produce ,the LLR of the
code bits after decoder iteration. This LLR is reinterleaved to
form thea priori input to the multiuser detectors, . Finally
after iterations, an estimate of the data bits is produced
by limiting the LLR of the data bits .

VII. SIMULATION STUDY: CODED CASE

Consider a coded TDMA network composed oftransmit-
ters and receivers, which models a TDMA cellular
system with 120-degree sectorized antennas. Each transmitter

uses a rate 1/2, constraint length 3 convolutional code with octal
generators (7,5). The size of the data frame is , of which
the last two bits are zeros used to terminate the trellis of the en-
coder. All transmitters use the same 24 by 22 block interleaver,
and the channel is (fully-interleaved) Rayleigh flat-faded. We
again assume that the asynchronous BPSK signals arrive
at each receiver with equally spaced delays according to (27).
Enough Monte Carlo trials were run to generate 50 frame er-
rors.

A. Mobiles in Center of Cell

For the first scenario, all transmitters are located at the
center of the cell. Thus, the average power of all users is the
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Fig. 9. Bit-error performance of a TDMA system withK = 3 centrally located transmitters andM = 3 receivers in a Rayleigh flat-fading channel with rate
r = 1=2, constraint length 3 convolutional coding as parameterized by decoding technique.

same at all receivers, i.e., , . Sim-
ulation results are shown for this scenario with users
in Fig. 9. The upper curve shows the performance of the con-
ventional system, which utilizes a matched filter at each BS and
makes the bit decisions using the MF output of the BS closest to
the mobile (i.e., macrodiversity is not used). For the next curve
down, the MF outputs of the three receivers are combined ac-
cording to (24); for this case macrodiversity combining is used,
but multiuser detection is not used. By using macrodiversity,
a performance improvement of about 1.5 orders of magnitude
in BER reduction is observed. The lowest curve (dotted line)
shows the performance of a MRC combined single user system
(i.e., ), while the four solid lines show the performance of
the iterative architecture. There is a 1-dB performance gain from
the first to the second iteration of decoding but no noticeable im-
provement after the second iteration. After the second iteration,
the performance is within about 1 dB of the single user system
at .

In Fig. 10, the BER is shown as a function of the number
of users, . There are again receivers and
the channel is Rayleigh flat-faded. In this case, the SNR is held
to the constant value of dB. For the two methods
that directly use the matched filter outputs, performance de-
grades quickly with increasing . Performance also degrades
with increasing for the iterative decoding method, although
performance is always better than when the MF outputs are used
without multiuser detection. For , almost all of the perfor-
mance gain is achieved after the second iteration. There is only a

slight gain from the second to the third iteration and again from
the third to the fourth.

B. Mobiles Randomly Placed in Cell

In actual TDMA systems, the mobiles are not all centrally lo-
cated. For the second scenario, thetransmitters were placed
randomly within the hexagonal cell. After each Monte Carlo
simulation (one symbol packet from each of the transmit-
ters), the mobiles were placed in new locations at random. The
mobiles were power controlled such that ,
where is the BS that is closest to MS. The power at the
other two BSs was found using (37)–(39) and a loss exponent
of .

Simulation results are shown for uniformly distributed
users in Fig. 11. For the upper curve, the bit decisions are made
using the MF output of the BS closest to the corresponding MS.
The relative gain by macrodiversity combining the MF outputs
is less than was observed for the scenario with centrally located
MSs. Also, the performance of the single-user system is worse
than was observed in the previous scenario. This is because the
total signal power received by the three BSs is less when the mo-
biles are uniformly distributed than when they are centrally lo-
cated. For this scenario, the performance of the iterative receiver
comes very close to the single-user bound. As before, most of
the performance gain comes from the first to the second itera-
tions. However, now a noticeable improvement can be observed
from the second to the third iteration and again for the third to
the fourth iteration. After four iterations, performance is within
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Fig. 10. Bit-error performance of a TDMA system in a Rayleigh flat-fading channel with rater = 1=2, constraint length 3 convolutional coding for1 � K � 9

centrally located transmitters,M = 3 receivers, andE =N = 5 dB.

Fig. 11. Bit-error performance of a TDMA system withK = 3 uniformly distributed transmitters andM = 3 receivers in a Rayleigh flat-fading channel with
rater = 1=2, constraint length 3 convolutional coding as parameterized by decoding technique.
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Fig. 12. Bit-error performance of a TDMA system in a Rayleigh flat-fading channel with rater = 1=2, constraint length 3 convolutional coding for1 � K � 9

uniformly distributed transmitters,M = 3 receivers, andE =N = 8 dB.

0.2 dB of the single-user bound. This is encouraging, particu-
larly since this scenario is more realistic than the previous sce-
nario which had shown a larger gap between the performance
of the iterative technique and that of the single-user system.

In Fig. 12, the BER is shown as a function of the number of
users, . There are again receivers and the
channel is Rayleigh flat-faded. The SNR is held to the constant
value of dB. For the two methods that directly use
the matched filter outputs, performance degrades quickly with
increasing . Performance also degrades with increasingfor
the iterative decoding method, although performance is always
better than when multiuser detection is not used. While most of
the performance gain is achieved from the first to the second
iteration, there is a noticeable gain from the second to the third
iteration. There is little, if any, gain from the third to the fourth
iteration.

VIII. C ONCLUSION

The combination of soft-output multiuser detection, macrodi-
versity combining, and iterative decoding is an effective method
for increasing the capacity of TDMA cellular networks. Because
the number of cochannel interferers is typically rather small, it
is reasonable to use the optimal soft-output multiuser detection
algorithm presented in this paper, even though its complexity
is exponential in the number of users. When iterative decoding
is employed, a significant performance gain is improved after
just two iterations. Because of the macrodiversity effect, perfor-
mance is particularly good at the center of edge excited cells,

which is normally where performance is the worst when con-
ventional techniques are used.

The simulations assumed that the complex channel gains for
each user are known at each receiver, and that perfect timing
and carrier synchronization is achieved for each user at each
receiver. While it is possible to obtain reliable channel infor-
mation for the closest (most powerful) user at each BS, ob-
taining reliable channel information for the more distant (less
powerful) users is more problematic. Thus, the topic of channel
estimation and synchronization must be further addressed be-
fore this technique can be practically applied, and is a topic
of ongoing research. Furthermore, because the proposed tech-
nique requires soft-values to be passed over the backhaul link to
a BSC, the impact of the number of bits of quantization of the
various soft-values should be studied.
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