Due: Wed Feb 32016 06:00 PM EST

| Question | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Description

This practice exam will NOT be graded. However, it is in your best interest to practice. Many of these questions appeared on previous tests. I recommend that your first preparation for the test be to take the past test on the class website, then this one. In order to get the most from your studying, you should take both tests in as close to a testing environment as possible. Don't just assume you know how to do the problem because you've seen something like it before.

## Instructions

On the actual test, all questions will be multiple choice and there will only be one correct answer.

If the velocity of a particle is nonzero, can the particle's acceleration be zero?
-yes

- no

Explain.

Key: If the velocity of the particle is nonzero, the particle is in motion. If the acceleration is zero, the velocity of the particle is unchanging or is constant.

## Need Help?

 Read ItTalk to a Tutor

A ball is thrown vertically upward.
(a) What are its velocity and acceleration when it reaches its maximum altitude?

Key: At the maximum height, the ball is momentarily at rest. (That is, it has zero velocity.) The acceleration remains constant, with magnitude equal to the free-fall acceleration $g$ and directed downward. Thus, even though the velocity is momentarily zero, it continues to change, and the ball will begin to gain speed in the downward direction.
(b) What is the acceleration of the ball just before it hits the ground?

Key: The acceleration of the ball remains constant in magnitude and direction throughout the ball's free flight, from the instant it leaves the hand until the instant just before it strikes the ground. The acceleration is directed downward and has a magnitude equal to the free-fall acceleration $g$.

```
Need Help?
```

A racing car starts from rest and reaches a final speed $v$ in a time $t$. If the acceleration of the car is constant during this time, which of the following statements must be true? Select all that apply.The average speed of the car is $v / 2$.The car travels a distance vt.The velocity of the car remains constant.The acceleration of the car is $v / t$.None of these

## Need Help? Read It Talk to a Tutor

A student at the top of a building throws a red ball upward with speed $v_{0}$ and then throws a blue ball downward with the same initial speed $V_{0}$. Immediately before the two balls reach the ground (neglecting air friction), which of the following statements is/are true? Select all that apply.The acceleration of the blue ball is greater than that of the red ball.The speed of each ball is greater than $V_{0}$.The speed of the red ball is greater than that of the blue ball.The speed of the red ball is less than that of the blue ball.Their velocities are equal.

## Need Help? Read It Talk to a Tutor

A truck covers 40.0 m in 9.45 s while smoothly slowing down to a final velocity of $2.40 \mathrm{~m} / \mathrm{s}$.
(a) Find the truck's original speed.

(b) Find its acceleration.
$\square$

## Solution or Explanation

(a) To find the truck's original speed, we use the following formula.

$$
\Delta x=v_{\mathrm{av}}(\Delta t)=\left(\frac{v+v_{0}}{2}\right) \Delta t
$$

We then plug in what we know and solve for $v_{0}$.

$$
\begin{aligned}
& 40.0 \mathrm{~m}=\left(\frac{2.40 \mathrm{~m} / \mathrm{s}+v_{0}}{2}\right)(9.45 \mathrm{~s}) \\
& v_{0}=\underline{6.07} \underline{\mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

(b) We find the acceleration using the following formula.

$$
a=\frac{v-v_{0}}{\Delta t}=\frac{2.40 \mathrm{~m} / \mathrm{s}-6.07 \mathrm{~m} / \mathrm{s}}{9.45 \mathrm{~s}}=-0.388 \mathrm{~m} / \mathrm{s}^{2}
$$

Need Help? Read It Talk to a Tutor

A house is advertised as having 1420 square feet under roof. What is the area of this house in square meters?

- $222 \mathrm{~m}^{2}$
- $176 \mathrm{~m}^{2}$
- $115 \mathrm{~m}^{2}$

○$132 \mathrm{~m}^{2}$

- none of these


## Need Help? Read It Talk to a Tutor

7. 

Question Details
Which of the following is the best estimate for the mass of all the people living on Earth?

- $4 \times 10^{12} \mathrm{~kg}$
- $2 \times 10^{8} \mathrm{~kg}$
- $2 \times 10^{10} \mathrm{~kg}$$3 \times 10^{11} \mathrm{~kg}$
- $1 \times 10^{9} \mathrm{~kg}$


## Need Help? Read It Talk to a Tutor

When applying the equations of kinematics for an object moving in one dimension, which of the following statements must be true?

- The position of the object must increase with time.
$\circ$The acceleration of the object must remain constant.

O The velocity of the object must increase with time.

- The velocity of the object must remain constant.
- The velocity of the object must always be in the same direction as its acceleration.


## Need Help? Read It Talk to a Tutor

9. 

Question Details
A juggler throws a bowling pin straight up in the air. After the pin leaves his hand and while it is in the air, which statement is true?

The velocity of the pin is never in the same direction as its acceleration
The velocity of the pin is in the same direction as its acceleration on the way up.

- The velocity of the pin is always in the same direction as its acceleration.
$\circ 0$ The velocity of the pin is opposite its acceleration on the way up.

The acceleration of the pin is zero.

## Need Help? Read It Talk to a Tutor

Which of the following quantities are vectors?the velocity of a sport cartemperaturethe volume of water in a canthe height of a buildingthe displacement of a tennis player from the backline of the court to the net

## Need Help? Read It Talk to a Tutor

11. 

Question Details
A Cessna aircraft has a lift-off speed of $120 \mathrm{~km} / \mathrm{h}$.
(a) What minimum constant acceleration does the aircraft require if the aircraft is to be airborne after a takeoff run of 260 m ?
$\square 2.14 \mathrm{~m} / \mathrm{s}^{2}$
(b) How long does it take the aircraft to become airborne?
$\square$
Need Help? Read It

Talk to a Tutor

The Roman cubitus is an ancient unit of measure equivalent to about 445 mm . Convert the $2.00-\mathrm{m}$ height of a basketball forward to cubiti.

- 2.52 cubiti
- 3.12 cubiti

○4.49 cubiti

- 5.33 cubiti
none of these


## Need Help? Read It Talk to a Tutor

Answer each question yes or no.
(a) Must two quantities have the same dimensions if you are adding them?

○ $\square$ Yes

- No
(b) Must two quantities have the same dimensions if you are multiplying them?
- Yes

○ No
(c) Must two quantities have the same dimensions if you are subtracting them?

○Yes

- No
(d) Must two quantities have the same dimensions if you are dividing them?
- YesNo
(e) Must two quantities have the same dimensions if you are equating them?
$\bigcirc$ $\square$ Yes
- No


## Need Help? Read It Talk to a Tutor

The price of gasoline at a particular station is 1.7 euros per liter. An American student can use 31 euros to buy gasoline. Knowing that 4 quarts make a gallon and that 1 liter is close to 1 quart, how much gas can she buy.

She can buy about $\square$ 4.56 gallons of gas.

## Need Help? Read It Talk to a Tutor

15. 

Question Details
An arrow is shot straight up in the air at an initial speed of $15.0 \mathrm{~m} / \mathrm{s}$. After how much time is the arrow heading downward at a speed of $8.00 \mathrm{~m} / \mathrm{s}$ ?
0.714 s

- 1.24 s
- 1.87 s

O 2.35 s

- 3.22 s

Need Help?
Read It
Talk to a Tutor

A force $\vec{F}_{1}$ of magnitude 5.30 units acts on an object at the origin in a direction $\theta=31.0^{\circ}$ above the positive $x$-axis. (See the figure below.) A second force $\vec{F}_{2}$ of magnitude 5.00 units acts on the object in the direction of the positive $y$-axis. Find graphically the magnitude and direction of the resultant force $\vec{F}_{1}+\vec{F}_{2}$.

| magnitude | $\square$ | 8.97 |
| :--- | :--- | :--- |
| units |  |  |
| direction | $\square$ |  |
|  |  |  |
|  |  |  |
|  |  |  |



## Need Help? Read It Talk to a Tutor

The magnitude of vector $\overrightarrow{\mathbf{A}}$ is 37.5 units and points in the direction $330^{\circ}$ counterclockwise from the positive $x$-axis. Calculate the $x$ - and $y$-components of this vector.


Need Help?

A girl delivering newspapers covers her route by traveling 8.00 blocks west, 4.00 blocks north, and then 4.00 blocks east.
(a) What is her resultant displacement?

(b) What is the total distance she travels?
$\square$
Need Help? Read It Talk to a Tutor

The figure below shows two vectors lying in the $x y$ plane. Determine the signs of the $x$ and $y$ components of $\overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{B}}$, and $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$ , and place your answers in the following table.

| Vector | x component | $\boldsymbol{y}$ component |
| :---: | :---: | :---: |
| $\vec{A}$ | ---Select--- | ---Select--- + |
| $\stackrel{\rightharpoonup}{\text { B }}$ | ---Select--- + | ---Select--- |
| $\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$ | ---Select--- | ---Select--- |



Need Help? Read It Talk to a Tutor

Assignment Details
Name (AID): Practice Exam Chapters 1-3.2 (Ungraded) (6034865)
Submissions Allowed: 10
Category: Homework
Code:
Locked: Yes
Author: Holcomb, Mikel ( mickybarry@gmail.com )
Last Saved: Sep 10, 2014 10:42 AM EDT
Permission: Protected

## Feedback Settings

Before due date
Question Score
Assignment Score
Publish Essay Scores
Question Part Score
Mark
Response

Randomization: Person
Which graded: Last

## Save Work

After due date
Question Score
Assignment Score
Publish Essay Scores
Key
Question Part Score
Solution
Mark
Add Practice Button
Help/Hints
Response

