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We analyze graphene and some of the carbon allotropes for which graphene sheets form the
basis. The real-space and reciprocal crystalline structures are analyzed. Theoretical X-ray diffrac-
tion (XRD) patterns are obtained from this analysis and compared with experimental results. We
show that staggered two-dimensional hexagonal lattices of graphite have XRD patterns that differ
significantly from silicon standards.

The wide-variety of carbon allotropes and their associ-
ated physical properties are largely due to the flexibility
of carbon’s valence electrons and resulting dimensionality
of its bonding structures. Amongst carbon-only systems,
two-dimensional hexagonal sheets—graphene—forms of
the basis of other important carbon structures such as
graphite and carbon nanotubes. (:: Say something about
interesting band structure here)

In the following, we will examine the planar lat-
tice structure of graphene and its extension to higher-
dimensional lattice structures, such as hexagonal
graphite. We first analyze the lattice and reciprocal-
space structures of two-dimensional hexagonal lattices of
carbon, and use the resulting structure factors to esti-
mate the x-ray diffraction (XRD) intensities of graphite.
We conclude by comparing its calculated XRD spectra to
experimental spectra of graphene and crystalline silicon.

1. PRELIMINARY QUESTIONS

1.1. Lattice Structure

Our discussion of the crystal structure of graphite fol-
lows partially from D.D.L. Chung’s review of graphite [1].
When multiple graphene sheets are layered on top of each
other, van der Walls bonding occurs and the three di-
mensional structure of graphite is formed with a lattice

FIG. 1: In-plane structure of graphite and reciprocal lattice
vectors [1].
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spacing between sheets c = 6.71Å. The sheets align such
that their two-dimensional hexagonal lattices are stag-
gered, either in an ABAB pattern or an ABCABC pat-
tern. The ABAB alignment is shown in Figure 1, which
indicates four atoms per unit cell labeled A, B, A’, and
B’, respectively. The primed atoms A–B on one graphene
layer are separated by half the orthogonal lattice spacing
from the A’–B’ layer; BB’ atomic pairs differ from their
corresponding AA’ pairs in their absence of neighboring
atoms in adjacent layering planes. The coordinates of
these atoms forming the basis are given by:

ρA = (0, 0, 0) ρA′ =
(

0, 0,
c

2

)
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2
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)
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,
c
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)

(1.1)

With respect to an orthonormal basis, the primitive
lattice vectors are given by,

a1 = a
(√

3/2,−1/2, 0
)

|a1| = a = 2.46Å

a2 = a
(√

3/2, 1/2, 0
)

|a2| = a = 2.46Å

a3 = c (0, 0, 1) |a3| = c = 6.71Å. (1.2)

The magnitudes of the primitive lattice vectors corre-
spond to the lattice constants parallel and perpendicu-
lar to the graphene sheet. The corresponding ABCABC
layer forms a rhombohedral structure with identical lat-
tice spacing parallel and orthogonal to the layer.

1.2. Reciprocal Lattice Structure

Recall that the reciprocal lattice vectors bi are defined
as a function of the primitive lattice vectors ai such that

b1 = 2π
a2 × a3

a1 · a3 × a3

b2 = 2π
a3 × a1

a2 · a3 × a1

b3 = 2π
a1 × a2

a3 · a1 × a2
(1.3)

The reciprocal lattice vectors for graphite are then
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FIG. 2: Reciprocal lattice planes [001], [110], and [111].

given by,
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c
(0, 0, 1) |b3| =

2π

c
. (1.4)

The reciprocal lattice plane generated by the b1 and b2

vectors forms the outline of the first Brillouin zone, as
depicted in Figure 1. The intersection of the the planes
kz = ±2π/c with the plane forms a hexagonal prism of
height 4π/c.

1.3. Atomic form factors

As carbon is the only element present in graphene and
graphite, the atomic form factor is uniform across the
entire crystal, and thus can be factored out when calcu-
lating the structure factor. Thus the atomic form factor
has no effect on the relative intensities of x-ray diffrac-
tion occuring in different planes of graphite. According
to the NIST Physics Laboratory, the atomic form factor
of carbon varies from 6.00 to 6.15 e/atom with incident
radiation ranging from 2 to 433 KeV [2].

2. X-RAY DIFFRACTION

2.1. Planes in the Reciprocal Lattice

Provide pictures of the crystal and of the
reciprocal lattice in the [100], [110], and [111]
planes. Indicate the vertical positions of
atoms with respect to the plane.

Pictures of the crystal and of the reciprocal lattice in
the [100], [110], and [111] planes are included in Fig-
ure 2. In MATLAB, the crystal was represented as a set

of points in space using the specified lattice vectors and
atom bases. Normals generated from lattice vector sums
were used to extract planes and display them. Varying
colors were used to depict vertical spacing between adja-
cent planes.

2.2. Structure Factors and X-Ray Diffraction

Intensities

Calculate the structure factor for all the
reciprocal lattice vectors Kl < 16 (2π/a)

2
.

The structure factor is calculated as

Mp (Ki) = fc

n
∑

j=1

(Ki) e−iKi·ρi

where fc is the structure factor of Carbon and ρi are the
basis vectors of our lattice. We find that only four unique,
non-zero values of Mp (Ki) occur in the reciprocal lattice.
Each of these corresponds to the height of a diffraction
intensity peak and their relative values are referenced in
Table I.

Calculate the ratio of the intensities ex-
pected for the following lines of the diffraction
pattern with respect to the [111] line: [100],
[200], [220], [311], and [400].

Including the structure factor, there are other several
factors contributing to the intensities of the diffraction
peaks [3]:

1. The Lorenz correction is a geometric relation al-
tering the intensity of an x-ray beam for different
scattering angles θ.

2. The multiplicity factor p is defined as the num-
ber of different planes having the same spacing
through the unit cell. Systems with high symme-
tries will have different planes contributing to the
same diffraction, thereby increasing the measured
intensity.

3. Temperature, absorption, polarization each con-
tribute higher-order corrections ultimately ignored
in our calculation. These include Doppler broad-
ening from thermal vibrations in the material, ab-
sorption of x-rays, and the polarization of initially
unpolarized x-rays upon elastic scattering.

These factors all contribute to the relative intensity of a
[hkl] diffraction peak given by

I[hkl] (θ) = p|Ma (Km) |2
(

1 + cos2 2θ

sin2 θ cos θ

)

. (2.1)

Using the formula from the previous question to calcu-
late the ratios of the structure factors in the given planes,
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FIG. 3: Crystal structure of silicon.

TABLE I: X-Ray diffraction intensities for graphite and sili-
con [4, 5]. Structure factors are included in parentheses.

Si C (Graphite)

2θ (◦) Exp. 2θ (◦) Calc. Exp.

[111] 28.47 100.00 — (3) —

[100] — — 42.77 4 (3) 3.45

[200] — — — (1) —

[002] — — 26.74 106 (16) 100

[220] 47.35 64.31 — (1) —

[311] 37.31 37.31 — (3) —

[400] 69.21 9.58 — (1) —

we obtain the following results presented in Table I. Cal-
culations show that planes [100], [200], [220] and [400] ex-
hibit relative diffraction intensities 1/3 that of the [111]
and [311] planes. The [002] plane exhibits the highest in-
tensity diffraction, 16/3 that of the [111] and [311] planes.
We also found several non-zero structure factors that are
not present in the experimental data.

2.3. Crystal Structure of Silicon

What are the ratios if the material were
Si? How could you use this information to
distinguish Si from your material by x-ray

diffraction?

The crystal structure of another common semiconduc-
tor material, silicon (Si) is featured in Figure 3. Silicon
forms a diamond cubic crystal structure with a lattice
spacing of 5.42Å. This crystal structure corresponds to a
face-centered cubic Bravais lattice whose unit-cell basis
contains 8 atoms located at vector positions,

d0 = ~0 d4 =
a

4
(1, 3, 3)

d1 =
a

4
(1, 1, 1) d5 =

a

4
(2, 2, 0)

d2 =
a

4
(3, 3, 1) d6 =

a

4
(2, 0, 2)

d3 =
a

4
(3, 1, 3) d7 =

a

4
(0, 2, 2) . (2.2)

The structure factor contributing to its X-ray diffrac-
tion pattern is given by

Ma (Km) =

n
∑

j=1

f (j)
a (Km) e−iKm·dj

= f(1 + (−1)
h+k

+ (−1)
k+l

+ (−1)
h+l

+(−1)
h+k+l

+ (−i)
3h+k+l

+ (−i)
3h+3k+1

+(−i)
h+3k+1

)

= f
(

1 + (−1)
h+k

+ (−1)
k+l

+ (−1)
h+l

)

·
(

1 + (−i)
h+k+l

)

. (2.3)

This term undergoes a number of simplifications based
on the parity of its Miller indices. If [hkl] are all even
and are divisible by 4, then Ma (Km) = 8f . If they are
not divisible by 4 or have mixed even and odd values,
then Ma (Km) = 8f . Lastly if [hkl] are all odd, then
Ma (Km) = 4f (1 ± i).

The experimental X-ray diffraction intensities from
these contributions are listed in Table I. The intensity
values for silicon were measured with respect to a ref-
erence value I/I0 = 4.7, which is a direct ratio of the
strongest line of the sample to the strongest line of a ref-
erence sample α–Al2O3. The number of visible peaks and
the relative intensities between them suggest that silicon
and graphite can be easily distinguished from each other
using an x-ray diffraction experiment.

[1] D. Chung, Journal of Material Science 37, 1475 (2002).
[2] (????), URL http://physics.nist.gov/PhysRefData/.
[3] B. Cullity, Elements of X-Ray Diffraction (Addison-

Wesley, 1978).
[4] E. E. B. P. J. d. G. C. H. S. C. M. Morris, H. Mc-

Murdie, Standard X-ray Diffraction Powder Patterns, vol.
Monograph 25, Section 13 (National Bureau of Standards,
1976).

[5] (????), URL http://rruff.info/graphite/display=

default/.
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We use a Born model to calculate the phonon dispersion of graphene by accounting for stretching
(αs) and bending (αφ) interactions between nearest neighbors. Our model describes four in-plane
vibrational modes to whose dispersion relations we fit experimental lattice mode frequencies, yielding
force constants αs = 445N/m and αφ = 102N/m. Our model also reasonably accounts for graphene’s
macroscopic properties, particularly sound speeds and elastic constants.

The lattice dynamical properties of graphene form the
basis of understanding the vibrational spectra of carbon-
based allotropes of various geometries, such as graphite
or carbon nanotubes. We can use an analytical descrip-
tions of micromechanical behavior to better understand
the acoustic and optical properties of these materials.

In the following, we calculate the in-plane vibrational
spectrum of graphene and its contributions to macro-
scopic elastic and thermodynamic quantities. We first
discuss the force parameters of our Born model and de-
rive a general potential to calculate the dynamical ma-
trix of a primitive cell. Using our dispersion relations at
high-symmetry points, we can determine the vibrational
density of states, in-plane sound velocity, and elastic con-
stants. We will briefly touch upon weak out-of-plane
vibrational modes and its contributions to graphene’s
macroscopic properties.

1. BACKGROUND FOR THE BOHR MODEL

1.1. Parameters of Bohr Model

How many force constants are required for
each bond? Why?

Two force constants, αs and αφ, are required to model
each bond. Let αs represent the restoring force seen when
a bond is stretched and let αφ represent the restoring
force seen when a bond is bent away from the axis along
which it is normally aligned.

What is the energy of a single bond in the
Born model?

The energy in a single bond is the sum of the stretching
and bending energies, Es and Eφ. If p is a vector along
which the bond is aligned in equilibrium and R is a lattice
vector, then the energy contained in a bond between the

∗Electronic address: dodd@mit.edu, amcc@mit.edu, mook-
erji@mit.edu,

atom at R and the atom at R + p is

E[R,R + p] = Es + Eφ

=
1

2
αs|p · (u[R + p] − u[R]) |2

+
1

2
αφ

(

|u[R + p] − u[R]|2 − |p · (u[R + a] − u[R])|2
)

.

(1.1)

The model assumes that the bond is only
slightly displaced from equilibrium. How
would you modify the model to make the
bond energy more realistically dependent on
displacement from equilibrium - what or-
der would the corrections be, and of what
sign? Justify your answer physically; include
sketches if appropriate.

The energy in the bond between the atom at lattice
vector Ri and the atom at lattice vector Ri+a is generally
estimated using a Taylor expansion to the second order
as

V (u[Ri, t])) =

V0 +
∑

n

∑

m

(

∂2
V

∂un[Ri, t]∂um[Ri + a, t]

)

eq

un[Ri, t],

(1.2)

where the position of the atom at Ri + a is fixed, n and
m index all dimensions being considered, V0 is the bond
energy seen with zero displacement and V is the potential
defined as the sum of all bond energies in the entire lattice

V = · · ·+
∑

n

(E[R,R + an] + E[R,R − an])+· · · , (1.3)

where this is the slice of the lattice potential related to
an atom at R and the number of different vectors an

between the atom at R and atoms coupled to it depends
on which nth nearest neighbor model is used to model
the lattice.

Note that there is no first order term in this expan-
sion. A first derivative of potential energy would imply
a net force, so this term must equal zero as the Taylor
coefficients are evaluated at equilibrium.

To make the Born model more accurate, we would need
to take into account higher order terms from the Taylor
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expansion of the potential. We know that the third order
term is non-zero because the curve we are attempting to
fit is not even around the equilibrium point. Based on
the fact that the function has higher curvature to the left
of the equilibrium point than it does to the right, it seems
that the sign of the third order term would be negative.

1.2. Nearest Neighbor Couplings

If you use the only nearest neighbor cou-
plings, how many force constants will your
model require for your material? How large
will the dynamical matrix be? What if you
used nearest neighbor and next-nearest neigh-
bor couplings?

Two force constants are needed to model graphene
whether a nearest neighbor coupling or nearest and next
nearest neighbor model is used, as long as the model is
two-dimensional. As mentioned before, these are αs and
αφ, representing restoring forces due to bond stretching
and bond bending respectively. As graphene is a two
dimensional material with a two atom basis, the dynam-
ical matrix will be four-by-four. A third force constant
αz is required to account for out-of-plane phonon modes.
The size of the dynamical matrix is not affected by the
number of force constants used in our model, however if
a third dimension is added to account for out of plane
vibrations then the dynamical matrix will be six-by-six.

1.3. Elastic Properties

How many independent elastic constants
does your material possess? What are they
(give numbers)? Why will a nearest neighbor
approach not provide the most general solu-
tion for a cubic material?

Graphene has two elastic constants, λ and µ. The
measured values of transverse and longitudinal phonon
velocities in graphene are vt = 14 · 103 ms−1 and vl =
21.7 · 103 ms−1 respectively [1]. Given the density ρ =

2MC [ 3
√

3a2

2
]−1 = 7.6 · 10−7kgm−2, where the mass of

carbon MC = 1.99 · 10−26 kg and the lattice constant
a = 1.42 · 10−10 m, the Lamé coefficients are calculated
using that vt =

√

µ/ρ and vl =
√

(λ + 2µ)/ρ to be µ ≃
29.3N/m and λ ≃ 72.2N/m. It is worth noting that these
macroscopic elastic constants are not usually calculated
or measured for graphene because it is a two-dimensional
material with single atom thickness.

2. CONSTRUCTION OF THE DYNAMICAL

MATRIX

We will first determine the phonon dispersion relations
of the in-plane vibrational modes in the context of the

FIG. 1: Hexagonal crystal structure of a graphene primitive
cell and its neighbors; First Brillouin zone of graphene and
its symmetry points.

Born force model and, and then briefly discuss the out-
of-plane vibrational modes.

2.1. Lattice and Reciprocal Space Structures

[Label] all the atoms in the basis and all their
nearest neighbors. For each atom labeled A-
H, [verify] the lattice vectors Rp to each unit
cell.

A graphene sheet forms a two-dimensional hexagonal
crystal lattice with a primitive cell containing two atoms
(A and B), depicted in Figure 1. Based on our previ-
ous discussion of the Born model, let us assume that
the primitive cell interacts with nearest neighbors and
next-nearest neighbors with spring constants αs and αφ,
respectively, and that atoms of the primitive cell have a
lattice spacing given by a = 1.42Å and a primitive lat-
tice constant 2.46Å. Figure 1 also depicts graphene’s first
Brillouin zone and its symmetry points located at kΓ =
(0, 0), kM =

(

2π/a
√

3, 0
)

, and kK =
(

2π/a
√

3, 2π/3a
)

.
The lattice contains two sublattices 0 and 1, which

differ by their bond orientations. The first atom A in
the primitive cell has three first neighbors in the other
sublattice 1 with relative unit vectors

eB = (1, 0) eC =

(

−1

2
,

√
3

2

)

eD =

(

−1

2
,−

√
3

2

)

.

(2.1)

and six next-nearest neighbors in the same sublattice 0
with relative unit vectors

eE =

(√
3

2
,
1

2

)

eF =

(√
3

2
,−1

2

)

eG = (0, 1)

eH =

(√
3

2
,
1

2

)

eI =

(

−
√

3

2
,−1

2

)

eJ = (0,−1) .

(2.2)

2.2. Born Force Model

[Using a Born force model, find] a general
expression for the potential energy of all the
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TABLE I: Calculated nearest neighbor and next-nearest neighbor forces for graphene. The first (second) row of a given planar
index specifies the force interaction between the A (B) atom and one of its neighbors.

A B C D E F G H I J

xx 3αs/2 + 3αφ −αs −αs/4 −αs/4 −3αs/4 −3αs/4 0 −3αφ/4 −3αφ/4 0

−αs 3αs/2 + 3αφ — — −αs/4 −αs/4 — — — —

xy, yx 0 0
√

3αs/4 −
√

3αs/4 −
√

3αφ/4
√

3αφ/4 0
√

3αφ/4 −
√

3αφ/4 0

0 0 — — −
√

3αs/4
√

3αs/4 — — — —

yy 3αs/2 + 3αφ 0 −3αs/4 −3αs/4 −αφ/4 −αφ/4 −αφ −αφ/4 −αφ/4 −αφ

0 3αs/2 + 3αφ — — −3αs/4 −3αs/4 — — — —

atoms in the crystal in terms of their displace-
ment from equilibrium.

The total elastic potential energy for the all the atoms
in the crystal in terms of their displacements from
equilibrium is given by summing the nearest-neighbor
stretching interactions,

Vs (R) =
1

2
αs|eB · (u1 [R] − u2 [R + eB]) |2

+
1

2
αs|eC · (u1 [R] − u2 [R + eC]) |2

+
1

2
αs|eD · (u1 [R] − u2 [R + eD]) |2, (2.3)

with the nearest neighbor bending interactions

Vφ

=
1

2
αφ

(

(u1 [R] − u2 [R + eB]) |2 − |eB · (u1 [R] − u2 [R + eB]) |2
)

+
1

2
αφ

(

| (u1 [R] − u2 [R + eC]) |2 − |eC · (u1 [R] − u2 [R + eC]) |2
)

+
1

2
αφ

(

| (u1 [R] − u2 [R + eD]) | − |eD · (u1 [R] − u2 [R + eD]) |2
)

.

(2.4)

2.3. Dynamical Matrix

Use the expression for the potential energy
to determine the force on a given atom in
the crystal in terms of its displacement and
its neighbors displacements. Check your an-
swer by directly calculating the force from the
spring constants and displacements.

Verify from the potential, by explicitly taking
the derivatives, the factors in the matrix.

From the potential energy, the force on a given atom
in the crystal is given in terms of a harmonic oscillator
force expression

fi = Dij (k) uj , (2.5)

where Dij is the dynamical matrix is given by

Dij (k) =
∑

Rp

D̃ij (Rp) e−ik·Rp =
∑

Rp

V
′′

ij (Rp) e−ik·Rp .

(2.6)

In this explanation, V
′′

ij are second-partial derivatives of
our Born model potential at equilibrium, Rp are the rel-
ative lattice vectors described in Equations 2.1 and 2.2,

and u =
(

u1
x, u2

y, u1
x, u2

y

)T
. The force constants from tak-

ing the appropriate second derivatives is given in Table I.

The dynamical matrix is then given by

D (k) =











A0 B0 C D

B0 A1 D B1

C∗ D∗ A0 B0

D∗ B∗
1 B0 A1











. (2.7)

If we let (AA) and (BB) represent the 0 and 1 sublattices,
respectively, these matrix elements represent

A0 = Dxx (AA) = Dxx (BB)

B0 = Dxy (AA) = Dyx (AA) = Dxy (BB) = Dyx (BB)

C0 = Dxx (AB) = D∗
xx (BA)

D0 = Dxy (AB) = Dyx (AB) = D∗
xy (BA) = D∗

yx (BA)

A1 = Dyy (AA) = Dyy (BB)

B1 = Dyy (AB) = D∗
yy (BA) . (2.8)

As a sample calculation, consider the element Dxx given
by A0,

A0 = V
′′

xx (AA) + V
′′

xx (AE) e
−i

“ √
3

2
kxa+

kya

2

”

+ V
′′

xx (AF ) e
−i

“ √
3

2
kxa−

kya

2

”

+ V
′′

xx (AG) e−ikya

+ V
′′

xx (AH) e
i
“ √

3

2
kxa−

kya

2

”

+ V
′′

xx (AI) e
i
“ √

3

2
kxa+

kya

2

”

+ V
′′

xx (AJ) eikya

=
3αs

2
+ 3αφ − 3αs

4
e
−i

“ √
3

2
kxa+

kya

2

”

− 3αs

4
e
−i

“ √
3

2
kxa−

kya

2

”

+ 0 − 3αφ

4
e
i
“ √

3

2
kxa−

kya

2

”

− 3αφ

4
e
i
“ √

3

2
kxa+

kya

2

”

+ 0

=
3

2
αs + 3αφ

[

1 − cos

(√
3

2
kxa

)

cos

(

1

2
kya

)

]

(2.9)
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TABLE II: Calculated and measured [2] macroscopic prop-
erties of graphene.

Quantity Measured Calculated

Lattice Mode Frequencies (meV)

Γ M K Γ M K

ωLO 194.8 175.1 155.36 170.3 182.9 197.4

ωLA 0 169.84 155.36 0 151.5 156.4

ωTO 194.8 169.84 155.36 170.3 180.6 156.4

ωTA 0 50.03 125.07 0 66.5 99.8

ωZO 0 75 60 — — —

ωZA 110 52 60 — — —

Sound Velocities (km/s)

vLA 21.7 13.12

vTA 14 6.21

vZA — —

Elastic Constants (10 GPa)

C11 106 ± 2 131.0

C12 28 ± 2 72.3

C44 0.43 ± 0.05 —

A similar calculation for the remainder of the matrix
elements gives us

A0 =
3

2
αs + 3αφ

[

1 − cos

(√
3

2
kxa

)

cos

(

1

2
kya

)

]

B0 = −αφ

√
3 sin

(√
3

2
kxa

)

sin

(

kya

2

)

C = −αs

[

e
−i

“

kxa√
3

”

+
1

2
e
i
“

kxa

2
√

3

”

cos

(

kya

2

)]

D = −i

√
3

2
αse

i
“

kxa

2
√

3

”

sin

(

kya

2

)

A1 =
3

2
αs + αφ

[

3 − 2 cos (kya) − cos

(√
3

2
kxa

)

cos

(

1

2
kya

)

]

B1 = −3

2
αse

i
“

kxa

2
√

3

”

cos

(

kya

2

)

. (2.10)

3. MODEL OPTIMIZATION AND

COMPARISON TO MACROSCOPIC

PROPERTIES

3.1. Comparison with Published Theoretical and

Experimental Data

Plot the phonon dispersion in appropriate
units along the Γ − X , X − L, and Γ − L
directions.

For these values of force constants and
masses, determine the atomic displacements
for all the modes at Γ, and for the highest

FIG. 2: Calculated and experimental phonon dispersion
curves for graphene. (a) Fitted experimental dispersion
curves using inelastic x-ray scattering in graphite [2]; (b) (c)
calculated dispersion relations using our fitted force constants
(αs = 445N/m and αφ = 102N/m) and suggested force con-
stants (αs = 1 and αφ = 0.25).

optic and lowest acoustic modes at X and
L. Provide drawings of the atomic motion
of these modes. How many modes are there
at Γ?
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3.2. Phonon Dispersion Relations

The phonon dispersion relation ω = ω (k) is deter-
mined from the eigenvalue equation

(

M
−1

D (k)
)

ǫ = ω2ǫ. (3.1)

Note additionally, that while graphene is two-
dimensional, it possesses miniscule elastic movement in
the vertical direction, leading to a very small, but non-
zero elastic constant C44. We can define force constants
βs and βφ for the nearest and next-nearest interactions of
the out-of-plane vibrational modes. It has been shown [3]
that the phonon dispersion relations for the out-of-plane
optical and acoustic vibrational modes are

ωZO,ZA =
√

u ± v, (3.2)

where

u = 2βφ

[

cos
(√

3kya
)

+ 2 cos

(

3kxa

2

)

cos

(√
3kya

2

)]

− 3βs

v = βs

[

1 + 4 cos2

(√
3kya

2

)

+ 4 cos

(

3kxa

2

)

cos

√
3kya

2

]1/2

,

(3.3)

where the out-of-plane spring constants are given by
βs = −1.176 and βs = 0.190. These dispersion relations
are decoupled from the in-plane vibrational modes. By
diagonalizing the Hermitian dynamical matrix in Equa-
tion 2.7, we can add these dispersion relations a sub-
space. From empirical data (see II), we know that elastic
out-of-plane motion is several orders of magnitude less
than the in-plane motion. Our own plots of Equation 3.3
yielded high lattice mode frequencies, contradicting this
intuition. As such, we have omitted its inclusion in our
determination of macroscopic elastic constants.

Figure 2 compares the measured dispersion relation
of graphene against our calculated dispersion relations
using the suggested force constants (αs = 1 and αφ =
0.25) and our fitted force constants (αs = 445N/m and
αφ = 102N/m). The optimum force constants are found
for our model by parameterizing the force constants and
comparing the results of ω at the relevant zone edges.
Two force constants are chosen, and ω is calculated for
each of the three zone edges, Γ, M , and K. An RMS
error is generated by subtracting the experimental values
from the calculated values, and iteratively the optimum
values for the force constants are found by searching for
the lowest RMS error value.

The relative atomic displacements for the acoustic and
optical modes at the Γ, K, and M symmetry points
is shown in Figure 5.There are a total of four in-plane
modes (acoustical and optical, transverse and longitudi-
nal) present at Γ, however both the optical and acousti-
cal pairs are degenerate. The atomic displacement pat-
terns associated with the various eigenmodes at different
points of high symmetry in K space are shown in Figure

4. Many qualitative features of our calculated disper-
sion relations are consistent with the experimental and
ab initio data in Figure 2 [4]. Note degeneracies at the
Γ point and linear dispersion relations for small displace-
ments from Γ. Hexagonal symmetry of the graphene lat-
tice also accounts for the measured and calculated de-
generacies at the M and K points. The largest discrep-
ancies between experimental data and our Born model
are for the TO and LO modes, which require accounting
of electron-phonon interactions in ab initio models for
accurate prediction [5].

Theoretical sound velocities for both longitudinal and
optical polarizations are estimated by calculating the
slopes of the acoustical phonon dispersion curves of both
polarizations near Γ and taking c = δω

δk . The elastic
constants C11 and C12 are determined from the phonon
sound velocities as

vLA =
√

C11/ρ vTA =
√

(C11 − C12) /ρ, (3.4)

where ρ is the mass density of graphene.

3.3. Density of States

Plot the total density of states (histogram
method, include all modes) versus frequency.

Figure 3 shows the overall density of states and those
for individual modes. Experimental data for graphene is
unavailable, although the our calculation seemed qualita-
tively consistent with experimental data for graphite [4]

3.4. Specific Heat

Calculate the specific heat of your material
versus temperature using (a) your calculated
density of states, (b) a Debye model, and (c)
a combined Debye-Einstein model (Debye for
acoustic modes, Einstein for optical modes).
Plot your results for temperatures between 0K
and 3ΘD. Comment on the strengths and
weaknesses of your model.

The specific heat for graphene is calculated using the
combined density of states (3), Debye model, and com-
bined Density of States (optical branches) and Debye
model (acoustic branches). The two models result in rad-
ically different specific heats, perhaps because the De-
bye model does not account for the optical modes, upon
which the specific heat significantly depends. The plots
for the specific heats in these models is given in Figure 4.

In the Debye model calculation, the longitudinal acous-
tic velocity is used as the speed of sound instead of the
inverse addition of longitudinal and tranverse velocities,
because in the calculated phonon dispersion relation the
transverse acoustic line is by far the most deviant from
experimental value. In addition, it should be noted that
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FIG. 3: Calculated total and individual-mode density of
states.

use of the longitudinal acoustic velocity provides a rea-
sonably accurate ΘD of 2200 K (with experimental data
suggesting a ΘD of 2400 K [6].
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FIG. 4: Calculated specific heats using calculated density of
states, Debye model, and combined Debye-Einstein model.
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(a)Γ point. (b)K point.

(c)M point.

FIG. 5: Atomic displacements for the eigenmodes of graphene at the 5(a) Γ, 5(b) K,and 5(c) M points [4].
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The band structure properties of graphene form the
basis of understanding the electronic spectra of carbon-
based allotropes of various geometries, such as graphite
or carbon nanotubes. We can use an analytical and nu-
merical descriptions of carbon’s valence electrons to bet-
ter understand the conduction and semiconductor prop-
erties of these materials.

1. BAND STRUCTURE BACKGROUND

QUESTIONS

How many extended orbital basis func-
tions will you have for your material? Why?

A graphene sheet forms a two-dimensional hexagonal
crystal lattice with a primitive cell containing two atoms
(A and B); its lattice structure of graphene and its first
Brillouin zone is shown in Figure 1. The electron con-
figuration of free carbon atoms is 1s22s22p2. For the
two atoms in the basis, there are four valence orbitals,
yielding eight extended orbital basis functions for our
material. Because of its planar structure, atoms undergo
bonding with four hybridized sp2-wave functions of the
form

1√
3

(

|2s〉 +
√

2 |2pi〉
)

(i = x, y, z) . (1.1)

Conceivably one could also construct the
LCAO wave function out of core orbitals as
well as valence orbitals. How many extended
orbital basis functions would you have to use
for your material? How large would your
Hamiltonian matrix be in this case? How
do you expect your results would differ from
those you would get with just valence orbitals?
What if we used higher (totally unoccupied)
orbitals, too? How many orbitals per atom
would we have to use to get an exact band
structure? Why?

If we were to add the 1s orbital to our LCAO basis set,
we would have five orbitals per atom in a two atom basis,
yielding 10 LCAO wavefunctions and a 10x10 Hamilto-
nian matrix. The additional of this orbital to our basis
has a negligible effect due to the statistically insignificant

∗Electronic address: dodd@mit.edu, amcc@mit.edu, mook-
erji@mit.edu,

FIG. 1: Hexagonal crystal structure of a graphene primitive
cell and its neighbors; First Brillouin zone of graphene and
its symmetry points.

interactions between the 1s and 2s/2pi orbitals. Being
independent of the valence orbitals, the two extra rows of
the Hamiltonian are block diagonalized from other eight
rows.

2. CONSTRUCTION OF HAMILTONIAN

MATRIX

What are the atomic configurations of the
two atoms in your material? Which orbitals
do you expect to play a significant role in
bonding?

The electron configuration of free carbon atoms is
1s22s22p2. The valence electrons in the 2s, 2px, 2py,
and 2pz orbits play a significant role in bonding.

Draw all the atoms in the basis and all
their nearest neighbors with appropriate or-
bitals on each atom. Label the orbitals accord-
ing to their lattice vector, basis vector, orbital
type, and the type atom they are associated
with (cation or anion).

The lattice structure of graphene and its first Brillouin
zone is shown in Figure 1. The lattice contains two sub-
lattices 0 and 1, which differ by their bond orientations.
The first atom A in the primitive cell has three first neigh-
bors in the other sublattice 1 with relative unit vectors

eB = (1, 0) eC =

(

−1

2
,

√
3

2

)

eD =

(

−1

2
,−

√
3

2

)

.

(2.1)

and six next-nearest neighbors in the same sublattice 0

mailto:dodd@mit.edu, amcc@mit.edu, mookerji@mit.edu,
mailto:dodd@mit.edu, amcc@mit.edu, mookerji@mit.edu,
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with relative unit vectors

eE =

(√
3

2
,
1

2

)

eF =

(√
3

2
,−1

2

)

eG = (0, 1)

eH =

(√
3

2
,
1

2

)

eI =

(

−
√

3

2
,−1

2

)

eJ = (0,−1) .

(2.2)

The carbon basis atom A at cell vector R has orbitals
|2s (R)〉 and |2pi (R)〉 (i = x, y, z), and orbitals from
three nearest neighbors shown in Figure 1,

B :
∣

∣2sA (R + eB)
〉

and
∣

∣2pA
i (R + eB)

〉

(2.3)

C :
∣

∣2sA (R + eC)
〉

and
∣

∣2pA
i (R + eC)

〉

(2.4)

D :
∣

∣2sA (R + eD)
〉

and
∣

∣2pA
i (R + eD)

〉

, (2.5)

and the carbon basis atom B at cell vector R has orbitals
|2s (R)〉 and |2pi (R)〉 (i = x, y, z), and orbitals from
three nearest neighbors,

A :
∣

∣2sB (R − eB)
〉

and
∣

∣2pB
i (R − eB)

〉

(2.6)

E :
∣

∣2sB (R − eC)
〉

and
∣

∣2pB
i (R − eC)

〉

(2.7)

F :
∣

∣2sB (R − eD)
〉

and
∣

∣2pB
i (R − eD)

〉

. (2.8)

[. . . ] approximate all the nearest neigh-
bor interactions. Is this approximation rea-
sonable? Calculate values for Ess, Esp, Exx,
and Exy in terms of Vssσ, Vspσ, etc

In examining the orbital interactions contributing to
the matrix elements of the Hamiltonian, we will refer
to several figures taken from Saito and Dresselhaus that
depict carbon’s valence orbital overlaps [1]. The hy-
bridized orbitals contributing to the LCAO approxima-
tion are given by the sp2 orbitals,

∣

∣

∣
φA,B

1

〉

=
1√
3

∣

∣2sA,B
〉

±
√

2

3

∣

∣2pA,B
x

〉

∣

∣

∣
φA,B

2

〉

=
1√
3

∣

∣2sA,B
〉

∓ 1√
6

∣

∣2pA,B
x

〉

± 1√
2

∣

∣2pA,B
y

〉

∣

∣

∣
φA,B

3

〉

=
1√
3

∣

∣2sA,B
〉

∓ 1√
6

∣

∣2pA,B
x

〉

± 1√
2

∣

∣2pA,B
y

〉

∣

∣

∣
φA,B

4

〉

=
∣

∣2pA,B
〉

. (2.9)

Figure 2 shows that all nearest neighbor bonding inter-
actions are described by each of

Ess =
〈

2sA (0)
∣

∣ Ĥ
∣

∣2sB (eB)
〉

Esp =
〈

2sA (0)
∣

∣ Ĥ
∣

∣2pB
x (eB)

〉

Exx =
〈

2pA
x (0)

∣

∣ Ĥ
∣

∣2pB
x (eB)

〉

Exy =
〈

2pA
x (0)

∣

∣ Ĥ
∣

∣2pB
y (eB)

〉

, (2.10)

where all remaining orbital overlaps going to zero.

(a)Four sp2 hybridized orbitals in carbon bonding.

(b)The rotation of 2px and
σ-bond band parameter
overlaps for the 2s and

2pi (i = x, y, z) orbitals.

(c)Sample matrix elements for
σ-bonding.

FIG. 2: Orbital overlaps in graphene. Figure 2(b) shows how
to project 2px along the σ and π components, and the non-
vanishing (1-4) and vanishing (5-8) elements of the Hamilto-
nian matrix. Figure 2(c) shows examples of Hamiltonian ma-

trix elements for σ orbitals
˙

2sA
˛

˛ Ĥ
˛

˛2pB
x

¸

and
˙

2pA
x

˛

˛ Ĥ
˛

˛2pB
y

¸

,
respectively. Figures taken from [1].

The matrix elements for the Bloch orbitals between
the A and B atoms of the basis are obtained by tak-
ing the components of the 2px and 2py orbitals in the σ
and π basis. From rotating the orbitals, we have one of
eight overlap configurations given by Figure 2. For exam-
ple, the wavefunction |2px〉 is determined by projecting
it onto the σ and π basis such that

|2px〉 = cos
(π

3

)

|2pσ〉 + sin
(π

3

)

|2pπ〉 . (2.11)

Using these rotation transformations, we can determine
the energies given in Equation 2.10 in terms of Vijk over-
lap terms. For example, the third energy overlap term
shown in Figure 2(b) is given by

〈

2pA
x

∣

∣ Ĥ
∣

∣2pB
y

〉

=
3

4
(Vppσ + Vppπ) e−ikxa/2

√
3eikya/2

− 3

4
(Vppσ + Vppπ) e−ikxa/2

√
3e−ikya/2

= i

√
3

2
(Vppσ + Vppπ) e−ikxa/2

√
3 sin

kya

2
.

(2.12)
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The remaining overlap terms are summarized in Equa-
tion 2 in the next section of this paper.

Finally, in our LCAO approximation, note that
〈

2sA (0)
∣

∣ Ĥ
∣

∣2pB
x (eB)

〉

=
〈

2sB (0)
∣

∣ Ĥ
∣

∣2pA
x (eB)

〉

〈

2sA (0)
∣

∣ Ĥ
∣

∣2sA (0)
〉

=
〈

2sB (eB)
∣

∣ Ĥ
∣

∣2sB (eB)
〉

.

(2.13)

The first is valid because of the uniformity of our
medium: valence orbitals will be the same regardless of
where the electrons are located. Permutations of orbitals
leave energy overlaps invariant because of the symmetry
of the interactions. The latter expression is also valid,
as orbital self-interactions will remain the same amongst
identical atoms. In the case, both basis atoms are carbon.

Construct a set of extended atomic or-
bitals. Be explicit about your choice of phase
factors. Write your trial wave function as a
linear combination of these extended orbitals.

Recall that for the tight-binding solution that we use
the trial wave function

|ψ (r)〉 =
∑

α

∑

Rl

cα [Rl] |φα (r − Rl)〉 , (2.14)

where α denotes both each type of wave function for each
atom and also the type of atom in the basis, and Rl

denotes the direct lattice vectors. Therefore, our LCAO
trial wave function is given by hybridized wave functions
for the atoms in the primitive basis

|ψ〉 = aA

∣

∣2sA (R)
〉

+
∑

i=x,y,z

biA
∣

∣2pA
i (R)

〉

+ aB

∣

∣2sB (R + eB)
〉

+
∑

i=x,y,z

biB
∣

∣2pB
i (R + eB)

〉

(2.15)

Find the Hamiltonian matrix for the near-
est neighbor approximation.

For a systems Hamiltonian operator Ĥ, the Hamilto-
nian matrix in the LCAO method is

H (k) =
∑

Rp

H̃ (Rp) e
−ik·Rp , (2.15)

where the matrix elements in right side of the equality
are

H̃β,α (Rn,Rm) = |φβ (r − Rn)〉 Ĥ |φα (r − Rm)〉 .
(2.15)

Assuming only nearest neighbor interactions and that
S (k), the Hamiltonian matrix of a two-dimensional
hexagonal crystal of carbon atoms is given by a block
diagonal matrix

H3D =

[

A2×2 B2×2

B†
2×2

A2×2

]

(2.15)

FIG. 3: The energy dispersion relations for graphene are
shown through the whole region of the Brillouin zone. The
lower and the upper surfaces denote the valence π and the
conduction π∗ energy bands, respectively. The coordinates
of high symmetry points are Γ = (0, 0), K = (0, 2π/3a), and
M = (2π/

√

3a, 0). The energy values at the K, M, and Γ
points are 0, t, and 3t, respectively (http://www.iue.tuwien.
ac.at/phd/pourfath/node18.html).

with

A2×2 = diag (Es, Ep, Ep, Ep) , (2.15)

and

B2×2 =







Vssσg0 Vspσg1 Vspσg2 0
Vspσg1 Vppσg3 + Vppπg4 (Vppσ + Vppπ) g5 0
Vspσg2 (Vppσ + Vppπ) g5 Vppσg3 + Vppπg4 0

0 0 0 Vppπg0






.

(2.15)
The phase factors in B2×2 are

g0 = 1 + e−ik·RB + e−ik·C g1 = 1 − 1

2
e−ik·RC − 1

2
e−ik·RC

g2 =

√
3

2

(

e−ik·RC − e−ik·RC
)

g3 = 1 +
1

4
e−ik·RC +

1

4
e−ik·RC

g4 =
3

4

(

e−ik·RC − e−ik·RC
)

g5 =

√
3

4

(

e−ik·RC − e−ik·RC
)

.

Conduction in the plane is limited entirely to π bond-
ing, so the graphene band structure of graphene is limited
to a subset of the matrix given in Equation 2

H2D =

[

Ep Vppπg0
Vppπg

∗
0

Ep

]

. (2.13)

3. BAND CALCULATIONS

Look up a real energy band diagram for
your material. Include a copy in your report.

An accepted electronic band energy diagram is shown
in Figure 3.

Write a matlab program to plot the free-
electron band structure for your material

http://www.iue.tuwien.ac.at/phd/pourfath/node18.html
http://www.iue.tuwien.ac.at/phd/pourfath/node18.html
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FIG. 4: Free-electron band structure for graphene.

along the same directions as used in the en-
ergy band you found in the literature. Indi-
cate the degeneracies of the different bands.
Where is the Fermi level located? How does
the free electron band structure compare to the
real band structure?

Our calculated free-electron band structure for
graphene is included in Figure 4. In this model, we as-
sume that the electron experiences no potential energy,
and therefore has energies described by

E (k) =
~

2
k

2

2m
. (3.0)

This is applied in the reduced-zone scheme, where the
evaluation to reciprocal lattice vectors K in the first Bril-
louin zone. Subsequently, the energies are evaluated at
K for

E (k) =
~

2

2m
(k′ + K)

2
, (3.0)

where k
′ is restricted to the symmetries of the first Bril-

louin zone.
For the free electron model of graphene using the six

nearest neighbors in reciprocal space, there are six de-
generacies at the K point, two double degeneracies and
one triple degeneracy at both the Γ and M points. We
see two degenerate pairs along K to Gamma, one along Γ
to M and three along M to K. For this model, the Fermi
energy is found exactly where the conduction and valence
bands touch at the K point. It is clear when comparing
this band structure to those found in the literature that
the free electron model is not a good approximation for
electron transport in graphene. We see several band de-
generacies that do not match the actual band structure
and the general shapes are very different.

Algebraically diagonalize the Hamiltonian
matrix at the Γ point. What are the differ-
ent energies and eigenvectors, and what do

FIG. 5: Energy dispersion relations for graphene.

they correspond to physically? Using Har-
risons Solid State Table (attached) find nu-
merical values for Esa, Esc, Epa, Epc, Ess,
Esp, Exx, and Exy. Compare your calculated
energies at the Γ point with values from the
literature.

Our calculated total density of states for the conduc-
tion and valence bands is included in Figure 5. Denoting
t = Eppπ as the tight-binding energy from the valence
orbitals, the band structure depicted in Figures 5 and 6
is given analytically by

E±
2D = ±t

√

√

√

√1 + 4 cos

(√
3kxa

2

)

cos

(

kya

2

)

+ 4 cos2
(

kya

2

)

(3.0)
after diagonalizing Equation 2. Dresselhaus cites t =
−3.033eV, differing from optimized value of t = −8.1eV
(see Matlab code)[1].

Write a Matlab program to plot the LCAO
energy bands along the same directions as
above, along with the approximate location of
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FIG. 6: Graphene energy dispersion from π-bonding.

the Fermi level. How do your results com-
pare (qualitatively) with the band structure
you found in the literature? If you wish, op-
timize the matrix elements for your material.

The LCAO energy dispersion is shown in Figure 6.
Because this figure is based on a known analytic solution,
the results compare almost exactly in qualitative features
to the known literature [3].

Where are the valence band maximum and
the conduction band minimum located? What
is the energy gap? Is your material direct or
indirect?

The valence band maximum and the conduction band
minimum are degenerate at the K-point, yielding a zero
energy band gap. Because the points are coincident in the
plane, the material is direct. Notably, because the energy
dispersion around the K point is linear, corresponding to
dispersion relation of a relativistic Dirac fermion [3].

4. EFFECTIVE MASSES, CONSTANT ENERGY

SURFACES, AND DENSITY OF STATES

Plot constant energy contours near the va-
lence and conduction band edges for appropri-
ate planes. For example, if your minimum is
at kmin along Γ−X, you should probably plot
an energy contour for the kx − ky plane, and
for the plane parallel to ky − kz that contains
kmin.

A close up of the conduction and valence band edges
and a contour plot is shown in Figures 7 and 8, respec-
tively.

Solve for the energy at a number of k
points near the valence and conduction band

FIG. 7: Valence and conduction band edges for graphene.

FIG. 8: Energy contours for graphene.

edges. Fit these points using a quadratic poly-
nomial (be sure to think about your results
from D1 when you do this). Use your results
to find the effective masses for both the va-
lence bands and the conduction band. How
do your results compare with results from the
literature? How would you improve your re-
sults?

The energy surface near the conduction band edges
form cones that touch each other precisely at the K points
as shown in Figure 6, making graphene effectively a zero-
bandgap material. This differs greatly from the form of
cubic semiconductors, which have band edges that can be
approximated by parabaloids. Since the band structure
is resultant from a 2x2 Hamiltonian, its scale is com-
pletely determined by the energy offset (which we set to
zero) and a scaling factor ηppπ. The results are as close
as they possibly can be for our near-neighbor approxima-
tion, as we initially scaled our band structure along its
high-symmetry points to that of the literature. Given the
linear shape of the dispersion relation around the band
edges, an electron in graphene for our approximation has
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FIG. 9: Electronic density of states for graphene.

an effective mass of zero everywhere around the band
edge except exactly where the bands meet, where it has
an infinite effective mass.

Plot the total density of states (histogram
method, include all bands) versus energy. Use
your calculated effective masses to determine
an approximate expression for the density of
states near the valence and conduction band
edges. How does this calculation compare with
the total D.O.S.?

Our calculated total density of states for the conduc-
tion and valence bands is included in Figure 9. As shown,
our generated density of states defies simple expression,
as unlike a cubic system we cannot represent the den-
sity of states as a straightforward

√
E relation. As shown

in Figure 9, our calculated DOS matches the shape of
experimental data for the conduction band well.

Using your total D.O.S., calculate the
electronic specific heat of your material as a
function of temperature. Compare this with
your calculations for the phonons, and com-
ment.

Our calculated total density of states for the conduc-
tion and valence bands is included in Figure 8. Our elec-
tronic specific heat of graphene is largely linear, matching
well with the literature. However, the electronic specific
is significantly smaller than its phonon counterpart. Ac-
cordingly, the specific heat is completely dominated by
the phonon specific heat by two orders of magnitude [2].

Our calculated total density of states for the conduc-
tion and valence bands is included in Figure 10.

FIG. 10: Electronic heat capacity for graphene.

Use the band structure you found in the
literature to discuss the characteristics of
your material. What electronic/optical appli-
cations would your material be good/bad for?
Why?

Because the expression of the π band in graphene is ex-
act, our band structure calculation is exactly similar to
the those found in the literature. Figure 6 shows the up-
per π∗-energy anti-bonding and lower π-energy bonding
bands that are degenerate at the K-point; the two elec-
trons in the π band are fully occupy the lower π band.
From the degeneracy at theK-point, the density of states
at the Fermi level is zero, making graphene a zero band
gap semiconductor [3]. The planar π-bonding bestows
graphene with extremely high room temperature electron
mobility, allowing a conductivity greater than silver. The
linear shape of the energy dispersion formed the basis of
frequency multiplier chip produced by MIT [3].

[1] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys-

ical Properties of Carbon Nanotubes (World Scientific
Publishing Company, 1998), ISBN 1860940935, URL
http://www.amazon.ca/exec/obidos/redirect?tag=

citeulike09-20%&amp;path=ASIN/1860940935.
[2] J. Hone, Book Series Topics in Applied Physics 80, 273

(2001).
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1. A. OPTICAL PROPERTIES

Utilizing the (optimized) LCAO band-
structure from Part III, use the lowest energy
direct bandgap (from valence band to conduc-
tion band) to estimate the momentum matrix
element.

The band structure around graphene’s bandedge (the
K point) is a pair of intersecting cones. As such, the
double gradient of the band structure in that region is
discontinuous, yielding an effective mass m∗ of zero at the
K point and infinity in the immediate vicinity. Looking
at the momentum matrix element calculation outlined in
Lecture 27:

1

m∗ =
1

m
+

2

m2

|pcv|2
Eg

(1.1)

we see that 1

m∗
= 1

Eg
= ∞ at the K point, which gives

us intuition that something special is happening at that
location. If we think about the band structure, we real-
ize that the matrix element must be zero at the K point,
since the valence and conduction bands are degenerate
there–there is no gap across which to absorb a photon.
However, if we move away from the K point and no longer
have a linear dispersion relation, Eg becomes nonzero as
does |pcv|, but the effective mass becomes zero. Clearly
this equation, which was formulated for zinc-blende crys-
tals cannot help us with determining the momentum ma-
trix element aside from suggesting. Since 1.1 is not di-
rectly useful in analytically finding |pcv| for our conic
bandstructure approximation, we instead turned to the
literature.

Within the literature [1] [2], the momentum matrix
elements are derived explicitly, by the dot product of a
photon polarization vector P and the dipole vector D

where

D ≡ <Ψf |∇|Ψi> (1.2)

and

|pcv| = P · D = P · <Ψf |∇|Ψi> (1.3)

∗Electronic address: dodd@mit.edu, amcc@mit.edu, mook-

erji@mit.edu,

this formulation is then broken down into its Bloch
constituents and further simplified. Orienting the sheet
of graphene in the x-y plane, it is pointed out that for
two lattice atoms Rj1 and Rj2

<φ(r − Rj1)| ∂

∂z
|φ(r − Rj2)> = 0 (1.4)

since the integrand is an odd function of z. Thus we
can restrict the atomic dipole vector to the x-y plane,
ie D = (dx, dy, 0). The matrix element P · D is further
simplified using a Taylor expansion around the K point
(kx0, ky0) until the arrival of the result

|pcv| = P ·D =
3M

2k
(py(kx − kx0) − px(ky − ky0)) (1.5)

where M is the optical matrix element for two nearest-
neighbor atoms separated by b1

M = <φ(R + b1)| ∂

∂x
|φ(R)> (1.6)

The above can be numerically evaluated for a tight-
binding model including 2s and 2p orbitals, giving a value
of M = 0.206 [1]

Utilize the optimized LCAO bandstructure
and momentum matrix element from A1 to
estimate the optical absorption. Plot the ab-
sorption coefficient for your material from the
direct bandedge to 5 kBT above the bandedge.

Using the absorption coefficient formula derived in Lec-
ture 27, we arrive at

α(ω) =
πq2cµ0

m2

0
ωn

|3M

2k
|2(py∆kx − px∆ky)|2pr(hω − Eg)

(1.7)
where pr(hω − Eg) is the reduced density of states we

calculated in Part II.
As shown in Figure 1, the absorption is zero directly

at the K points (as our intuition suggested) and grows
as k moves away in most directions. Notice the line of
zero absorption, however, for k directions associated with
(py∆kx − px∆ky) = 0.

Compare your estimate for the interband
absorption coefficient with literature values.
What are the major sources of discrepancy be-
tween your theory and experiment?
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FIG. 1: Absorption spectrum for graphene for polarization P
= (0,1) [1]. Darker areas correspond to stronger absorption

Considering that our method of derivation was almost
identical to that of the literature, it matches *very* well.
In many of the articles we reviewed, we found that the op-
tical absorption was solely shaped by a density of states,
scaled by constants that appeared to be of approximately
the same form as those in Equation 1.7

2. B. ELECTRON-PHONON SCATTERING

Utilize the LCAO bandstructure from Part
III to estimate the deformation potential for
electrons near the conduction bandedge and
holes at the valence bandedge. Compare the
estimated deformation potentials with the lit-
erature values for the longitudinal acoustic
deformation potential.

We can calculate the deformation potential directly
from the bandstructure since we have it in analytic form
from Part III, as

E±
2D = ±t

√

√

√

√1 + 4 cos

(√
3kxa

2

)

cos

(

kya

2

)

+ 4 cos2
(

kya

2

)

(2.1)
where t = 8.1eV , a = 1.42Å, and A = a2. At the

bandedge point K, kx = 2π√
3a

and ky = 2π
3a

To perform

the calculation we took a small increment and divide it
by the change in atomic areal lattice spacing.

DA =
∂En(K)

∂A
|eqA =

∂En(K)

∂a
|eq ·

a

2
(2.2)

≈ E(a + da) − E(a)

da
· a

2
=

1

2

a

da
∆E (2.3)

= 14.15eV (2.4)

the resulting calculation is in very good accordance
with experimental values from graphene devices grown
on SiO2, DA(emp) = 18 ± 1eV [3].

Utilize the phonon dispersion from Part
II to estimate the phonon occupancy for all
modes within the Brillouin zone. Assume a
lattice temperature of 300K.

Considering the lattice temperature is so high, we
can approximate the phonon occupancy function in the
Boltzmann limit, ie

N(w) =
kBT

!w
(2.5)

Using the LCAO density-of-states and the
results from B1 and B2, estimate the longi-
tudinal acoustic phonon scattering for your
material. Compare your result with literature
values.

Beginning with Eq (2.76) from Lundstrom, modified
for 2D (after doing the integral present in Eq (2.75) the
only difference is the removal of a factor of β)

1

τ
=

Ω

4π2

∫ βmax

βmin

(Nβ +
1

2
∓ 1

2
)Cββdβ (2.6)

and since we’re calculating the acoustic deformation
potential

Cβ =
πm∗D2

A

!ρvs

pΩ (2.7)

we’re operating in the Boltzmann limit as well so

1

τ
=

Ω

4π2

∫ βmax

βmin

Nωs
Cββdβ (2.8)

Nωs
=

kBTL

!ωs

=
kBTL

!βvs

(2.9)

we find that

1

τ
=

m∗D2

AkBTL

4π!2clp

∫ βmax

βmin

dβ (2.10)

=
m∗D2

AkBTL

4π!2clp

2p

!
(2.11)

=
D2

AkBTL

2!cl

m∗

π!2
(2.12)

=
D2

AkBTL

2!cl

g2D(E) (2.13)

We can calculate cl using ρ = 6.5 · 10−7 and using the
longitudinal sound velocity vs = 13.12km/s from Part
III of the project, and TL is 300K. The first part of the
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FIG. 2: Density of states histogram calculated in Part III

final equation form yields a constant factor to propor-
tion g2D(E), which is the density of states calculated via
histogram method in Part III and shown in Figure 2.

cl = v2

s ∗ ρ = 8.51 · 10−3kg/s (2.14)

Within the relaxation time approximation
in the Boltzmann limit, estimate the heavy-
hole mobility. Compare your result with lit-
erature values. What are the major sources of
discrepancy between your theory and experi-
ment?

The verdict is still out on the methodology to de-
termine the mobility of graphene. Measured values of
graphene mobility show that it has extremely high mo-
bilities, theoretically infinite at the Dirac points, but
that these values are limited by acoustic phonon scat-
tering [3]. Graphene has been experimentally shown to
have hole mobilities commonly in the range of 3400-4400
V/cm2s [4] and as high as 15,000 V/cm2s [5]. Current re-
search suggests that graphene mobility is limited by the
density of charged impurities within the lattice, and so
the key to increasing mobility for use in higher-frequency
electronics is to reduce the number of impurities when
building graphene components. [6]
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