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Abstract

This paper builds an empirically tractable framework for the analysis of marginal costs in
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set of variable inputs. The production approach generally uses the most flexible intermediate
inputs to compute markups. However, the estimate entails counterintuitive properties against
standard models of imperfect competition because markups are computed over upward-sloping
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variable inputs are theoretically defined and how producers actually adjust inputs.
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1 Introduction

The production approach (Hall, 1988; De Loecker and Warzynski, 2012; and De Loecker et al,

2020) enables us to derive product-, plant-, or firm-level estimates of output price to marginal cost

markups.1 This methodological revolution allows us to study the impacts of the market power of

individual producers on aggregate economic outcomes, including market concentration and income

inequality. The approach derives markups by estimating the output elasticity of a variable input

and dividing the output elasticity by the ratio of the variable input cost to revenue. Markup

estimates, however, differ substantially owing to the inclusion or exclusion of a certain type of cost

(Traina, 2018), returns to scale in production (Basu, 2019), and the choice of a variable input

(Raval, 2023).

We argue that these differences arise because markups are computed over different marginal

costs (Syverson, 2019). Marginal costs differ across producers for several reasons. Firm heterogene-

ity in productivity and product quality are responsible for differences in marginal costs (Hopenhayn,

1992; Kugler and Verhoogen, 2012; De Loecker et al, 2016). Even for a single producer, marginal

costs could differ, depending on the choice of what is considered to be variable versus fixed inputs.

We build an empirically tractable framework for the analysis of marginal costs in markup esti-

mates and examine the properties of markups computed using different sets of variable inputs. In

this paper, the choice of variable versus fixed inputs underlies the heterogeneity in marginal costs.

For example, when only the most flexible intermediate inputs are variable inputs, we implicitly

assume that production functions are decreasing returns to scale in terms of variable inputs. Thus,

the above-mentioned criticisms of the production approach could be associated with how variable

inputs are theoretically defined to derive underlying marginal cost functions. The model predicts

that marginal cost increases as input prices increase and decreases as productivity increases. More-

over, marginal cost increases (decreases) with output when the output elasticity is sufficiently less

than (greater than) one.

To empirically examine whether markups from the production approach follow the theoretical

predictions, we use plant-product matched data from Japan’s Census of Manufacture, an annual

1The markup literature has grown using two distinct types of data. One strand of the literature relies on demand-
side information about product prices and quantities. It computes markups from residual price elasticities of demand
(e.g., Feenstra and Weinstein, 2017). The other relies on supply-side information and computes markups from the
producer-side data (e.g., De Loecker and Warzynski, 2012).
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survey conducted by the Ministry of Economy, Trade and Industry (METI).2 There are several

reasons why the data enable us to answer our research questions. First, the data contain product

prices and physical output quantities.3 Without the product-level price and quantity information,

we cannot examine changes or differences in markups arising from those in product prices and

quantities. Second, the data cover six types of inputs: four types of intermediate inputs (materials,

fuels, electricity, and outsourcing) and two types of factor inputs (labor and capital). This is ideal for

us to discuss how the properties and distributions of markup estimates differ owing to the plausible

adjustability of variable inputs. Lastly, Japanese producers adjust materials rapidly and labor

slowly due to their practice of lifetime employment (Hashimoto and Raisian, 1985; Kambayashi

and Kato, 2017). We will show that the difference in the adjustment speed of inputs is the key to

explaining why markup estimates from labor and those from materials move in opposite directions

in the short run (Raval, 2023).

We follow the literature (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al,

2015) and consider three alternative sets of variable inputs according to the plausible adjustability of

inputs for computing marginal costs. First, we compute markups over marginal costs by assuming

that intermediate inputs are variable inputs. This measure is frequently used in the literature

(De Loecker et al., 2016; Foster et al, 2022). Second, we compute markups by assuming that

intermediate inputs and labor are variable inputs without taking into account short-run labor

adjustment costs (e.g., Bils, 1987). Lastly, we compute markups by assuming that all observable

inputs, including capital, are variable inputs in the long run. This measure is traditionally employed

in the macroeconomic literature that uses national accounts data to compute markups (e.g., Diewert

and Fox, 2008).

Using product-level prices and quantities from the sample of single-product plants, we first

show that yearly changes in markup estimates from the production approach can precisely capture

yearly changes in product prices and marginal costs, irrespective of the set of variable inputs.4

2The census is conducted on all plants with more than four regular employees. The response rate is greater than
95% for each year. Thus, the census covers almost all plants in Japanese manufacturing. In this paper, we focus on
the sample that covers all manufacturing plants that have 30 or more regular employees because smaller plants do not
report the data on tangible capital assets and investment necessary to compute their capital stock. Although we do
not include smaller plants, the data cover around 70% of Japanese manufacturing plants in terms of total shipments.

3Although we have four types of intermediate inputs (materials, fuel, electricity, and outsourcing), we do not have
the prices and physical quantities information for materials. See Kugler and Verhoogen (2012) who use the Colombian
manufacturing census, which contains prices and physical quantities of all inputs and outputs.

4We also find that cross-plant differences in markup estimates can capture those in product prices and marginal
costs. Similar to De Ridder et al (2021), we find more robust evidence from changes than levels.
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Conditional on the assumption that fixed inputs are truly fixed over a year, the rise in product

prices and the fall in marginal costs each increase markups. Second, consistent with the theoretical

predictions, marginal costs respond systematically to demand shocks, depending on returns to

scale in the aggregate of variable inputs. By including only intermediate inputs in the set of

variable inputs, the output elasticity tends to be sufficiently less than one, generating upward-

sloping marginal cost functions.5 Thus, a negative demand shock for a producer tends to suppress

its marginal cost and increase its markup. To examine this prediction further, we provide a case

study on the Japanese semiconductor industry around the time of the dot-com bubble collapse

in 2000. Intuitively, the bubble collapse should have reduced markups because of the decline in

semiconductor demand; however, markups derived from intermediate inputs increased by 5.9% from

2000 to 2002. More generally, we show that upward-sloping marginal cost functions give rise to

counterintuitive properties of markup estimates against standard models of imperfect competition

(e.g., Atkeson and Burstein, 2008; Feenstra and Weinstein, 2017). Larger producers have lower

markups, and market shares and markups are negatively associated. Our findings highlight the

importance of recognizing the differences in markup estimates that arise from computing them

over different marginal cost functions.

Our paper is closely related to Raval (2023) who shows that markups from materials, labor,

or a composite of both are very different using data from Chile, Colombia, India, Indonesia, the

United States, and Southern Europe.6 While Raval (2023) argues that the rise of labor-augmenting

productivity in non-neutral production technology can reconcile the differences, we show that the

differences arise because markups are computed over different marginal cost functions. For example,

an expression of the marginal cost for labor markups (material markups) is the wage (material

prices) divided by the marginal product of labor (materials). Thus, when producers can adjust

only materials in the short run, the marginal products of labor and materials move in opposite

directions, and so do the marginal costs and markup estimates. In particular, the discrepancy

between the theoretical assumption (i.e., materials are fixed) and the empirical observation (i.e.,

producers adjust materials simultaneously) develops contradictory movements of labor markups.

5See Basu (2019) and De Loecker et al (2023) who show that scale elasticities play a crucial role in the U.S.
aggregate markup trend.

6Traina (2018) studies the sensitivity of markup estimates due to the inclusion or exclusion of a certain type of
cost. Using financial statement data from U.S. public firms, Traina (2018) shows that the U.S. aggregate markup
does not increase once the marketing and management costs are included in the computation of markups.
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We confirm this prediction in the case study of the semiconductor industry.

Lastly, we do not attempt to discuss how markup estimates differ due to the applications (Bond

et al, 2021; De Ridder et al, 2021; and Foster et al, 2022) and methods (Ackerberg et al, 2015; De

Loecker et al, 2016; Gandhi et al, 2020) of estimating production function parameters.7 Following

the popular method in the literature, we estimate industry-specific, time-invariant Cobb-Douglas

production functions. We then show that markups estimated from the conventional production

approach have counterintuitive properties.

The rest of the paper proceeds as follows. In the second section, we derive markups from the

cost minimization problem. In the third section, we discuss the development of data. In the fourth

section, we describe markup estimates. In the fifth section, we examine how the choice of variable

inputs shapes marginal costs and markups. We also show how markup estimates from Japan’s

semiconductor producers responded to the dot-com bubble collapse in 2000. In the last section, we

discuss our conclusions.

2 Deriving Markups

In this section, we theoretically show how markups differ systematically due to the choice of variable

inputs. We follow the literature and use the cost minimization problem to derive markups (Hall,

1988; De Loecker and Warzynski, 2012; and De Loecker et al, 2020). We consider the situation

where a producer is a price-taker in input markets but has market power in a product market. The

assumptions we impose to derive markups are (1) a producer optimizes all variable inputs but does

not change fixed inputs, (2) the sum of output elasticities of variable inputs is constant over time,

(3) producers do not face adjustment costs for variable inputs,8 and (4) the marginal product of

an input is diminishing.

2.1 Production Approach

A producer i at time t uses a production function that converts inputs (qxit) into real output (Qit).

The corresponding input prices (pxit) are strictly positive, exogenous for producers, and producer

7Markup estimates differ substantially due to revenue- or quantity-based estimates on output elasticities (Bond
et al, 2021), functional forms of production functions (De Ridder et al, 2021), and the extent of industry categories
(Foster et al, 2022).

8See, for example, Bils (1987) and Cooper and Haltiwanger (2006) who examine labor and capital adjustment
costs, respectively.
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specific. We use the following production function that can differ across producers and evolve over

time:

Qit = Fit (·) = Ωit
∏

x∈V (qxit)
αx
it
∏

x∈K (qxit)
αx
it (1)

where the output elasticity of an input x is

αx
it =

∂Qit/Qit

∂qxit/q
x
it

. (2)

Here, an input x is either in V , a set of variable inputs, or in K, a set of fixed inputs. And, Ωit

is a Hicks-neutral productivity measure that is a source of producer-level heterogeneity in marginal

cost.9

A producer can freely adjust quantities of variable inputs (qxit where x ∈ V ) at any point in

time without incurring any adjustment costs but cannot change quantities of fixed inputs (qxit where

x ∈ K). Therefore, in the following Lagrangian function, we assume that a producer is able to

optimize variable inputs only (x ∈ V ):

L =
∑

x∈V p
x
itq

x
it +

∑
x∈Kpxitq

x
it + λV

it [Qit − Fit (·)]

where the Lagrangian multiplier (λV
it ) is the marginal cost to produce an exogenous quantity of real

output (Qit).

The assumption we impose on the cost minimization problem above is that (1) producers

optimize all variable inputs; and (2) the sum of output elasticities of variable inputs is constant

over time: ∑
x∈V α

x
it = αV

i

where the output elasticity (αV
i ) increases as the scope of variable inputs widens (V ) by treating

more inputs as variable inputs according to the adjustability of inputs the literature generally

assumes (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al, 2015).

9See Doraszelski and Jaumandreu (2018) and Raval (2023) who allow labor-augmenting productivity. Our theo-
retical predictions are general to labor-augmenting productivity.
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The first-order condition of a variable input is

λV
it =

pxitq
x
it

αx
itQit

. (3)

Using first-order conditions of all variable inputs, we can find the optimal quantities of variable

inputs to produce Qit. Then, we can derive the following formula for marginal cost:

λV
it =

∑
x∈V p

x
itq

x
it

αV
i Qit

. (4)

Finally, we develop markups from the product price (Pit) divided by marginal cost (λV
it ):

µV
it = αV

i

PitQit∑
x∈V p

x
itq

x
it

. (5)

Equation (5) is the production approach of estimating markups from the output elasticity of

the aggregate of variable inputs divided by the ratio of variable input cost to revenue.

2.2 Variable Inputs and Marginal Costs

To understand how marginal costs in markup estimates are associated with the set of variable

inputs, we prepare an alternative expression of marginal cost (e.g., Roeger, 1995):

λV
it ≈ (Ωit)

−1/αV
i (Qit)

1/αV
i −1 pVitq

K
it (6)

where pVit =
∏

x∈V (p
x
it)

αx
it/α

V
i is the weighted average of variable input prices, and qKit =

∏
x∈K (qxit)

−αx
it/α

V
i

is the composite of fixed inputs, which is assumed to be constant over a year.10

Equation (6) is a dual form of equation (1), which shows that marginal cost differs across

producers with productivity, real output, variable input prices, and quantities of fixed inputs.

Marginal cost increases as input prices increase and declines as productivity increases. Conditional

on other variables, marginal cost also varies systematically with output when αV
i ̸= 1. Consider

the following two polar cases: αV
i ≪ 1 when the most flexible inputs (i.e., materials) are the only

variable inputs in the short run, and a production function is decreasing returns to scale in variable

inputs; and αV
i ≫ 1 when all the inputs are variable inputs in the long run, and a production

10We suppress a constant term in equation (6).
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function is increasing returns to scale. In the former case, we have an upward-sloping marginal

cost function with respect to output because 1/αV
i − 1 in equation (6) is positive. As a result,

conditional on other variables, larger producers have higher marginal costs than smaller producers,

and positive demand shocks increase marginal costs. In the latter case, we have a downward-sloping

marginal cost function. Thus, larger producers have lower marginal costs than smaller producers,

and positive demand shocks decrease marginal costs.

Raval (2023) shows that markups from materials, labor, or a composite of both are very different.

While Raval (2023) finds that non-neutral technology can reconcile the differences,11 we examine

if the differences arise because markups are computed over different marginal cost functions. As

a simple example, consider a two-input (materials (Mit) and labor (Lit)) constant returns to scale

Cobb-Douglas production function (αM
i = αL

i = 1/2)12 with exogenous input prices (material price

(pit) and wage (wit)). We follow Raval (2023) and consider markups from materials, labor, or a

composite of both. First, we derive the marginal cost function from the first-order condition of

materials by fixing labor:

λ1
it ≈ (Ωit)

−2QitpitL
−1
it . (7)

Second, we derive the marginal cost function from the first-order condition of labor by fixing

materials:

λ2
it ≈ (Ωit)

−2QitwitM
−1
it . (8)

Lastly, we use the first-order conditions of materials and labor to compute markup. Then, the

marginal cost function is the weighted input prices divided by productivity:

λ3
it ≈ (Ωit)

−1w0.5
it p0.5it . (9)

The marginal cost functions from equations (7), (8), and (9) are very different. When markups

are derived from materials in equation (7) or labor in equation (8), the marginal cost functions are

sensitive to changes in the targeted level of output. Moreover, these estimates depend crucially

on how producers adjust inputs when they experience demand shocks. While equation (8) is

derived under the assumption that materials are fixed inputs, producers actually adjust materials

11When labor and materials are complements, higher labor-augmenting productivity would lower labor’s output
elasticity relative to materials’ output elasticity.

12The parameter setting is an illustrative example, and a similar conjecture holds in general.
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rapidly and labor slowly. The discrepancy between the theoretical assumption and the empirical

observation explains why λ1
it and λ2

it move in opposite directions. To better understand why,

consider the following expressions of marginal costs from equation (3):

λ1
it =

pit

MPM
it

and λ2
it =

wit

MPL
it

where the marginal products of materials and labor are

MPM
it = 0.5Ωit

(
Lit

Mit

)0.5

and MPL
it = 0.5Ωit

(
Mit

Lit

)0.5

.

The marginal cost functions above indicate that λ1
it and λ2

it move in opposite directions through

the inverse association between materials and labor in marginal products. Our findings later in

the paper confirm that facing the collapse of the dot-com bubble in 2000, Japan’s semiconductor

producers reduced materials rapidly and labor slowly. While markups derived from materials

increased by 6.5% from 2000 to 2002, markups derived from labor declined by 11% in the same

period.

Although the assumption that producers are unable to adjust labor is plausible in the short run,

the upward-sloping marginal cost function in equation (7) gives rise to counterintuitive properties

of markup estimates. Consider a case where a producer faces a negative demand shock, and its

product price and the targeted level of output decline simultaneously. In this case, keeping labor

constant, the producer can only decrease materials to cut down production. As a result, the

marginal product of materials increases, and the marginal cost declines. Markups could increase or

decrease depending on the relative magnitude of the fall of product price versus the fall of marginal

cost. Consider another case where a producer gains market power and raises its price by scaling

down output. In this case, the producer’s demand for materials declines, its marginal product of

materials increases, and its marginal cost declines. Therefore, the markup increases more than the

product price increases.
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3 Data

3.1 The Census of Manufacture in Japan

The Census of Manufacture is an annual survey conducted by the Ministry of Economy, Trade

and Industry (METI). The data contain the product prices and physical quantities at the product

level (e.g., Foster et al, 2008; Kugler and Verhoogen, 2012; De Loecker et al, 2016). Without the

data on product-level price and quantity information, we cannot examine how yearly changes in

markups are associated with yearly changes in product prices and marginal costs. Importantly for

the purpose of this paper to study the adjustability of variable inputs, the data cover four types

of intermediate inputs (materials, fuel, electricity, and outsourcing) and two types of factor inputs

(labor and capital). Thus, we can examine the combinations of variable versus fixed inputs.

The data consist of two layers: plant-level and product-level. Plant-level variables, such as

revenues, employment, wage bills, spending on intermediate inputs, and investments, are from the

plant-level data set; and product-level variables, such as shipments and physical quantities (which

give information on unit prices), are from the product-level data set. In the analysis, we use only

the sample that covers all manufacturing plants that have 30 or more employees. We exclude plants

with less than 30 employees because these plants are not required to report the data on tangible

capital assets and investment necessary to compute their capital stock.13 We also drop the top and

bottom 1% of observations for each markup estimate for each year as outliers.

Over the period 1987-2009, we have 987,299 observations at the plant level. On average, we have

around 43,000 plants for each year. The sample size of product-level data that includes information

on prices and quantities, however, is smaller. The information on product is reported in METI’s

six-digit product classification system. There are approximately 2,000 products, of which quantity

information is available for around 800 products. After we merge the product-level data with the

plant-level data, we have 264,740 plant-year observations. The number of plant-year observations

decreases further to 67,125 once we limit the sample to single-product manufacturing plants.14

Table 1 reports the summary statistics of the plant-level data for the years 1987 and 2007. The

13We do not include the resource-intensive industries (tobacco, oil, and coal refinery) and focus on the remaining
49 industries (the industry category defined by the Japan Industry Productivity (JIP) 2015 database).

14The sample size declined substantially because 48% of the sample were single-product establishments, and 14%
reported product quantities. Despite this, the sample of single-product plants almost proportionally covered a wide
range of industries (see Fukao and Ito, 2010).
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data reported in this table do not include product-level information.15 One notable finding in the

table is that while the mean values of log real revenues, log real spending on intermediate inputs,

and log real capital stock increased substantially, the mean value of log labor did not change over

the period. On average, real revenues, real spending on intermediate inputs, and real stock of

capital increased by 44.4%, 31.1%, and 66.9%, respectively.16 The average size of employment,

however, increased only minimally by 5.5%. Our findings may reflect Japanese producers’ practice

of lifetime employment (Hashimoto and Raisian, 1985). Even during the downturn in the 1990s

after the collapse of the real estate bubble economy, Japanese firms were unable to adjust labor

rapidly to changing market conditions (Kambayashi and Kato, 2017).

3.2 Cost Shares

This section uses cost shares to examine the input structure in Japanese manufacturing. The data

contain payments for four types of intermediate inputs (materials, fuel, electricity, and outsourc-

ing)17 and labor.18 Because the data do not report capital stock and capital cost, we develop capital

stock from the perpetual inventory method and estimate capital cost from the opportunity cost

of holding capital as assets (see Appendix I). This ex-ante approach to compute capital cost was

proposed by Jorgenson and Griliches (1967) and has been applied to studies including Caballero

and Lyons (1992), Barkai (2020), and De Loecker et al (2020).

The cost share of an input x in total costs is

csxit =
pxitq

x
it∑

x∈V,Kpxitq
x
it

.

15See Table A3 in the Appendix for the summary statistics of the product-level data.
16There are several potential reasons why the capital-labor ratio surged during the period. First, Japanese manu-

facturing firms over-invested in tangible, reproducible capital during the bubble economy in the late 1980s and the
early 1990s. Second, the Japanese government’s bank bailouts in 1998 and 1999 injected capital into the real economy
(Giannetti and Simonov, 2013). Indeed, while the nominal wage increased by 25%, the capital service price declined
by 28% from 1987 to 2007.

17The data include payments for (1) materials, (2) fuel, (3) electricity and (4) outsourcing. First, the cost of raw
materials represents the total consumption of major raw materials, auxiliary supplies, purchased components and
parts, containers, packing materials, and plant maintenance materials. Second, the cost of fuel includes coal and
petroleum expenses, including private power generation. Third, the cost of electricity represents total payments for
power supply by vendors, excluding private power generation. Lastly, outsourcing represents various payments for
outsourcing and subcontracting. This category includes payments made and accounts payable to subcontractors for
consigned production and processing and payments regarding services such as repair, inspection and maintenance of
production equipment, operation of machinery.

18The value of total wages and salaries is defined as the total amount of basic wages, basic allowances, special
allowances (e.g., year-end bonus) paid to employees among regular and part-time workers, and other allowances. Other
allowances include retirement allowances and discharge allowances for employees, payments to workers dispatched
from other companies, wages for temporary workers, and payments to workers dispatched to other companies.
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Cost shares have important implications for production technologies because cost shares could

approximate output elasticities at the producer level when production functions are constant returns

to scale and producers optimize all inputs. For example, if a producer’s production function is an

industry-level Cobb-Douglas form, then cost shares and output elasticities are common across

producers in an industry. However, if the production function deviates from the form, cost shares

could be different across producers, depending on various factors, including computer investment

and diversification to non-manufacturing activities (Foster et al, 2022).

Table 2 reports the summary statistics of cost shares for the years 1987 and 2007. The mean

value of cost shares of labor declined by 1.5 percentage points over the period from 30.3% in 1987

to 28.8% in 2007. The average cost share of capital increased slightly from 5.3% in 1987 to 5.7%

in 2007, and those of intermediate inputs increased from 64.4% in 1987 to 65.5% in 2007. The

data in Table 2 suggest that Japanese manufacturing used slightly less labor and more capital and

intermediate inputs over the period.

Note that there is a large variation in cost shares across manufacturing plants. For example,

the standard deviation of cost shares of materials was 24.5% in 1987 and 23.5% in 2007. The large

variation in cost shares generally suggests that producers use different production technologies.

The large variation in cost shares of capital also implies that adjustment costs in capital prevent

the efficient allocation of capital across producers (Hsieh and Klenow, 2009; Asker et al, 2013).

4 Markup Estimates

4.1 Empirical Strategy

We use equation (5) and prepare markups using the three sets of variable inputs. First, we as-

sume intermediate inputs are variable inputs to derive markups. This measure is frequently used

because the literature recommends using a first-order condition of the most flexible input to derive

markups.19 Second, we derive markups over marginal costs using intermediate inputs and labor.20

Finally, we assume that all observable inputs, including capital, are variable inputs.

19See Assumption 2 in De Loecker et al (2016, p455). They assume that the production function is continuous
and twice differentiable with respect to at least one static (i.e., freely adjustable or variable) input. De Loecker and
Warzynski (2012) emphasize that using the conditional cost function without fully optimizing all of the inputs can
prevent consideration of the full dynamic problem and impose additional assumptions to derive markups.

20De Loecker et al (2020) prepare a specification that treats labor as a variable input, and De Loecker and Warzynski
(2012) use the first-order condition of labor to derive markups.
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The identification and estimation of production function parameters are challenging for several

reasons. First, Bond et al (2021) show that output elasticity estimates using revenue-based output

data differ greatly from those using quantity-based output data. Second, Foster et al (2022) find

that output elasticities of materials decline with more detailed categories of industries and are

smaller for larger firms with advanced technologies.

Our primary objective is to understand the properties of markups estimated from the con-

ventional production approach. As such, we follow the literature initiated by De Loecker and

Warzynski (2012) and estimate industry-level output elasticities to compute markups. In this case,

we use the output and input deflators and add controls for the joint output and input price term

to estimate output elasticities.21 After estimating output elasticities, we approximate the output

elasticities of the aggregate of variable inputs: αV
i = αM when variable inputs are intermediate

inputs (i.e., materials, fuel, electricity, and outsourcing); αV
i = αM + αL when variable inputs are

intermediate inputs and labor; and αV
i = αM + αL + αK when all inputs (intermediate inputs, la-

bor, and capital) are variable inputs. The industry-level output elasticities of intermediate inputs,

labor, and capital are on average 0.59, 0.36, and 0.08, respectively (see Tabel A2 in the Appendix).

Thus, αV
i increases from 0.59 to 0.95, and 1.04 as the scope of variable inputs widens according to

the adjustability of inputs.

The assumption that all plants in an industry share the same production technology is incon-

sistent with the large variation in cost shares in Table 2. To avoid spurious results from potentially

biased estimates and presumably imprecise assumptions on the output elasticities, we use first-

differenced log markups so that the unobserved plant-specific, time-invariant output elasticity (αV
i )

in equation (5) would be irrelevant:

∆ ln(µV
it ) = ln(µV

it )− ln(µV
i,t−1). (10)

De Loecker (2020) and De Ridder et al (2021) show that measurement errors in output elastic-

ities affect the level of markups but do not severely affect the yearly change in log markups.

21See Appendix II.
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4.2 Markup Trend in Japan’s Manufacturing

Several papers examine markup trends in Japan over the period we study. While Kiyota et al (2009)

find a declining trend in markups, our results suggest that markups were stable or slightly increasing

over the period. Karabarbounis and Neiman (2018) and De Loecker and Eeckhout (2020) show

increasing markup trends in Japan from public firms as a part of their studies on global markup

trends.

Figure 1 illustrates the mean and median values of markups over the period of 1987-2009. Here,

we use markups when intermediate inputs and labor are variable inputs by implicitly assuming

that labor is adjustable in the long run (see the corresponding summary statistics in columns (3)

and (4) in Table 3). The figure shows that markups declined slightly over the burst of the real

estate bubble economy in the early 1990s, then increased in the early 2000s, and declined over

the mid-2000s. Overall, markups were stable in Japan: the mean value of markups was around

1.4, and the median value was around 1.3 throughout the period.22 Thus, we do not find a sharp

rise in markups, as in the United States (De Loecker et al, 2020; Autor et al, 2020), in Japanese

manufacturing.23

4.3 Variable Inputs and Markup Estimates

Table 3 reports the summary statistics of the levels of markup estimates for the years 1987 and

2007. Columns (1) and (2) report markups computed over marginal costs when intermediate inputs

are variable inputs, columns (3) and (4) report markups when intermediate inputs and labor are

variable inputs, and columns (5) and (6) report markups when we treat all observable inputs as

variable inputs. The first row reports the weighted means (i.e., weighted by revenues), and the

remaining rows report the summary statistics of the distributions.

We first discuss the production size implications for markup estimates. When we assume that

intermediate inputs are the only variable inputs and the output elasticities of intermediate inputs

are around 0.59, then industry-specific marginal cost functions would be upward-sloping, and larger

plants in an industry could have higher marginal costs and lower markups.24 If this is the case,

22When we regress log product price with log physical output quantity, we find statistically significant, negative
correlations across different specifications. Thus, our finding that markups are greater than one for most of the plants
is consistent with the demand-side information that plants do not face perfectly elastic residual demand curves.

23The trends of markups, however, are very different across industries. We report the results from the Melitz and
Polanec (2015) decomposition in Appendix III for the entire manufacturing sector and several selected industries.

24The marginal cost function from equation (6) is positively associated with real output and negatively associated
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the weighted mean could be lower than the unweighted mean. Table 3 supports this argument

only if intermediate inputs are treated as variable inputs (the weighted mean is 1.095, and the

unweighted mean is 1.354 in 1987, as in column (1)). When we add labor as variable inputs,

the output elasticities of variable inputs are close to one. Then, as is theoretically shown in

equation (6), marginal cost becomes less sensitive to real output. Consistent with this intuition,

the weighted means are slightly greater than the unweighted means (the weighted mean is 1.436,

and the unweighted mean is 1.369 in 1987, as in columns (3)). When we further add capital as

a variable input, the results do not change primarily because the contribution of capital stock in

output is small.

Figure 2 illustrates the unconditional correlation between markups and log real output in 1997.

We use binned scatter plots and fitted lines to visualize relationships between log real revenue and

markups. Consistent with the theoretical discussions in Section 2 and summary statistics in Section

4, while there is a negative correlation when we treat intermediate inputs as variable inputs, we do

not find such a strong negative correlation when we add labor and then capital as variable inputs.

Raval (2023) illustrates that markups from materials are more dispersed than markups from a

composite of both. Consistent with Raval’s (2023) findings, Table 3 shows that standard deviations

are the largest for markups over marginal costs using intermediate inputs (0.921 in 1987), and

decline as we include labor (0.378 in 1987) and then capital (0.370 in 1987). Consistent with

equation (6), as αV
i declines from unity, the variance of markup estimates increases because that

of marginal costs conditionally increases with real output.

5 The Properties of Markup Estimates

5.1 Price, Marginal Cost, and Markup Dynamics

The results in Table 3 and Figure 2 illustrate how the choice of variable versus fixed inputs could

change markup estimates through underlying marginal cost functions. The results, however, could

depend on the assumption that all plants in an industry share the same production technology.

To avoid spurious results from potentially biased estimates of output elasticities, we next examine

the relationship implied in equations (5) and (6) that relates yearly changes in a plant’s markup to

with fixed inputs. Thus, it is not entirely clear how marginal costs differ across producers due to their size because
large producers tend to use more fixed inputs.
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yearly changes in product price, output quantity, productivity, and variable input price:

∆ ln(µV
it ) = ∆ ln(Pit) +

(
1− 1/αV

i

)
∆ ln(Qit) +

(
1/αV

i

)
∆ ln(Ωit)−∆ ln(pVit ). (11)

There are several reasons why we use log differences and examine yearly changes in markups.

First, we use plant-product matched data and apply product prices and quantities in equation

(11). Because prices and quantities are different across plants even within a narrowly defined

product group due, for example, to product quality (Kugler and Verhoogen, 2012), we use first

differences and focus on changes in prices and quantities. Second, we can only estimate output

elasticities at the industry level. By using yearly changes, we can difference out not only plant-

specific time-invariant components (i.e., the quantities of fixed inputs) but also potentially biased

output elasticity estimates.

We estimate equation (11) for markups estimated from the three sets of variable inputs. As for

the measure of prices and quantities, we have two alternatives. One is to use the product prices

and quantities in product-level data by focusing on plants that produce a single product. The

other is to use the industry deflators. Measures of productivity depend on estimated industry-

level output elasticities and measures of real output. When we use physical quantities, we use a

quantity-based productivity measure. When we use revenues and deflators, we use a revenue-based

productivity measure. Finally, variable input price is the weighted average of variable input prices.

We use the plant-level wage25 and the industry-level deflators with the weights from estimated

output elasticities and cost shares. For example, when we derive the variable input price from

intermediate inputs and labor, it is the weighted average of the industry-level input deflator for

intermediate inputs (the weighted average of prices for materials, fuel, electricity, and outsourcing)

and plant-level wage. Table A3 in the Appendix reports the summary statistics of the variables we

use to estimate equation (11).

Table 4 reports the results. Columns (1) to (3) report the results when we use product-level

prices and quantities from single-product plants, and columns (4) to (6) report the results when we

use industry-level deflators. Over the period 1987-2009, we have 57,325 first-differenced observations

from the single-product plants and 870,935 first-differenced observations of the entire sample of

plants. We use the ordinary least squared (OLS) specification using the first differences for all

25The plant-level wage is normalized by the base-year (2000) aggregate value of wage.
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variables. In all of the equations, the coefficients of the log of price are positive, statistically

significant, and close to one for both the product- and industry-level measures of prices. The

coefficients on log variable input price are negative, statistically significant, and close to negative

one for both the product- and industry-level measures of prices.26 The results indicate that changes

in markup estimates from the production approach precisely capture changes in output and variable

input prices. The coefficients on output and variable input prices are slightly weaker in magnitude,

around less than 0.8 when we use industry-level deflators.

According to equation (11), the coefficients on changes in log real output should reflect the

output elasticities in the aggregate of variable inputs: 1 − 1/αV
i . On average, αV

i is around 0.59

when intermediate inputs are the only variable inputs, αV
i is around 0.95 when intermediate inputs

and labor are variable inputs, and αV
i is around 1.04 when all inputs are variable inputs. From

column (1) to column (3) in Table 4, the estimated coefficient on changes in physical quantities

is -0.45, -0.07, and -0.014, respectively. These are close to the theoretically predicted average

coefficients from 1 − 1/αV
i : -0.67, -0.05, and 0.04, respectively.27 The coefficient on real output is

a large, negative value when the output elasticity is sufficiently less than one, and the production

function is decreasing returns to scale in variable inputs. Furthermore, it becomes less sensitive to

the change in real output when the output elasticity is closer to one by including labor, then capital.

The coefficient on changes in log productivity should also reflect the output elasticity: 1/αV
i .

Consistently, the estimated coefficient declines as the scope of variable inputs widens. Overall,

markups derived from the production approach are consistent with the theoretical predictions. The

estimates, however, are sensitive to the handling of variable versus fixed inputs because returns to

scale in variable inputs and underlying marginal cost functions differ according to the scope of

variable inputs.

Table 5 reports the results when we estimate equation (11) in levels with industry fixed effects.

The results are consistent with those reported in Table 4 with relatively smaller coefficients on all

the variables. We suspect that there are several reasons why estimated coefficients are smaller with

log markups. In particular, the implicit assumption that fixed inputs are fixed over the period

could be responsible for this tendency because producers adjust labor and capital in the long run.

26Our estimates are less than one on output and input prices across all specifications. This could be attenuation
bias due to measurement errors.

27For example, 1− 1/αV
i = 1− 1/0.59 = −0.67.
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5.2 Demand Shock Analysis

In the previous section, we provided correlational evidence that, conditional on the assumption

that fixed inputs are truly fixed, markup estimates from the production approach are positively

associated with product prices and negatively associated with marginal costs. To show that markup

estimates with a different set of variable inputs respond differently to exogenous shocks, we examine

the Japanese semiconductor industry over the dot-com bubble collapse in 2000.28 The information

technology and telecommunications industries grew rapidly in the 1990s due to the massive adoption

of personal computers and the Internet. Between 1995 and 2000, the Nasdaq index rose by more

than fivefold; however, by 2002, it declined substantially, erasing all its gains during the bubble.

The dot-com bubble collapse in the United States was an unexpected, negative shock to Japan’s

semiconductor industry. For example, Gartner Group reported on October 9, 2000, that worldwide

semiconductor sales would show double-digit growth in the next three years as manufacturers

found places for them in a variety of devices other than personal computers (The Associated

Press). Despite the optimism from industry analysts, the dot-com bubble collapse substantially

impacted the semiconductor industry. Figure 3 uses the balanced sample of 591 establishments

in the semiconductor industry over the period from 1998 to 2003 and illustrates that, on average,

real semiconductor sales declined by 27% from 2000 to 2002. Consistent with the discussions

in Ackerberg et al (2015), Figure 3 illustrates that the Japanese manufacturers adjusted materials

rapidly and labor slowly. Table 6 reports the changes in all inputs from 2000 to 2002. The spending

on materials declined significantly by 35%, whereas labor declined by 15% and capital stock declined

by 17%. And, somewhat surprisingly, spending on fuels and electricity declined minimally by 12%

and 10%, respectively.29 Semiconductor manufacturers responded to the negative shock by reducing

all inputs.30

Intuitively, the dot-com bubble collapse should have reduced markups because of the decline

in semiconductor demand. Indeed, the average price of semiconductors declined over the period.31

28See Syverson (2004) and Collard-Wexler (2013) who use a case study of the U.S. concrete industry to study
the empirical association between demand and competition. The semiconductor industry is a representative case of
Japanese manufacturing in terms of output elasticities. The output elasticities of intermediate inputs, labor, and
capital are 0.53, 0.39, and 0.08, respectively.

29This is probably because semiconductor producers are required to maintain, for example, energy-intensive clean-
rooms regardless of output volume.

30To show that the dot-com bubble collapse did not impact other manufacturing industries, we report the results
from the automobile industry in Figures A1 and A2 in the Appendix.

31The semiconductor prices have declined constantly over a long period of time primarily because of advancements
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Figure 4, however, illustrates that markups derived from intermediate inputs increased by 5.9%

from 2000 to 2002. The findings from the semiconductor industry are consistent with our theo-

retical predictions. When we use a narrow scope of variable inputs, and the output elasticity of

variable inputs is substantially less than one, a negative demand shock leads to an increase in the

marginal product of materials, which reduces marginal costs and increases markups. We do not

find a similar trend when we use intermediate inputs and labor as variable inputs: on average, the

markup estimates decreased by 1.1% from 2000 to 2002. Although the literature recommends com-

puting markups from the most flexible intermediate inputs, the cyclical movement of marginal costs

makes the interpretation of the markup trend difficult when we follow the production approach and

compute markups from the most flexible intermediate inputs.

We theoretically showed that, when producers adjust materials rapidly and labor slowly, the

marginal products of labor and materials move in opposite directions; hence, so do labor markups

and material markups. Figure 4 confirms that markup estimates from labor declined substantially

by 11% from 2000 to 2002. We find similar trends in markups derived from sub-categories of

intermediate inputs.32 When we use the most inflexible energy (fuels and electricity) to derive

markups, energy markups declined by 17.1%. When we use the most flexible materials to derive

markups, material markups increased by 6.5%. The movements of markups depend crucially on

how variable inputs are theoretically defined to derive markups.

To highlight the movement of marginal cost from labor and that of materials, Figure 5 reports

the log difference between markups from intermediate inputs and labor and those from intermediate

inputs,

∆ ln(µML
it )−∆ ln(µM

it ) = ln(λM
it /λ

ML
it ), (12)

and, the log difference between markups from intermediate inputs and labor and those from labor,

∆ ln(µML
it )−∆ ln(µL

it) = ln(λL
it/λ

ML
it ). (13)

By making the log difference between two measures of markups, we can difference out plant-

in production technologies.
32The output elasticities are computed from the estimated output elasticity of intermediate inputs and cost shares

within intermediate inputs.
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specific product prices and focus on the relative changes in marginal costs. Figure 5 illustrates that

relative markups from equations (12) and (13) move in opposite directions. The positive demand

shock in 2000 increased marginal costs from intermediate inputs relative to those from intermediate

inputs and labor, and the negative demand shock in 2001 and 2002 decreased marginal costs from

intermediate inputs relative to those from intermediate inputs and labor. Importantly, the positive

demand shock in 2000 decreased marginal costs from labor relative to those from intermediate

inputs and labor, and the negative demand shock in 2001 and 2002 decreased marginal costs from

labor relative to those from intermediate inputs and labor. Thus, while markup estimates from the

production approach are consistent with theoretically derived marginal cost functions, changes in

marginal costs depend crucially on how producers actually adjust inputs.

5.3 Markups and Market Shares

The standard imperfect competition models generally predict that a producer’s market share and its

markup are positively associated. This theoretical linkage is important to understand because, for

instance, the literature emphasizes that increases in superstars’ market shares are key to explaining

the rise of aggregate markups in the United States (De Loecker et al, 2020; Autor et al, 2020).

As such, this section examines the empirical associations between markup estimates and market

shares.

Table 7 reports the results. Columns (1) through (3) report the results when we define each

of industries as a market, and columns (4) through (6) report the results when we define each

of industry-prefecture pairs as a market.33 If the market competition models mentioned above

shape market shares, we should expect that market shares and markups are positively associated.

The results reported in columns (1) and (4), however, show that markups and market shares are

negatively associated when intermediate inputs are variable inputs. The results reported in columns

(2) and (5) indicate that markups and market shares are positively associated when intermediate

inputs and labor are variable inputs. We also find positive correlations when capital is additionally

included in the set of variable inputs. Not surprisingly, the results imply that aggregation could be

sensitive to how variable inputs are selected and how marginal costs are derived because marginal

33Admittedly, our definition of a market (the industry or industry × prefecture segment) is not perfect because
the market definition is fixed over time. Nonetheless, we can show the systematic results according to the handling
of variable inputs.
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costs are positively associated with real output when the output elasticities of the aggregate of

variable inputs are substantially less than one.

6 Conclusion

The production approach enables us to derive output price to marginal cost markups at the product,

plant, or firm level. This methodological revolution allows us to study the impacts of the rising

market power of individual producers on aggregate outcomes. Using plant-product matched data

from Japanese manufacturing surveys, we examined how markups differ by the adjustability of

variable inputs and showed that yearly changes in markups from the production approach precisely

capture yearly changes in product prices and marginal costs. The properties and distributions of

markups, however, are sensitive to how variable and fixed inputs are theoretically defined to derive

underlying marginal cost functions. In particular, marginal costs in markup estimates are positively

associated with output when only the most flexible intermediate inputs are selected as variable

inputs, which gives rise to counterintuitive properties of markup estimates against standard models

of imperfect competition. Applied researchers should recognize markups computed over different

marginal costs, examine how producers actually adjust variable and fixed inputs, and establish

robustness using relevant sets of variable inputs to compute markups.
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Appendix

I. Capital Costs

Consider that Kit is the quantity of capital stock that plant i owns in year t, and rt is its corre-

sponding price for the capital stock. We also introduce the following notation: Iit is the quantity

of the investment good newly acquired to produce good i in time t, and pt is the corresponding

price of the investment good. Following the perpetual inventory method, the accumulated stock of

past investments has the following property:

Kit = (1− δ)Ki,t−1 + Iit (14)

where δ is the depreciation rate of the investment good.

We have the accounting value of tangible assets from (1) non-residential buildings and structures;

(2) machinery and equipment; and (3) transport equipment at the plant level. We also have

investment values from these three distinct tangible assets. To obtain capital stock at the plant

level, we first use the perpetual inventory method and develop total capital stock from the real

investment values. We then allocate total capital stock to each plant by its share of the accounting

value of tangible assets. This value is used only for the year when the plant first appears in the

data. Second, we take the plant-level first-year value of capital stock and real investment values.

We then apply equation (14) to obtain capital stock after the first year.

Total capital stock value at any point in time is around 40-45% of the corresponding capital

stock in the Japan Industry Productivity (JIP) database 2015. There are several reasons why

our capital stock is smaller. First, our sample is limited to include only plants with more than

30 employees, and we drop the three industries (tobacco, oil refinery, and coal refinery). Second,

the JIP database covers a broader set of assets including some intangible assets. Although our

estimates do not perfectly match the JIP database, we have an aggregate trend that is similar to

the JIP database.

Next, we follow Jorgenson and Griliches (1967) and compute capital costs from the opportunity

costs of holding the capital stock:

rtKit = ptKit (it −∆pt/pt + δ) (15)
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where it is the risk-free interest rate (i.e., the government bond rate derived from the International

Financial Statistics of the International Monetary Fund), and ∆pt/pt is the rate of capital gain or

loss on the capital stock.

Equation (15) should capture the opportunity cost of holding versus investing capital stock as

an asset. If a plant does not use its capital stock, the plant can sell it at the current market price,

invest it in a risk-free asset, and collect interest payments, but lose an opportunity to gain from

the potential appreciation of the capital asset. In addition, the producer can avoid losing capital

asset value from physical depreciation. Because the data do not contain detailed data on debts and

borrowings at the plant level, we are not able to develop Hall and Jorgenson’s (1967) measure of

capital costs that take account of debt and equity financing and business income tax.

II. Estimating Output Elasticities

To obtain output elasticities, we estimate production functions at the industry level. Here, we

assume the Cobb-Douglas production function that does not restrict returns to scale:

Qit = Ωit (Mit)
αM

(Lit)
αL

(Kit)
αK

(16)

where we aggregate inputs into the three categories: intermediate inputs (Mit),
34 labor (Lit), and

capital (Kit).

We follow an approach proposed by De Loecker et al (2016) and obtain the output elasticities

of inputs and the unobserved input price bias parameter for the 49 manufacturing industries. De

Loecker et al (2016) control for input price variations across plants using the information on plant-

level output prices because producers of more expensive products use more expensive inputs (Kugler

and Verhoogen, 2012). Since our sample declines substantially when we use the direct measure of

output prices, we follow their intuition and approximate unobserved input price biases by market

shares.

To estimate the production function at the industry level, we use the timing assumption in

Ackerberg et al (2015) that firms need more time to optimize labor and install capital than to

purchase intermediate inputs. It follows from this timing assumption that a plant’s demand for

34The real spending on intermediate inputs is constructed from the four types of deflators from the JIP database
(Fukao et al, 2007). For example, spending on electricity is deflated by output price deflator of electricity production.
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intermediate inputs depends on its productivity and the predetermined amounts of labor and the

current stock of capital.35 We also follow De Loecker et al (2016) and handle unobserved input

price biases with log domestic market share (sit):

mit = ht (ωit, lit, kit, sit)

where lower-case variables represent the logged values (e.g., lit = ln(Lit)).

Following Ackerberg et al (2015), we assume the equation above can be inverted with produc-

tivity:

ωit = h−1
t (mit, lit, kit, sit) .

We then approximate qit with the second-order polynomial function of the three inputs and

interact it with the variable for input price biases:

qit ≈ Φt (mit, lit, kit, sit) + ϵit. (17)

Next, we obtain the predicted value of equation (17), Φ̂t, and compute the corresponding value

of productivity for any combination of parameters Ω. We need to estimate not only a constant

term and the output elasticities of the three inputs (αM , αL and αK), but also the unobserved

input price bias parameter, the interaction of the market share sit with mit (β). This enables us

to express the log of productivity as follows:

ω̄it(Ω) = Φ̂t −
(
cj + ᾱMmit + ᾱLlit + ᾱKkit + β̄sitmit

)
.

Our generalized method of moments (GMM) procedure assumes that plant-level innovations to

productivity, ζit(Ω), do not correlate with the predetermined choices of inputs. To recover ζit(Ω),

we assume that productivity for any set of parameters, ω̄it(Ω), follows a first order Markov process.

Thus, we can approximate the productivity process with the following function:

ω̄it(Ω) = γ0 + γ1ω̄i,t−1(Ω).

35Gandhi at al (2020) argue that identifying the flexible input’s output elasticity from the condition is difficult
because it is not entirely clear if flexible input demand is high because of the high productivity or the high output
elasticity.
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From the equation above, we can recover the innovation to productivity, ζit(Ω), for a given set

of parameters. Since the productivity term, ω̄it(Ω), can be correlated with the current choices of

variable inputs, lit and mit, but it is not correlated with the fixed input, kit, the innovation to

productivity, ζit(Ω), will not be correlated with Yit = {kit, li,t−1, mi,t−1, and si,t−1mi,t−1}. Thus,

we use the following moment condition:

E [ζit(Ω)Yit] = 0 (18)

and search for the optimal combination of the parameters by minimizing the sum of the moments

(and driving it as close as possible to zero) using the standard weighting procedure for plausible

values of Ω.

Table A2 reports output elasticity estimates. The output elasticities of intermediate inputs,

labor, and capital are on average 0.59, 0.36, and 0.08, respectively. These estimates match closely

with the cost shares reported in Table 2.

III. The Melitz-Polanec Decomposition

The findings from the United States (i.e., De Loecker et al, 2020; Autor et al, 2020) suggest that

the increasing market shares of superstar firms are responsible for the rise of aggregate markups.

During Japan’s lost decades after the burst of the bubble economy in 1991, however, such com-

petitive selection did not occur in Japanese manufacturing. Caballero et al (2008) argue that the

widespread practice of Japanese banks’ continued lending on nonperforming loans in the 1990s kept

unproductive firms alive and distorted competition.

To better understand the trend of markups over the period we consider, we follow Melitz and

Polanec (2015) and decompose the 1987-2007 change in the weighted markup from the entire sample

(∆µV ) into the between and within effects, and also include the exit and entry effects:

∆µV = ∆covs +∆µ̄V
s + wx,87(µ

V
s,87 − µV

x,87) + we,07(µ
V
e,07 − µV

s,07) (19)

where ∆covs is the change in the covariance between markup (µV
it ) and the revenue share (wit) in

the survivor sample, ∆µ̄V
s is the change in the mean of plant-level markups across survivors, wxt

(wet) is the aggregate revenue share of the exiters (the entrants) in the full sample in year t, and
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µV
xt, µ

V
et, and µV

st are the weighted mean markups of the exiters, the entrants, and the survivors,

respectively.

The between effect (∆covs) is the change in the covariance, and a higher positive value indicates

that survivors with higher markups gain higher market shares. The within effect (∆µ̄V
s ) is the

change in the mean markups for survivors. The exit effect is the difference between the weighted

mean markups of survivors versus exiters in 1987; and, the entry effect is the difference between

the weighted mean markups of entrants versus survivors in 2007.

Table A4 reports the results from markups when intermediate inputs and labor are variable

inputs. Since the mean and covariance are sensitive to outlier values, we drop the top and bottom

additional one percent of the markup distributions for each year. Thus, the aggregate change

reported in columns (4) and (6) in Table 3 does not perfectly match the change in Table A4. In the

first row of the table, the left-hand side variable, the change in the weighted markup from the full

sample of plants over the period of 1987 to 2007 declined by 0.7 percentage points. The aggregate

markup was depressed by the between effect (i.e., a 3.5 percentage point decline), caused by the

markets allocated to plants with lower values of markups. The within effect and the entry of new

plants contributed to a 0.8 percentage point and a 1.7 percentage point increase, respectively.

The second to fifth rows in Table A4 report the results when we examine the weighted markups

at the industry level. The markup in the automobile industry increased by 2.4 percentage points,

and the exit of low markup plants contributed to the increase. The markup in the textile industry

increased by 8.4 percentage points, and the between effect contributed the most. The markup in

the communication equipment industry decreased by 9.2 percentage points, and the exit of high

markup plants was responsible for the decline.

25



References

[1] Ackerberg, D., K. Caves, and G. Frazer, “Identification Properties of Recent Production Func-

tion Estimators,” Econometrica, 83, 2411-2451, 2015.

[2] Asker, J., A. Collard-Wexler, and J. De Loecker, “Dynamic Inputs and Resource

(Mis)Allocation,” Journal of Political Economy, 122(5), 1013-1063, 2014.

[3] Atkeson, A, and A. Burstein, “Pricing-to-Market, Trade Costs, and International Relative

Prices,” American Economic Review, 98(5), 1998-2031, 2008.

[4] Autor, D., D. Dorn, L.F. Katz, C. Patterson, and J. Van Reenen, “The Fall of the Labor Share

and the Rise of Superstar Firms,” Quarterly Journal of Economics, 135(2), 645-709, 2020.

[5] Barkai, S., “Declining Labor and Capital Shares,” Journal of Finance, 75(5), 2421-2463, 2020.

[6] Basu, S., “Are Price-Cost Markups Rising in the United States? A Discussion of the Evidence,”

Journal of Economic Perspectives, 33(3), 3-22, 2019.

[7] Bils, M., “The Cyclical Behavior of Marginal Cost and Price,” American Economic Review,

77(5), 838-855, 1987.

[8] Bond, S., A. Hashemi, G. Kaplan, and P. Zoch, “Some Unpleasant Markup Arithmetic: Pro-

duction Function Elasticities and their Estimation from Production Data,” Journal of Mone-

tary Economics, 121, 1-14, 2021.

[9] Caballero, R.J., T. Hoshi, and A.K. Kashyap, “Zombie Lending and Depressed Restructuring

in Japan,” American Economic Review, 98(5), 1943-77, 2008.

[10] Caballero, R.J., and R.K. Lyons, “External Effects in U.S. Procyclical Productivity,” Journal

of Monetary Economics, 29, 209-225, 1992.

[11] Collard-Wexler, A., “Demand Fluctuations in the Ready-mix Concrete Industry,” Economet-

rica, 81(3), 1003-1037, 2013.

[12] Cooper, R.W., and J.C. Haltiwanger, “On the Nature of Capital Adjustment Costs,” Review

of Economic Studies, 73(3), 611-633, 2006.

26



[13] De Loecker, J., “Comment on (Un)pleasant ... by Bond et al (2020),” mimeo, 2020.

[14] De Loecker, J. and J. Eeckhout, “Global Market Power,” NBER Working Paper #24768, 2020.

[15] De Loecker, J., J. Eeckhout, and G. Unger, “The Rise of Market Power and the Macroeconomic

Implications,” Quarterly Journal of Economics, 135(2), 561-644, 2020.

[16] De Loecker, J., P.K. Goldberg, A.K. Khandelwal, and N. Pavcnik, “Prices, Markups, and

Trade Reform,” Econometrica, 84(2), 445-510, 2016.

[17] De Loecker, J., and F. Warzynski, “Markups and Firm-Level Export Status,” American Eco-

nomic Review, 102(6), 2437-2471, 2012.

[18] De Ridder, M., B. Grassi, and G. Morzenti, “The Hitchhiker’s Guide to Markup Estimation,”

mimeo, 2021.

[19] Diewert, W.E., and K.J. Fox, “On the Estimation of Returns to Scale, Technical Progress and

Monopolistic Markups,” Journal of Econometrics, 145, 174-193, 2008.

[20] Doraszelski, U., and J. Jaumandreu, “Measuring the Bias of Technological Change,” Journal

of Political Economy, 126(3), 1027-1084, 2018.

[21] Feenstra, R.C., and D.E. Weinstein, “Globalization, Markups and US Welfare,” Journal of

Political Economy, 125(4), 1040-74, 2017.

[22] Foster, L.S., J.C. Haltiwanger, and C.J. Krizan, “Aggregate Productivity Growth: Lessons

from Microeconomic Evidence,” in “New Developments in Productivity Analysis,” University

of Chicago Press, 303-372, 2001.

[23] Foster, L.S., J.C. Haltiwanger, and C. Tuttle, “Rising Markups or Changing Technology?”

NBER Working Paper 30491, 2022.

[24] Foster, L., J.C. Haltiwanger, and C. Syverson, “Reallocation, Firm Turnover, and Efficiency:

Selection on Productivity or Profitability?” American Economic Review, 98(1), 394-425, 2008.

[25] Fukao, K., S. Hamagata, T. Inui, K. Ito, H.N. Kwon, T. Makino, T. Miyagawa, Y. Nakanishi,

and J. Tokui, “Estimation Procedures and TFP Analysis of the JIP Database 2006,” RIETI

Discussion Paper Series 07-E-003, 2007.

27



[26] Fukao, K., and K. Ito, “Output Quality, Skill Intensity, and Factor Contents of Trade: An

Empirical Analysis Based on Microdata of the Census of Manufactures,” RIETI Discussion

Paper Series 10-E-028, 2010.

[27] Gandhi, A., S. Navarro, and D.A. Rivers, “On the Identification of Gross Output Production

Functions,” Journal of Political Economy, 128(8), 2973-3016, 2020.

[28] Giannetti, M., and A. Simonov, “On the Real Effects of Bank Bailouts: Micro Evidence from

Japan,” American Economic Journal: Macroeconomics, 5(1), 135-167, 2013.

[29] Hall, R.E., “The Relation between Price and Marginal Cost in U.S. Industry,” Journal of

Political Economy, 96(5), 921-47, 1988.

[30] Hall, R.E., and D.W. Jorgenson, “Tax Policy and Investment Behavior,” American Economic

Review, 57(3), 391-414, 1967.

[31] Hashimoto, M., and J. Raisian, “Employment Tenure and Earnings Profiles in Japan and the

United States,” American Economic Review, 75(4), 721-735, 1985.

[32] Hopenhayn, H.A., “Entry, Exit, and firm Dynamics in Long Run Equilibrium,” Econometrica,

60(5), 1127-1150, 1992.

[33] Hsieh, C.T., and P.J. Klenow, “Misallocation and Manufacturing TFP in China and India,”

Quarterly Journal of Economics, 124(4), 1403-1448, 2009.

[34] Jorgenson, D.W, and Z. Griliches, “The Explanation of Productivity Change,” Review of

Economic Studies, 34(3), 249-283, 1967.

[35] Kambayashi, R., and T. Kato, “Long-Term Employment and Job Security over the Past 25

Years: A Comparative Study of Japan and the United States,” Industrial Labor Relations

Review, 70(2): 359-394, 2017.

[36] Karabarbounis, L., and B. Neiman, “Accounting for Factorless Income,” NBERWorking Paper

#24404, 2018.

[37] Kiyota, K., T. Nakajima, and K.G. Nishimura, “Measurement of the Market Power of Firms:

the Japanese Case in the 1990s,” Industrial and Corporate Change, 18(3), 381-414, 2009.

28



[38] Kugler M., and E. Verhoogen, “Prices, Plant Size, and Product Quality,” Review of Economic

Studies, 79(1), 307-339, 2012.

[39] Levinsohn, J. and A. Petrin, “Estimating Production Functions Using Inputs tobControl for

Unobservables,” Review of Economic Studies, 70(2), 317-342, 2003.

[40] Melitz, M.J., and S. Polanec, “Dynamic Olley-Pakes Productivity Decomposition with Entry

and Exit,” RAND Journal of Economics, 46(2), 362-375, 2015.

[41] Olley, G.S., and A. Pakes, “The Dynamics of Productivity in the Telecommunications Equip-

ment Industry,” Econometrica, 64(6), 1263-1297, 1996.

[42] Raval, D., “Testing the Production Approach to Markup Estimation,” Review of Economic

Studies, 2023.

[43] Roeger, W., “Can Imperfect Competition Explain the Difference between Primal and Dual

Productivity Measures? Estimates for U.S. Manufacturing,” Journal of Political Economy,

103(2), 316-30, 1995.

[44] Syverson, C., “Market Structure and Productivity: A Concrete Example,” Journal of Political

Economy, 112(6), 1181-1222, 2004.

[45] Syverson, C., “Macroeconomics and Market Power,” Journal of Economic Perspectives, 33(3),

23-43, 2019.

[46] Traina, J., “Is Aggregate Market Power Increasing? Production Trends Using Financial State-

ments,” University of Chicago Booth School of Business Stigler Center for the Study of the

Economy and the State Working Paper #17, 2018.

29



30 

 

Figures and Tables 

 

 

 

Table 1. Summary statistics 

 

Notes: (1) We have 44,817 observations in 1987 and 39,641 observations in 2007. (2) See Appendix I for the 

development strategy of real capital stock. (3) The unit is billion Japanese Yen in 2000 for real revenues, real 

spending on intermediates, and real capital stock. 

 

 

 

 

Table 2. Cost shares of six types of inputs 

 

Notes: We use Jorgenson and Griliches (1967) to compute capital cost. See Appendix I. 

 

 

 

  

Mean s.d.

1987 2007 Δ 1987 2007 Δ

(1) (2) (3) (4) (5) (6)

log real revenue 11.625 12.068 0.444 1.317 1.338 0.021

log real spending on intermediates 10.936 11.247 0.311 1.577 1.572 -0.005

log labor 4.374 4.429 0.055 0.803 0.815 0.012

log real capital stock 10.200 10.869 0.669 1.598 1.679 0.081

Mean s.d.

1987 2007 1987 2007

(1) (2) (3) (4)

Intermediate inputs (M)

   Materials 0.499 0.515 0.245 0.235

   Fuels 0.012 0.015 0.022 0.031

   Electricity 0.022 0.023 0.030 0.027

   Outsourcing 0.110 0.102 0.140 0.141

Factor inputs

   Labor (L) 0.303 0.288 0.185 0.173

   Capital (K) 0.053 0.057 0.050 0.056
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Figure 1. Mean and median markups in Japan’s manufacturing 

 

Notes: (1) We use intermediate inputs and labor as variable inputs to compute markups. See equation (5) for the 

definition of markups. (2) We drop the top and bottom 1% of yearly observations as outliers. 

 

 

 

Table 3. Variable inputs and markup estimates 

 

Notes: (1) See equation (5) for the definition of markups. (2) We use plant-level revenues as a weight to 

compute the weighted means. (3) We drop the top and bottom 1% of yearly observations for each markup 

measure as outliers. 

 

 

Variable inputs: Intermediates (M) M and labor (L) M, L and capital (K)

1987 2007 1987 2007 1987 2007

(1) (2) (3) (4) (5) (6)

Weighted mean 1.095 1.028 1.436 1.435 1.473 1.474

Distribution

    Mean 1.354 1.357 1.369 1.408 1.395 1.426

    s.d. 0.921 0.931 0.378 0.440 0.370 0.421

    Percentile

      10th 0.708 0.705 1.021 1.007 1.055 1.040

      25th 0.862 0.863 1.128 1.137 1.162 1.170

      50th 1.095 1.105 1.275 1.302 1.305 1.328

      75th 1.515 1.528 1.497 1.552 1.524 1.567

      90th 2.970 2.870 2.122 2.259 2.110 2.244
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Figure 2. Plant size and three types of markups 

 

Notes: (1) We use binned scatterplots and fitted lines to visualize associations between log (real output) and 

markups in 1997. Here, real output is computed from the revenue divided by the industry-level output deflator. 

(2) See Tables 4 and 5 for conditional correlations between these two variables. 

 

 

 

 

Table 4. The determinants of the yearly changes in markups 

 

Notes: (1) We use the single-product plant data for the first panel (columns (1)-(3)) and the entire sample for 

the second panel (columns (4)-(6)). (2) Output price, real output, and TFP are based on product-level prices and 

quantities for the first panel, and they are computed from industry-level deflators for the second panel. (3) 

Standard errors that are clustered at the industry level are reported in parentheses. ***, **, and * indicate 

statistical significance at the 1%, 5%, and 10% confidence level, respectively. 

 

Dependent variable: Δln(markup)

Price and quantity data: Product-level price Industry price deflator

Variable inputs: M M and L M, L and K M M and L M, L and K

(1) (2) (3) (4) (5) (6)

0.928*** 0.912*** 0.927*** 0.942*** 0.762*** 0.794***

(0.010) (0.010) (0.010) (0.017) (0.039) (0.036)

-0.450*** -0.070*** -0.014 -0.459*** -0.001 0.049***

(0.025) (0.018) (0.018) (0.022) (0.014) (0.013)

1.378*** 0.989*** 0.941*** 1.404*** 0.861*** 0.820***

(0.026) (0.021) (0.019) (0.026) (0.027) (0.024)

-0.830*** -0.891*** -0.900*** -0.813*** -0.698*** -0.717***

(0.022) (0.033) (0.030) (0.017) (0.043) (0.043)

Observations 57,325 57,325 57,325 870,935 870,935 870,935

R-squared 0.827 0.891 0.898 0.825 0.825 0.835

Δln(output price)

Δln(variable input price)

Δln(TFP)

Δln(real output)
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Table 5. The determinants of log markups 

 

Notes: See Table 4. 

 

 

 

 

Figure 3. Input adjustments over the dot-com bubble collapse 

 

Notes: (1) We use 591 establishments in the semiconductor industry. (2) The variables are normalized to zero in 

1999 at the establishment level. We report the means within the industry. 

 

 

Dependent variable: ln(markup)

Price and quantity data: Product-level price Industry price deflator

Variable inputs: M M and L M, L and K M M and L M, L and K

(1) (2) (3) (4) (5) (6)

0.717*** 0.784*** 0.796*** 1.024*** 0.584*** 0.606***

(0.068) (0.035) (0.035) (0.046) (0.034) (0.036)

-0.171*** 0.001 -0.004 -0.202*** 0.007 0.007

(0.018) (0.006) (0.005) (0.021) (0.005) (0.004)

0.876*** 0.774*** 0.793*** 1.086*** 0.659*** 0.661***

(0.047) (0.033) (0.031) (0.017) (0.028) (0.026)

-0.769*** -0.714*** -0.727*** -1.019*** -0.301*** -0.313***

(0.050) (0.072) (0.075) (0.112) (0.056) (0.056)

Industry-fixed effects Yes Yes Yes Yes Yes Yes

Observations 67,125 67,125 67,125 987,299 987,299 987,299

R-squared 0.567 0.778 0.807 0.694 0.674 0.714

ln(output price)

ln(real output)

ln(TFP)

ln(variable input price)
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Table 6. Input adjustments over the dot-com bubble collapse 

 

Notes: (1) We use 591 establishments in the semiconductor industry. (2) All variables are expressed in 

logarithms. (3) See Figure 2 for the long-run adjustments for selected inputs. 

 

 

 

 

 

 

 

 

Figure 4. Changes in markups in the semiconductor industry over the dot-com bubble 

 

Notes: (1) We use 591 establishments in the semiconductor industry. (2) The variables are logs of markups 

normalized to zero in 1999 at the establishment level. We report the means within the industry. 

 

 

 

Mean

2000 2002 Δ

(1) (2) (3)

Intermediate inputs (M) 11.501 11.172 -0.329

   Materials 10.793 10.441 -0.352

   Fuels 6.194 6.071 -0.116

   Electricity 8.411 8.309 -0.098

   Outsourcing 9.799 9.368 -0.490

Factor inputs

   Labor (L) 5.081 4.933 -0.149

   Capital (K) 10.978 10.808 -0.169
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Figure 5. Changes in marginal costs in the semiconductor industry over the dot-com bubble 

 

Notes: (1) We use 591 establishments in the semiconductor industry. (2) The variable is log of markup using 

material (labor) as a variable input subtracted by log of markup using material and labor as variable inputs. The 

variables are normalized to zero in 1999 at the establishment level. We report the means within the industry. 

 

 

 

Table 7. Markups and market shares 

 

Notes: (1) We define the sum of shipments in each industry as a market in the first panel (columns (1)-(3)) and 

the sum of shipments in each industry in a prefecture as a market in the second panel (columns (4)-(6)). (2) 

Standard errors that are clustered at the industry level are reported in parentheses. ***, **, and * indicate 

statistical significance at the 1%, 5%, and 10% confidence level, respectively. 

 

  

Dependent variable: ln(market share)

Market definition: Industry-level markets Industry × prefecture markets

Variable inputs: M M and L M, L and K M M and L M, L and K

(1) (2) (3) (4) (5) (6)

-0.975*** 0.579*** 0.648*** -0.758*** 0.602*** 0.621***

(0.060) (0.087) (0.081) (0.044) (0.055) (0.048)

Control variables

    Industry fixed effects Yes Yes Yes Yes Yes Yes

    Prefecture fixed effects Yes Yes Yes Yes Yes Yes

    Year fixed effects Yes Yes Yes Yes Yes Yes

Observations 987,299 987,299 987,299 987,299 987,299 987,299

R-squared 0.407 0.324 0.326 0.256 0.223 0.223

ln(markup)
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Appendix 

 

 

 

Table A1. Coverage of the sample 

 

Notes: (1) See Fukao et al (2007) for the development of the JIP database. (2) See Appendix I for the 

development strategy of capital stock. 

 

 

 

 

 

 

 

Table A2. Summary statistics of estimated output elasticities 

 

Notes: See Appendix II for our estimation strategy. 

 

 

 

  

Mfg Census JIP database Coverage

(1) (2) (3) = (1)/(2)

Revenue (billion ¥)

    1987 180,984 265,175 0.683

    2007 245,878 338,719 0.726

Labor (1,000)

    1987 6,003 13,848 0.433

    2007 5,476 11,061 0.495

Capital (billion ¥)

    1987 62,457 138,744 0.450

    2007 109,228 234,726 0.465

Mean s.d. Min Max

(1) (2) (3) (4)

Intermediate inputs (αM) 0.591 0.059 0.466 0.897

Labor (αL) 0.363 0.074 0.102 0.488

Capital (αK) 0.082 0.026 0.019 0.207
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Table A3. Summary statistics of markups, prices, costs, and productivity 

 

Notes: We have 44,817 observations in 1987 and 39,641 observations in 2007 for output deflator, 

revenue/output deflator, revenue TFP, unit variable input costs, and market shares. We use 3,348 observations 

in 1987 and 2,110 observations in 2007 for product price, physical quantity, and quantity TFP from single-

product plants. 

 

 

 

 

Table A4. The Melitz and Polanec decomposition (1987-2007) 

 

Note: (1) See equation (19). (2) We use markups using intermediate inputs and labor and use plant-level 

revenues as weights. (3) We additionally drop the top and bottom 1% of observations for each year. 

 

  

Mean s.d.

1987 2007 Δ 1987 2007 Δ

(1) (2) (3) (4) (5) (6)

Log output price

   ln(output deflator) 0.048 -0.010 -0.059 0.214 0.205 -0.010

   ln(product price) 2.603 3.027 0.425 2.214 2.183 -0.031

Log real output

   ln(revenue/output deflator) 11.625 12.068 0.444 1.317 1.338 0.021

   ln(product physical quantity) 8.711 8.739 0.029 2.739 2.711 -0.027

Log TFP

  ln(revenue TFP) 2.732 2.877 0.145 0.556 0.605 0.049

  ln(quantity TFP) 0.442 0.027 -0.415 2.279 2.219 -0.060

Log variable input price

   Intermediates -0.008 0.078 0.086 0.101 0.138 0.037

   Intermediates and labor -0.196 -0.040 0.155 0.261 0.223 -0.038

   Intermediates, labor and capital -0.178 -0.047 0.131 0.248 0.210 -0.038

Log market share

  Industry × prefecture markets -4.666 -4.505 0.161 1.712 1.731 0.019

  Industry-level markets -8.148 -8.056 0.092 1.474 1.466 -0.007

Survivors Exit and entry All plants

Between Within (1)+(2) Exit Entry (4)+(5) (3)+(6)

(1) (2) (3) (4) (5) (6) (7)

All industries -0.035 0.008 -0.027 0.003 0.017 0.020 -0.007

Industries

Automobile -0.003 0.003 0.000 0.061 -0.038 0.023 0.024

Apparel and textile 0.060 0.014 0.074 0.021 -0.011 0.010 0.084

Communication -0.107 0.096 -0.011 -0.139 0.057 -0.082 -0.092

Precision machinery 0.002 0.048 0.050 -0.005 0.013 0.008 0.058
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Figure A1. Input adjustments over the dot-com bubble collapse 

 

Notes: (1) We use 1,619 establishments in the automotive industry. (2) The variables are normalized to zero in 

1999 at the establishment level. We report the means within the industry. 

 

 

Figure A2. Changes in markups over the dot-com bubble 

 

Notes: (1) We use 1,619 establishments in the automotive industry. (2) The variables are logs of markups 

normalized to zero in 1999 at the establishment level. We report the means within the industry. 
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