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Abstract—In this paper the problem of eye detection across
three different bands, i.e., the visible, multispectral, and short
wave infrared (SWIR), is studied in order to illustrate the
advantages and limitations of multi-band eye localization. The
contributions of this work are two-fold. First, a multi-band
database of 30 subjects is assembled and used to illustrate
the challenges associated with the problem. Second, a set
of experiments is performed in order to demonstrate the
possibility for multi-band eye detection. Experiments show
that the eyes on face images captured under different bands
can be detected with promising results. Finally, we illustrate
that recognition performance in all studied bands is favorably
affected by the geometric normalization of raw face images
that is based on our proposed detection methodology. To the
best of our knowledge this is the first time that this problem
is being investigated in the open literature in the context of
human eye localization across different bands.
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I. INTRODUCTION

Within the last two decades, we notice improvement in the
performance of face recognition (FR) systems in controlled
conditions characterized by suitable lighting and favorable
acquisition distances. However, over the years the technol-
ogy has steadily progressed to tackling increasingly more
realistic conditions rather than adequately handling only
well-controlled imagery. Most related research emphasizes
maintenance of high recognition performance while coping
with increased levels of image variability.

Among the most insidious problems for visible-spectrum-
based FR algorithms are (1) the variation in level and
nature of illumination, and (2) the fact that as the level of
illumination decreases, the signal to noise ratio rises quickly,
and thus automatic processing and recognition become im-
possible. In order to address these issues recent research has
moved into the use of infrared imagery (e.g., intensified near-
infrared (NIR) [1], Short Wave IR [2], Long Wave IR [3]).
Table I summarizes the electromagnetic bands of interest,
their wavelength range, and illumination sources.

The reflected IR spectral bands provide advantages for
a solution to the face detection problem due to the fact
that human skin shows unique reflectance characteristics and
facial signatures are less variable in these spectral bands.
Also the reflected IR light is, for the most part, invisible to
the human eye so the system can remain unobtrusive and
covert. For example when using SWIR spectrum for FR,

Table I: Imaging Ranges of Interest for Day and Night Environments.
Band Wavelength Illumination Viability

Range (nm)
Visible 450 - 750 Ambient light High

Broadband sources High
NIR 700 - ≈ 1000 AlGaAs LEDs, LDs High

SWIR ≈ 1000 - 2500 InGaAs LEDs, LDs High
LWIR 7K-14K Subject reflected High

ambient thermal

the benefits are: (a) usefulness in a night time environment,
(b) usefulness in detecting disguised faces due to unique
and universal properties of the human skin in this sub-band
(SWIR upper band, i.e., 1.4-2.5µm), and (c) SWIR imagery
can be combined with visible-light imagery to generate a
more complete image of the human face.

The scope of this study is motivated by the aforemen-
tioned issues. However, FR robustness should be further
supported by correct eye localization as the fundamental step
for the initialization of most of the commercial and academic
FR techniques. The problem is that the localization error
influences the baseline techniques in a non linear way, and as
a result, their accuracy can rapidly decay as the localization
quality decreases [4].

Many algorithms have been reported to efficiently detect
the presence of an eye. In the visible spectrum, the algo-
rithm proposed in [5] uses Circular Hough Transforms to
detect the circular shape of the eye, resulting in accuracy
no greater than 86%. In [6] rectangular as well as pixel-
pattern-based texture features (PPBTF) are used for eye
detection, achieving a detection accuracy of 97%. Also in
[7], probabilistic classifiers are employed to separate eyes
and non-eyes. Multiple classifiers are then combined in
AdaBoost to form a robust and accurate eye detector that
overall achieved a 94.5% accuracy.

In the infrared spectrum, Dowdall et al. [8] used the lower
band of the IR illumination to find the eyes since it is darker
than the rest of the face, and the upper IR band to find
the eyebrows, considering that the eyebrows reflect light
extremely well in this range. The algorithm proposed in [9]
operates also in the IR spectrum, and uses Kalman filtering
and the mean shift tracking algorithm to track and detect
eyes in real time. All aforementioned methods operated in
either the visible or the IR spectrum, but were not designed
to efficiently operate in both spectra.
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In this paper we propose a multi-spectral eye detection
methodology that further detects the pupil center as well. It
is tested on both the West Virginia University Multispectral
(WVUM) database, as well as a subset of the FRGC database
[10]. Three different experiments have been performed. The
first one investigates the detection accuracy of our method on
FRGC and on each of the three WVUM datasets (visible,
multispectral, and SWIR). In the second experiment, our
method is tested against a commercially available eye detec-
tion software1. The third experiment investigates the effect
of geometric normalization - triggered by our eye detection
methodology - to FR accuracy.

The rest of this paper is organized as follows. Section
2 describes the experimental setup. Section 3 provides our
detection methodology. Finally, Section 4 describes the
experiments performed and discusses our results, before
conclusion are made in Section 5.

II. DATABASES

(a) WVUM: Three different types of cameras have been
used to create this database. All face images were captured
in a controlled environment and adhered to the level 40 NIST
“head and shoulder” acquisition scene constraint2:

- Canon EOS 5D Mark II: This digital SLR camera
(www.canon.com) has a 21.1-megapixel full-frame CMOS
sensor with DIGIC 4 Image Processor, and a vast ISO Range
of 100-6400. It is used to obtain standard RGB, ultra-high
resolution frontal pose face images (see Fig. 1(a)) .

- DuncanTech MS3100: This camera (Fig. 1(c)) incor-
porates 3 CCD and three band-pass prisms behind the lens
to simultaneously capture four different wavelength bands.
The IR and Red (R) sensors of the multispectral camera have
spectral response ranges from 400nm to 1000nm. Also, the
Green (G) channel has a response from 400nm to 650nm,
and the Blue (B) channel from 400nm to 550nm. Note that
the IR and Red sensor outputs an image of size 1392x1040.
The G and B images are recorded on a RGB Bayer pattern
sensor and are, therefore, one-third the resolution of the
other images. Then G/B images are interpolated to have the
same resolution as the IR and R images.

- XenICs: This camera (Fig. 1(d)) has an Indium Gallium
Arsenide (InGaAs) 320×256 Focal Plane Array (FPA) with
30µm pixel pitch, 98% pixel operability and three stage
thermoelectric cooling. It has a relatively uniform spectral
response from 950 - 1700 nm wavelength (lower SWIR
band) across which the InGaAs FPA has largely uniform
quantum efficiency. Response falls rapidly at wavelengths
lower than 950 nm and near 1700 nm.
(b) FRGC: In order to extend our visible spectrum sample
size, we used a subset of the Facial Recognition Grand
Challenge database. It consists of frontal face images at con-
strained poses of 84 male and 63 female subjects, resulting

1www.neurotechnology.com
2http://fingerprint.nist.gov/standard/Approved-Std-20070427.pdf

Figure 1: Face samples of the (a) WVUM visible, (b) FRGC visible, (c) WVUM
Multispectral, and (d) WVUM SWIR datasets.

in a total of 458 images. The images were acquired by a
10 megapixel Canon PowerShot G2 camera (Fig. 1(b)), and
they are in JPEG format.

III. METHODOLOGY

In this section we outline the technique we employ to
perform eye and pupil localization (see Fig. 2). The salient
stages of the proposed method are described below:

Figure 2: Overview of the methodology used to perform eye and pupil detection. (a)
Sobel Edge Detection; (b) Average Face Width Estimation; (c) Face Resizing; (d) Eye
Template Generation; (e) Av. Pupil Estimation; (f) Pupil Acceptance Circle; (g) Face
Detection; (h) Left/Right Eye Scanning; (i) Eye Detection; (j) Pupil Detection; (k)
Estimation of Pupil Detection Accuracy.

- Face Width Estimation: Before performing eye detection,
all images must be resized to the same scale so that the
face width (or the inter-ocular distance) is relatively constant
across all subjects. The purpose of this step is to achieve
the image normalization required for our algorithm to obtain
consistent results. Thus, we first apply on each face the Sobel
edge detection algorithm (Fig. 2(a)). Then, for each column
we calculate the maximum number of white pixels (repre-
senting an edge) to identify the column positions on the
x-axis where the left (Xl) and right (Xr) side of each face
are. These two positions determine a face width estimation
We (Fig. 2(b)), that can be calculated by subtracting the left
from the right edge column value (We = Xr −Xl pixels).
This information is used to resize the face (Fig. 2(c)) to a
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pre-determined width (Wp) (generated for the creation of an
average face - as described in the next stage). If We > Wp

the image is scaled down. Otherwise it is scaled up.
- Eye Template Generation: From each dataset employed

we randomly select a certain number of subjects and man-
ually crop both right and left eyes. We then average the
cropped eyes to form the right and left eye templates
(Fig. 2(d,h)). We empirically identified that 10 subjects are
enough to generate templates that can achieve satisfactory
eye detection results.

- Pupil Acceptance Circle: For each generated eye tem-
plate we estimate the pupil diameter (Fig. 2(e)), and create
an accuracy circle centered at the pupil center that is a
few pixels wider than the estimated diameter. This is to
compensate for varying pupil diameters caused by exposure
to light as well as to negate any human error there might
have been when manually selecting the pupil (Fig. 2(f)), and
(Fig.3).

- Face Detection: The Viola & Jones face detection
algorithm (Fig. 2(g)) is used to localize the spatial extent
of the face and determine its boundary. The algorithm was
observed to perform reasonably well on the face images
acquired in this work.

- Eye Detection: After face detection the four coordinates
of the face boundary are located. These boundaries assist
in the application of template convolution by first placing
each of the generated eye templates to the top left corner of
each face, and then calculate the Pearson Product Moment
correlation coefficient - (r). This measure is illustrated in
equation 1, where X and Y are the image and template pixel
intensity values, respectively, N is the total number of pixels,
σX and σY are their respective standard deviations, and µx

and µy are the expected values of x and y, respectively.

r =
∑N

i=1 (Xi − µXi)(Y i − µY i
)

NσXσY
(1)

We continue this throughout the face until the coordinates
of the two highest correlation coefficient are found, i.e., one
for each eye (Fig. 2(i)).

- Pupil Detection: Within each detected eye we search
for the lowest intensity, i.e. the minimum gray scale value
inside the found template, and record its x-y position as
the detected pupil location. Then, the positions of the two
detected pupils (one for each eye) are compared with that
of the manually annotated ones. If the locations identified
by our method are found within the pupil acceptance circle
then they are considered as correctly detected (Fig. 2(j)).
Otherwise they are rejected. Then, the number of identified
pupils is summed up and the acceptance percentage is
computed. Finally, for each we estimate the Euclidean pixel
distance between the detected and the ground truth pupil
location (Fig. 2(k)).

Figure 3: Example diagram of pupil detection: The manually annotated pupil (yellow
cross) is compared to the correctly (green cross) and incorrectly (red cross) detected
pupils in terms of the Euclidean pixel distance.

IV. EXPERIMENTS

Three different experiments have been performed. In
the first experiment we investigate the eye and pupil de-
tection accuracy of our method when using each of the
WVUM datasets, viz., visible (400nm-700nm), multispectral
(400nm-1000nm), and SWIR (950nm-1700nm), as well as
the FRGC subset of images in the visible spectrum. Eye
detection accuracy is computed for each eye, and is mea-
sured as the number of accurately detected eyes divided
by the total number of eyes in each dataset employed (see
Table II). Pupil detection is measured as the Euclidean pixel
distance between the true positions of each pupil center (by
manual annotation) and the detected pupil. Fig. 3 illustrates a
diagram where the manually annotated pupil (yellow cross)
is compared to the correctly (green cross), and incorrectly
(red cross) detected pupils in terms of the Euclidean pixel
distance.

Table II: Eye detection accuracy after applying the Viola & Jones face detection
algorithm, on the FRGC subset in the visible spectrum, as well as on each of the
WVUM datasets.

Target FRGC Visible Multispectral SWIR
Left Eye 444/458 142/142 59/60 58/60

Right Eye 425/458 142/142 59/60 59/60

In the second experiment the efficiency of our eye de-
tection and pupil detection algorithms is tested against a
commercially available software provided by Verilook on
all of the aforementioned datasets. Once again, we use
the manual annotated eye centers as a ground truth, and
compare them to the detected eye centers by employing both
our proposed methodology and the commercial software.
Experimental results are summarized in Table III.

In the third experiment we investigate whether face
alignment (in terms of scale and rotation) via geometric
normalization, which is triggered by our eye detection
methodology, affects FR accuracy. The study is performed
on each of the WVUM datasets, before and after face
normalization. The academic FR techniques we use are the
Principal Components Analysis (PCA) [11], and the Linear
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Table III: Comparison of our detection method to that of commercial’s software.
Detection accuracy (DetA%) is the number of correctly detected eyes. EPD is
the Euclidean distance in pixels between the manually annotated pupil centers to
that being automatically detected by the commercial and our proposed method.
LE/RE=Left/Right Eye.

Datasets Criteria Verilook Proposed

Visible (FRGC)

DetA (LE) 97.14 97.58
DetA (RE) 98.24 93.40
EPD (LE) 2.62 2.41
EPD (RE) 2.68 2.47

Visible (WVUM)

DetA (LE) 100 100
DetA (RE) 100 100
EPD (LE) 1.15 0.83
EPD (RE) 1.50 0.86

Multispectral (WVUM)

DetA (LE) 93.33 98.33
DetA (RE) 93.33 98.33
EPD (LE) 4.21 4.84
EPD (RE) 3.85 4.81

SWIR (WVUM)

DetA (LE) 100 95.00
DetA (RE) 96.66 96.66
EPD (LE) 1.44 0.98
EPD (RE) 2.05 1.15

Figure 4: Recognition accuracy in terms of the Equal Error Rate (%), before and after
applying face normalization. Note that we applied cross-validation only when using
the visible datasets (multiple samples). In the other cases (one gallery/probe sample)
we use PCA.

Discriminant Analysis (LDA) [12]. Both PCA/LDA are used
in combination with the k-nearest neighbor algorithm (k-
NN) [13]. Experimental results are summarized in Fig. 4.

V. CONCLUSIONS

We have presented a study on the problem of eye detection
across three different bands, i.e., visible, multispectral, and
short wave infrared. The experiments were performed using
the WVU Multispectral database, and a subset of the FRGC
database. Experimental results show that, unlike previous
approaches in the literature that operate only on either the
visible or IR spectrum, our eye detection method can be
applied across different spectra with promising results (see
Table III). Our method’s accuracy is also comparable to that
of the commercial eye detection software employed. These
results are especially important when operating in either
ideal (day-time) or non-ideal (night-time) environments.

Finally, related to the face recognition study performed,
face alignment significantly increased system performance
for both academic algorithms during intra-spectral matching,
viz., visible-visible or IR-IR.
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