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Abstract— configuration decision in a single round of message exchange
We present a distributed camera control algorithm that can  Furthermore, information is exchanged only within a local
be used for the monitoring of large regions using a network neighborhood as opposed to being global or network-wide.

of PTZ (pan/tilt/zoom) cameras. The proposed strategy woul Bv being | | and terati ick
allow for continuous target tracking at a high resolution, while 2Y P€INg local and non-itérative, we ensure quick convergen

still maintaining coverage over the entire monitored regim at the iN an ever changing environmeng)(Instead of triggering a
highest possible resolution. Our algorithm requires only alocal camera reconfiguration every time a target moves, we resort t
exchange of information, is quick to converge and ensuresi@er  reconfiguring the system only when a target has moved beyond
periods of stability between successive reconfiguration eps. We the range of the camera that is currently tracking the target

evaluate the performance of our algorithm in simulation and This all th tem to be i table state for | ;
demonstrate that local reconfiguration is sufficient for mantain- is allows the system to be in a stable state for longer gerio

ing an acceptable coverage of target and non-target points. of time as opposed to almost always being in a reconfiguration
phase to keep pace with a target. Longer stable periods also
l. INTRODUCTION reduce the burden on the underlying network by reducing the

Networks of actively controllable pan / tilt / zoom (PTZ)required data transfer rates.
cameras are increasingly being deployed for surveillance p We provide an extensive evaluation of the performance of
poses in urban environments. In this paper, we considemar algorithm by analyzing the impact of network density
large scale network of PTZ cameras that can be used ford the size of the locality of stabilization regions on the
monitoring and protecting critical assets such as our natio achievable coverage resolution. We demonstrate that we are
border and civil infrastructure like bridges, highways andble to track targets at a high resolution, observe the eentir
airports. The design of such large scale camera systems pcgmce at an acceptable resolution, and keep the observing
several challenges. First of all, given that the system caammeras stable for long periods of time by only performing
span potentially several kilometers, the cameras have to the reconfiguration in a local area around the target.
deployed to ensure optimal coverage with minimum numbBelated work: A significant amount of research has been
of cameras. Secondly, while it is required that targets cfrried out on automated tracking of targets using a camera
interest are continuously tracked, it is equally importemt network. Some of these efforts have focused on the design
ensure that the remaining cameras reconfigure themselvesftanulti-camera systems to automatically detect, segment,
cover all non-target points. Thirdly, it is important thditet and track targets [1]-[3]. Others have focused on algosthm
cameras converge to new configuration parameters quickly efficient handoff of targets in multi-camera multi-tatg
in the presence of mobile targets without a network-widgirveillance scenarios [4]-[6]. However, there has beéa re
exchange of information. tively less work on multi-camera systems that track targéts

To address these challenges, in this paper we describ&igh resolution while simultaneously ensuring that otheiaa
local reconfiguration algorithm for surveillance of tay@t a are completely covered.
large scale network of actively controllable PTZ camerdse T In [7], a decentralized algorithm is proposed to maximize
following are key features of our techniqud:) (In contrast the coverage of a region monitored by PTZ cameras by en-
to algorithms that focus only on continuous target trackinguring there are minimum overlaps with neighboring cameras
our algorithm ensures that targets in the scene are trackéolvever, by seeking a global optimization and by being itera
at a desired resolution while at the same time ensuring thae in nature the algorithm takes a long time (several sdspn
non-target points in the network are covered at the highestconverge making it less suitable for dynamic adjustments
possible resolution. By doing so, we simultaneously ensunéen targets are being tracked. By way of contrast, we focus
that the perimeter is not breached and that there are no vaiflsa local and non-iterative solution in which each camera
of coverage when certain cameras are occupied with trackimgolved in the reconfiguration makes only one adjustment of
of targets. £) We avoid iterative techniques for ensuringts PTZ setting to reach the new configuration. We also note
coverage where individual cameras make several roundstiodt the work in [7] focused on maximizing coverage of an
adjustments to their PTZ settings based on local messagea while we additionally focus on maximizing the resalnti
exchanges. Instead, in our algorithm, cameras converge tatavhich an area is covered.



iW—| to be able to pan across the ful60°. The cameras can
) tilt between a minimum oB5° and a maximum tilt of45°
declination from the horizon. The cameras are also assumed
to have a5X optical zoom capability. Note that instead
. . of downward facing hovering cameras (that lend analytical
simplicity to the problem by projecting into the ground an
as squares or circles), we have assumed a more practical
deployment scenario. Because of the assumed tilt parasneter
the projection of the field of view of each camera into the
ground plane can only be modeled as a trapezoidal shape.
Fig. 2 shows an example of the projection of a camera’s field
Fig. 1. The layout of the cameras as visualized on a plandigata the  of \iews on the ground plane in an area defined by poinis
ground plane at a heightf above the ground. Ny .
X, ¥, Z. In describing our algorithm, We refer to edges and

yz as the side edges of a camera’s field of view (FOV) and
refer to edgeavz as the leading edge of a camera’s FOV. From
c . ce hereon, we implicitly refer to a camera’s FOV as its field of
view on the ground plane.
: 1 : B. System parameters

Definition 2.1 (Coverage resolution offered by cameya
At a given PTZ setting, ifA. is the area monitored by the
FOV of camerac, then the coverage resolution offered by
camerac (denoted ask,) is -

_ . . . Thus, the greater the area monitored by a camera at a
In [8], an algorithm is presented to provide optimal coveragg:(

ina d d facing h . that iven setting, the lower the coverage resolution offered by
over an area using downward facing hovering cameras (tha at camera. Tilting up and thus moving away from the ground

mOb'.le)' Th.'s algorithms also seekg global ‘?p“m"?" COVerag ane causes the coverage resolution offered by a camera to
and is not intended for fast dynamic reconfiguration as cop-

. ) . . _ : crease. Likewise, zooming out also decreases the caverag
sidered in this paper. Also, in this paper we have Cons'derﬁéfolution offered by a camera

cameras which are not downward facing, are more practlcaDefinition 2.2 (Coverage resolution of poip}: Let {C,}

to deploy for monitoring large regions and have 2 additionalenote the set of cameras whose FOV's cover poifihe cov-
degrees of freedom: panning and tilting.

Outline of the paper: In Section 2, we present the systemerage resolution of point (denoted ast,) is max.c(c, ) fio,

. . : ; .i.e., the maximum of the coverage resolution offered by all
model. In Section 3, we describe our dynamic reconflgurau%lameraS i}
. b}

algorithm. In Section 4, we describe our experimental desig Definition 2.3 (Coverage resolution of aret): Coverage

and evaluate the perfo_rmance (_)f our algorithm. In Section r‘ré?solution of aread (denoted asR(A)) is minyes Ry, i.e.,
we conclude and provide directions for future work.

the minimum coverage resolution among all points in atea
Il. SYSTEM MODEL Note that if a point is not covered by any camera, it has
In this section, we describe the layout of the cameras and #f#f0 resolution. Areal is said to becompletely coveredf
parameters that the cameras control to affect coveragelstye £ach point inA has non-zero coverage resolution.
define various system parameters, describe the perthbat(lf)_ Initial state
model and then formally state the problem.

>

Fig. 2. A projection of the FOV on the ground plane for a cameoaitlined
by pointswzyz.

For the camera network, we define a special state called
A. Camera deployment theinitial state. This corresponds to the unperturbed state for
We consider a network oV, PTZ cameras deployed tothe system when no targets are present and all cameras are
monitor a region with areal ;. Let P denote the resolution in their default configuration. In this state, the PTZ seftin
of each camera which is equal to the total number of pixeler each camera is adjusted such that each point is covered
in each frame captured by the camera. The cameras atehe highest resolution possible for the given deployment
deployed at a uniform height? above the ground. ConsiderThe default configurations for the initial state are deteedi
the horizontal plane parallel to the ground plane at a heigbifline and set during system deployment. For the symmetric
H: On this plane, the camera deployment can be visualizeddeployment described above, the initial state is deterthaee
an uniform interlocked grid as shown in Fig. 1. Letdenote alternate rows of cameras panned to face each other and the
the separation between any two cameras along a row anhd létlt/zoom parameters adjusted such that there is no overlap
denote the separation between two rows as depicted in FigirLcoverage between adjacent cameras. This gives rise to an
The cameras have three knobs for controlling the coveraig¢erlocked pattern as shown in Fig. 3. An algorithm such as
of the region: pan, tilt and zoom. The cameras are assunj@ficould also be used to determine this initial configunaiio



while {G} # @ do
for all cin Cr, do

apefore = Ac
for all G; in G do
if ¢e||G; then
Criit+ = Atilt
break
end if
end for

for all G; in G do
if ¢se||G; then

Fig. 3. Theinitial state for the camera network. Cameras in alternate rows Czoom— = AzOOM
are panned to face each other. All points are covered at tesii resolution, break
with no overlap between the cameras’ FOVs. :
end if
Nc Number of cameras in the system end for _
{C} The set of all cameras in the network Cpan MoOVes towardsnid(G) by Apan
Cle The leading edge of camera Aatier = A
Cse The side edges of cameta .
Cpan The current pan setting of cameta if apefore — Gatter < 1s¢ft. then
Crilt The current tilt setting of camera undo Apan
Czoom The current zoom setting of cameca end if
g Gap: a continuous region of unobserved space
{G} The set of all gaps within a local area end f_or
G The gap with the largest area end while
Ang The observed area
Ag The total area of G} Fig. 4. Pseudocode for the reconfiguration algorithm
Ac The area Camera is currently observing
z|ly x andy are adjacent areas with their perimeter touching
mid(z) | The centroid of area pan, tilt and zoom settings for all cameras within argaare
TABLE | determined by the tracking camera and the new parameters are
TERMS AND NOTATIONS USED IN THIS PAPER distributed back to all those cameras. When calculating thi

o o ~ new configuration, the camera that is assigned for tracking
a self-organizing manner as convergence time is not an issdfhoves itself from consideration and as a result the new
during initial configuration. Let?;(Ax;) denote the coverage configuration staysvalid for the duration that the tracking
resolution of aread,; in the initial state. We use this initial camera does not change. We describe our algorithm in three
resolgtion as a reference to analyze the performance of Qdrts: () camera assignment for tracking) @ctively tracking
algorithm. a target and3) determining reconfiguration parameters.

D. Perturbation model and problem statement 1) Determining the Tracking Camerahen a new target

The following events can cause the camera network systé%geFeCte‘d' or when a target is out§|d_e the F_OV of a currently
cking camera, each camera within a circle of arka

to be perturbed causing reconfiguration of camera arametérra o . .
P 9 9 b %:r und the target is informed of this new event along with

(1) a target enters the system and is assigned to a cam . . -
e location of the target. In this paper, we use the proyimit

for tracking and %) a target is reassigned to a differen[ to the t t 10 be the tracki lecti
camera for tracking. Each time a perturbation event occuPé a camera fo the target fo be the tracking camera sefection

the reconfiguration algorithm is invoked at the camera that(f”te“a’ by which the tracking camera is the camera closest

assigned for tracking the target. The reconfiguration élgor E) tT_Z targ;;_t .tEach ?irﬁerta W'tth]fm L Ioc”aIIy compute_tsh_the
determines new configuration parameters for all camerag lyi uclidean distance ot the target rom afi cameras withira are
Ay around the target, and decides if it will be the tracking

within a local aread;, defined by a circle of radiush around
camera.

the target. The parameterdetermines the size of the locality ) _ ) i
over which the reconfiguration algorithm is executed. Thaigo 2) Tracking the TargetThe camera assigned for tracking

of the system is then to maximizB(A,,) by reconfiguring PanSs: tilts, and zooms to keep the target in the center of its
cameras that lie withind,. The effect of parameter on field of view while maintaining the highest resolution pddési

R(Ay) is analyzed ir§IV. When the camera is unable to track the target at a high
resolution, the system finds an alternative camera to do the
1. ALGORITHM DESIGN tracking as described above.

In this section, we describe our distributed control aldoni 3) Reconfiguration: The pseudo-code for the reconfigu-
to ensure complete coverage of arkg at the highest possible ration algorithm is provided in Fig. 4. The reconfiguration
resolution. Each time that the tracking camera is chandpsl, talgorithm is run on-board the tracking camera. The location
camera uses the location of all cameras within an atga of each camera within ared; around the target is provided
around itself and runs a reconfiguration algorithm. The ne&s input to the reconfiguration algorithm.



Note that if the goal was simply to cover the gap that isoverage resolution is shared by cameras beyond the perimet
created due to the loss of the tracking camera for activady a gap created by removal of the tracking camera. In other
following a target, then one or more cameras whose FOV igrds, the cameras adjacent to the newly created gap are able
adjacent to the gap could simply tilt up and zoom out to coverove some of the unobserved area into the vicinity of cameras
the gap. However, our focus is also in minimizing the losgrther from the gap. As a result the cameras have to tilt and
of coverage resolution. Hence in our approach, the camera®m out lesser and this results in reduction in the loss of
also pan towards the centroid of the gap so that the lossaaiverage resolution.
resolution is shared by cameras farther away from the gap. FoOnce the new parameters are determined, they are dis-
a globally optimal solution, the parameters of cameraauino tributed to all cameras withid , which then make a single
out the network would need to be adjusted to minimize the loadjustment directly to the new configuration. When the targe
of resolution but this is infeasible in a large network. Hendeaves the FOV of the currently tracking camera and a new
only the PTZ parameters of cameras withlp, are adjusted. reconfiguration event is triggered, the cameras that are not
In §1V, we test the impact of different sizes df;, on the loss involved in the new reconfiguration return to their initithte.
of resolution.

In order to determine the new configuration, the cameras
within A, are first ordered based on proximity to the location In this section, we evaluate the performance of our algo-
of the tracking camera. Let this ordered set of cameras be &igm in simulations.
noted as{Cr}. The initial configuration for all these cameras . ion model
is marked as the configuration corresponding tatiiteal state “™
which is described ifjll. Then, in the predetermined order the We simulate an area dfSquare Kilometer and deploy cam-
PTZ parameters of each camera are incrementally update@@s at different densities to monitor this region. A stadda
the tracking camera that is computing the new configuration@y to define camera density would be the number of cameras
based on the following steps. (Recall from Table | that eagter unit area. But this is not meaningful with PTZ cameras

contiguous unobserved area in the network is callegya) that have different coverage resolutions at differenirsgstof
. . : tilt and zoom. Hence in this paper, we analyze the impact of
« R1:The total unobserved area is determined by SUMMIR8yvork density by measuring density in relation to a refeee
the. areas of algaps e . .deployment. Consider the FOV as depicted in Fig. 2, for a
* RZ.' If the leading edge of a camera§ f|_e|(_j of VIEW 13amera which is tilted up and zoomed out completely such
adjacent to at least orgap, the car,neras tilt is adjusted that the area covered by the camera is maximized and let us
so that thg length O.f the camera’s FOV_(rep.resented d&note this ag"OV. We define unit network density to be a
parametet in Fig. 2) increases by foot. This adjustment deployment with the value of set equal td in FOV and

IS Qeno_ted as\tilt in F'g' 4. e the value ofw set to be equal td; + b, in FOV. Let v’

* R.3' If_e|the_r of the two side edges of the camera’s field ndh’ denote the values fow and h respectively in a unit
ylewd!s ?déacen';htotat least ?ér;yar; EEG camera:s ZISOO\T density deployment. Under this deployment density, thesini
IS adjuste tS(()j b afpa:ra_::rrf dc') " N Cff“egas ted state for the camera system will be such that the coverage
I incremented byl foot. This adjustment is denoted agaqq)tion offered by any camera cannot be increased any

éjo?r"r;‘ ”: Fig. 4. ter taking int  the abovelUrther: As a result, whenever a camera has been assigned
¢ - 1he argesgapa_l er taking into account the a O,Vefor tracking, the system cannot be completely covered any
parameter changes is then determined. The camera’s

) ) ) e. With this deployment density as reference, we defiae th
parameter is adjusted to move towards the centroid of t g

| i b oA Th it of A : i mera network density to e whenw = “J—I; andh = h—l/j.
argest gap by a lom' pan. The Unit olApan 1S s€ The cameras are deployed at a height 8 feet from the ground.
to a constant of3°. The total unobserved area is then

determined bv summing the areas of all the aaps af Urnderthe highest coverage resolution offered by each @aamer
the pannin a)(/j'ustmentglf the total unobservedgarpea d(t)%g values ob,, by andl for the camera's FOV (Fig. 2) are

P g ad) i approximately25 feet, 3 feet and29 feet respectively. Under
not decrease by at least lysquare foot from the area

determined in step 1, the panning adjustment is reverté e lowest coverage resolution offered by each camera, the
’ values ofby, b, and! are equal tol foot, 1 foot and2 feet

The above steps are repeated for each camera in the predspectively. As a result in a unit density deploymentand

termined order repeatedly until there are no mgaps The d are set to be equal t@5 feet and29 feet respectively.

algorithm is guaranteed to converge because each round\& consider a single target in the system at a time that is

the algorithm for a given camera results in reducing thel totatroduced at different locations, mainly near the cenfehe

unobserved area by at ledssquare foot. Note that, the tilting network. We consider two different target speeds, 2.5mph (A

up and zooming out rules (rules 2 and 3) will always result walking target) and 7.5mph (A running target).

reduction of unobserved area. The only rule likely to reBult i

an increase in the unobserved area is fyleut by performing B- Impact of4, on coverage resolution fob > 1

a convergence check we ensure that this does not occur. Notelere, we analyze the impact of the size of the area con-

that the panning step is important to ensure that the losssidered for reconfigurationA() on the coverage resolution

IV. PERFORMANCE EVALUATION
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Fig. 5. Impact of A;, on coverage resolution. The y-axis shows thdmig. 6. The impact ofd;, on coverage resolution. The y-axis shows Thé&"
normalized coverage resolution for all points Aty . percentile of the normalized coverage resolution amongaifits in Ay, .
. " 0.045 =

at various network densities greater thanRecall that at Maximum —+—
camera density of, the network is observing the entire areaat ¢ 4 |
minimum coverage resolution and as a result the area cannof5
be completely covered when one or more camerasoatdor § 0.035
tracking a target. Hence for the case of unit network density

y—

we subsequently evaluate the loss of coverage as a function 003

of Ay g 0.025
In Fig. 5, we show the impact oA, on coverage resolution. § '
The aread;, is considered as a circle of radiug around the E 0.02

location of the camera assigned to track the target, whése
the separation between adjacent rows of cameras. The x-axis 0.015 : :
in Fig. 5 represents the radius of this circle for differealues 1h 2h sh 4h
of z. The coverage resolution is normalized with respect to the Radius of Local Area

coverage resolution ofl, in the initial state RI(AM)) asa Fig. 7. The size of the maximum gap given as a percentage cdréee of

refe_rence. point. Le.IR(AM) denqte the _Coverage reSOI_Utiorlhe original gap created by thessof the tracking camera in a network with
achieved in simulation for a particular trial of the expegimh  unit density.

The normalized coverage resolution for that trial is thenatq

to g(&”f)). The values for normalized coverage resolution _
[N cameras can only pan towards a gap to decrease the size of

depicted in Fig. 5 are based on an average dveo trials
for each value ot and D. We observe that the improvemenfhe largest gap and spread the uncovered space more evenly
across the network. With respect to the stdps— R4 for

in resolution coverage starts decreasing significantlyahies . : .
g g s19 it the reconfiguration algorithm, we note that stegs and R3

of z > 2 and this remains true at all the evaluated netwo R _ _ : .
densities. are inactivated. Also ste4 cannot result in any decrease in

Note that by definition(A) reflects the lowest coverageuhmbserved area. S‘; we use a heu(rjlgtlc ‘;nd mdéifgo tha’:j ]
resolution among all points in an ardaln order to understand '€ Pan parameter of a camera is adjusted to move towards the

the coverage resolution for a majority of points withir,, 'argestadjacentgap only if the area of that gap can decbgase
in Fig. 6 we use ther5™ percentile of coverage resolution! sduare foot while not increasing the total uncovered area.
among all points ind;, as a metric for evaluating the impact ofl Ne algorithm terminates when no camera’s pan parameters

locality size on coverage resolution. In other words cziiy; can Pe adjusted in a single round or in a maximumlof

of points within A, have a lower coverage resolution thahounds to avoid oscillations. _

those shown in Fig. 6. We observe from Fig. 6 that coverage™9- / shows the impact ofl; on the size of the largest
resolution for a majority of points is significantly highéran 9P in the area being monitored. We notice that as the size
those shown in Fig. 5. of the local area increases, the size of the largest gap also

decreases. This is due to the increasing number of smaller
C. Impact of A, on loss of coverage ab = 1 gaps throughout the larger area.
In this subsection, we evaluate the impact of the size of B
the area considered for reconfiguratiof;{ on the loss of D- Impact of target speed on stability of the system
coverage atD = 1. Note that atD = 1, the cameras are The speed of a moving target is expected to influence the
unable to zoom out or tilt up to cover any more space. THieequency of reconfiguration events. We simulate targetisat
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a single round. Hence we have opted for a non-iterative
strategy that relies on computation at a single node and
then propagating the new parameters back to the respective
cameras.

Our initial analysis has thrown open several interesting
avenues for further research. In this paper, we have carside
the case of a single target being tracked. We would like
to modify our algorithm to handle multiple targets in the
system and evaluate its performance. In the future, we would
also like to demonstrate a working prototype of our dynamic
reconfiguration system at a small scale, using a wireless
network of PTZ cameras integrated with local processing
capability. We are also interested in integrating an active
camera based face recognition system such as [9], [10] with
our reconfiguration system for maintaining coverage at high

quality while performing human identification.
speeds moving through the network and determine the timeln this paper, we have assumed the existence of a target
between successive reconfiguration events. Fig. 8 shows @eéection algorithm that is also able to localize the target
25", 50" and75'" percentile of time between reconfiguratiotVe also rely on a network level service for reliably electing
events for2 target speeds, a walking speed and a runniggcamera that is responsible for tracking a target. Designin

speed, at different camera densities. For exampl® at 2,

network services for target detection and camera assighimen

there is an average &f seconds between two reconfiguratio@® way that is appropriate for a distributed implementatiorg
events at a running speed which implies that the time féitegrating those with the reconfiguration algorithm pred
reconfiguration certainly needs to be smaller than this afftithis paper is also a subject of our ongoing research.

greater the difference, better the stability of the syst&his
signifies the importance of having smaller reconfiguration
times and highlights the merit of choosing a local approach a (1]
performing just a single PTZ adjustment per reconfiguration
event.
[2]
V. CONCLUSIONS AND FUTURE WORK

We have considered a network of PTZ cameras used fqg)
monitoring a large region and described a local algorithm
that can track targets at a high resolution while maximizinq4]
the coverage resolution at all non-target points. We evatlia
the performance of our algorithm in simulations and analyze
the impact of network density and the size of the area ow 3
which the reconfiguration is performed on the achievable
coverage resolution. We observe that by progressivelyawr
ing the size of the locality over which the reconfiguration[6
is performed, the improvement in coverage resolution start
decreasing significantly, thus highlighting the merits of a
localized approach. As a result, we are able to track targe?s]
at a high resolution, observe the entire space at an acdeptab
resolution, and keep the observing cameras stable for Iong
periods of time by only performing the reconfiguration in al
local area around the target.

Completely decentralized systems for determining cover-

age where each camera successively makes adjustments 5

communicates this change to neighboring cameras before
converging to an optimum configuration [7] have an advantage
in that they do not rely on a single camera for computin%

the reconfiguration parameters. However, when dealing with
mechanical systems like PTZ motors that consume significant
time to affect a change, it is more suitable to adopt a styateg

where the nodes are able to reach a final configuration within
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