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Abstract—
We present a distributed camera control algorithm that can

be used for the monitoring of large regions using a network
of PTZ (pan/tilt/zoom) cameras. The proposed strategy would
allow for continuous target tracking at a high resolution, while
still maintaining coverage over the entire monitored region at the
highest possible resolution. Our algorithm requires only alocal
exchange of information, is quick to converge and ensures longer
periods of stability between successive reconfiguration steps. We
evaluate the performance of our algorithm in simulation and
demonstrate that local reconfiguration is sufficient for maintain-
ing an acceptable coverage of target and non-target points.

I. I NTRODUCTION

Networks of actively controllable pan / tilt / zoom (PTZ)
cameras are increasingly being deployed for surveillance pur-
poses in urban environments. In this paper, we consider a
large scale network of PTZ cameras that can be used for
monitoring and protecting critical assets such as our national
border and civil infrastructure like bridges, highways and
airports. The design of such large scale camera systems poses
several challenges. First of all, given that the system can
span potentially several kilometers, the cameras have to be
deployed to ensure optimal coverage with minimum number
of cameras. Secondly, while it is required that targets of
interest are continuously tracked, it is equally importantto
ensure that the remaining cameras reconfigure themselves to
cover all non-target points. Thirdly, it is important that the
cameras converge to new configuration parameters quickly
in the presence of mobile targets without a network-wide
exchange of information.

To address these challenges, in this paper we describe a
local reconfiguration algorithm for surveillance of targets in a
large scale network of actively controllable PTZ cameras. The
following are key features of our technique: (1) In contrast
to algorithms that focus only on continuous target tracking,
our algorithm ensures that targets in the scene are tracked
at a desired resolution while at the same time ensuring that
non-target points in the network are covered at the highest
possible resolution. By doing so, we simultaneously ensure
that the perimeter is not breached and that there are no voids
of coverage when certain cameras are occupied with tracking
of targets. (2) We avoid iterative techniques for ensuring
coverage where individual cameras make several rounds of
adjustments to their PTZ settings based on local message
exchanges. Instead, in our algorithm, cameras converge to a

configuration decision in a single round of message exchange.
Furthermore, information is exchanged only within a local
neighborhood as opposed to being global or network-wide.
By being local and non-iterative, we ensure quick convergence
in an ever changing environment. (3) Instead of triggering a
camera reconfiguration every time a target moves, we resort to
reconfiguring the system only when a target has moved beyond
the range of the camera that is currently tracking the target.
This allows the system to be in a stable state for longer periods
of time as opposed to almost always being in a reconfiguration
phase to keep pace with a target. Longer stable periods also
reduce the burden on the underlying network by reducing the
required data transfer rates.

We provide an extensive evaluation of the performance of
our algorithm by analyzing the impact of network density
and the size of the locality of stabilization regions on the
achievable coverage resolution. We demonstrate that we are
able to track targets at a high resolution, observe the entire
space at an acceptable resolution, and keep the observing
cameras stable for long periods of time by only performing
the reconfiguration in a local area around the target.
Related work: A significant amount of research has been
carried out on automated tracking of targets using a camera
network. Some of these efforts have focused on the design
of multi-camera systems to automatically detect, segment,
and track targets [1]–[3]. Others have focused on algorithms
for efficient handoff of targets in multi-camera multi-target
surveillance scenarios [4]–[6]. However, there has been rela-
tively less work on multi-camera systems that track targetsat
high resolution while simultaneously ensuring that other areas
are completely covered.

In [7], a decentralized algorithm is proposed to maximize
the coverage of a region monitored by PTZ cameras by en-
suring there are minimum overlaps with neighboring cameras.
However, by seeking a global optimization and by being itera-
tive in nature the algorithm takes a long time (several seconds)
to converge making it less suitable for dynamic adjustments
when targets are being tracked. By way of contrast, we focus
on a local and non-iterative solution in which each camera
involved in the reconfiguration makes only one adjustment of
its PTZ setting to reach the new configuration. We also note
that the work in [7] focused on maximizing coverage of an
area while we additionally focus on maximizing the resolution
at which an area is covered.



Fig. 1. The layout of the cameras as visualized on a plane parallel to the
ground plane at a heightH above the ground.

Fig. 2. A projection of the FOV on the ground plane for a camerac outlined
by pointswxyz.

In [8], an algorithm is presented to provide optimal coverage
over an area using downward facing hovering cameras (that are
mobile). This algorithms also seeks global optimal coverage
and is not intended for fast dynamic reconfiguration as con-
sidered in this paper. Also, in this paper we have considered
cameras which are not downward facing, are more practical
to deploy for monitoring large regions and have 2 additional
degrees of freedom: panning and tilting.
Outline of the paper: In Section 2, we present the system
model. In Section 3, we describe our dynamic reconfiguration
algorithm. In Section 4, we describe our experimental design
and evaluate the performance of our algorithm. In Section 5,
we conclude and provide directions for future work.

II. SYSTEM MODEL

In this section, we describe the layout of the cameras and the
parameters that the cameras control to affect coverage. We also
define various system parameters, describe the perturbation
model and then formally state the problem.

A. Camera deployment

We consider a network ofNc PTZ cameras deployed to
monitor a region with areaAM . Let P denote the resolution
of each camera which is equal to the total number of pixels
in each frame captured by the camera. The cameras are
deployed at a uniform heightH above the ground. Consider
the horizontal plane parallel to the ground plane at a height
H : On this plane, the camera deployment can be visualized as
an uniform interlocked grid as shown in Fig. 1. Letw denote
the separation between any two cameras along a row and leth

denote the separation between two rows as depicted in Fig. 1.
The cameras have three knobs for controlling the coverage

of the region: pan, tilt and zoom. The cameras are assumed

to be able to pan across the full360◦. The cameras can
tilt between a minimum of35◦ and a maximum tilt of45◦

declination from the horizon. The cameras are also assumed
to have a 5X optical zoom capability. Note that instead
of downward facing hovering cameras (that lend analytical
simplicity to the problem by projecting into the ground plane
as squares or circles), we have assumed a more practical
deployment scenario. Because of the assumed tilt parameters,
the projection of the field of view of each camera into the
ground plane can only be modeled as a trapezoidal shape.
Fig. 2 shows an example of the projection of a camera’s field
of views on the ground plane in an area defined by points{w,
x, y, z}. In describing our algorithm, We refer to edgeswx and
yz as the side edges of a camera’s field of view (FOV) and
refer to edgewz as the leading edge of a camera’s FOV. From
hereon, we implicitly refer to a camera’s FOV as its field of
view on the ground plane.

B. System parameters

Definition 2.1 (Coverage resolution offered by camerac):
At a given PTZ setting, ifAc is the area monitored by the
FOV of camerac, then the coverage resolution offered by
camerac (denoted asRc) is P

Ac
.

Thus, the greater the area monitored by a camera at a
given setting, the lower the coverage resolution offered by
that camera. Tilting up and thus moving away from the ground
plane causes the coverage resolution offered by a camera to
decrease. Likewise, zooming out also decreases the coverage
resolution offered by a camera.

Definition 2.2 (Coverage resolution of pointp): Let {Cp}
denote the set of cameras whose FOVs cover pointp. The cov-
erage resolution of pointp (denoted asRp) is maxc∈{Cp} RC ,
i.e., the maximum of the coverage resolution offered by all
cameras in{Cp}.

Definition 2.3 (Coverage resolution of areaA): Coverage
resolution of areaA (denoted asR(A)) is minp∈A Rp, i.e.,
the minimum coverage resolution among all points in areaA.

Note that if a point is not covered by any camera, it has
zero resolution. AreaA is said to becompletely coveredif
each point inA has non-zero coverage resolution.

C. Initial state

For the camera network, we define a special state called
the initial state. This corresponds to the unperturbed state for
the system when no targets are present and all cameras are
in their default configuration. In this state, the PTZ setting
for each camera is adjusted such that each point is covered
at the highest resolution possible for the given deployment.
The default configurations for the initial state are determined
offline and set during system deployment. For the symmetric
deployment described above, the initial state is determined as
alternate rows of cameras panned to face each other and the
tilt/zoom parameters adjusted such that there is no overlap
in coverage between adjacent cameras. This gives rise to an
interlocked pattern as shown in Fig. 3. An algorithm such as
[7] could also be used to determine this initial configuration in



Fig. 3. Theinitial state for the camera network. Cameras in alternate rows
are panned to face each other. All points are covered at the highest resolution,
with no overlap between the cameras’ FOVs.

Nc Number of cameras in the system
{C} The set of all cameras in the network
cle The leading edge of camerac
cse The side edges of camerac
cpan The current pan setting of camerac
ctilt The current tilt setting of camerac
czoom The current zoom setting of camerac
g Gap: a continuous region of unobserved space
{G} The set of all gaps within a local area
G The gap with the largest area
AM The observed area
AG The total area of{G}
Ac The area Camerac is currently observing
x||y x andy are adjacent areas with their perimeter touching
mid(x) The centroid of areax

TABLE I
TERMS AND NOTATIONS USED IN THIS PAPER

a self-organizing manner as convergence time is not an issue
during initial configuration. LetRI(AM ) denote the coverage
resolution of areaAM in the initial state. We use this initial
resolution as a reference to analyze the performance of our
algorithm.

D. Perturbation model and problem statement

The following events can cause the camera network system
to be perturbed causing reconfiguration of camera parameters:
(1) a target enters the system and is assigned to a camera
for tracking and (2) a target is reassigned to a different
camera for tracking. Each time a perturbation event occurs,
the reconfiguration algorithm is invoked at the camera that is
assigned for tracking the target. The reconfiguration algorithm
determines new configuration parameters for all cameras lying
within a local areaAL defined by a circle of radiuszh around
the target. The parameterz determines the size of the locality
over which the reconfiguration algorithm is executed. The goal
of the system is then to maximizeR(Am) by reconfiguring
cameras that lie withinAL. The effect of parameterz on
R(AM ) is analyzed in§IV.

III. A LGORITHM DESIGN

In this section, we describe our distributed control algorithm
to ensure complete coverage of areaAM at the highest possible
resolution. Each time that the tracking camera is changed, this
camera uses the location of all cameras within an areaAL

around itself and runs a reconfiguration algorithm. The new

while {G} 6= ∅ do
for all c in CL do
abefore = AG

for all Gi in G do
if cle||Gi then
ctilt+ = ∆tilt
break

end if
end for
for all Gi in G do

if cse||Gi then
czoom− = ∆zoom
break

end if
end for
cpan moves towardsmid(G) by ∆pan
aafter = AG

if abefore− aafter < 1sqft. then
undo∆pan

end if
end for

end while

Fig. 4. Pseudocode for the reconfiguration algorithm

pan, tilt and zoom settings for all cameras within areaAL are
determined by the tracking camera and the new parameters are
distributed back to all those cameras. When calculating this
new configuration, the camera that is assigned for tracking
removes itself from consideration and as a result the new
configuration staysvalid for the duration that the tracking
camera does not change. We describe our algorithm in three
parts: (1) camera assignment for tracking, (2) actively tracking
a target and (3) determining reconfiguration parameters.

1) Determining the Tracking Camera:When a new target
is detected, or when a target is outside the FOV of a currently
tracking camera, each camera within a circle of areaAL

around the target is informed of this new event along with
the location of the target. In this paper, we use the proximity
of a camera to the target to be the tracking camera selection
criteria, by which the tracking camera is the camera closest
to the target. Each camera withinAL locally computes the
Euclidean distance of the target from all cameras within area
AL around the target, and decides if it will be the tracking
camera.

2) Tracking the Target:The camera assigned for tracking
pans, tilts, and zooms to keep the target in the center of its
field of view while maintaining the highest resolution possible.
When the camera is unable to track the target at a high
resolution, the system finds an alternative camera to do the
tracking as described above.

3) Reconfiguration:The pseudo-code for the reconfigu-
ration algorithm is provided in Fig. 4. The reconfiguration
algorithm is run on-board the tracking camera. The location
of each camera within areaAL around the target is provided
as input to the reconfiguration algorithm.



Note that if the goal was simply to cover the gap that is
created due to the loss of the tracking camera for actively
following a target, then one or more cameras whose FOV is
adjacent to the gap could simply tilt up and zoom out to cover
the gap. However, our focus is also in minimizing the loss
of coverage resolution. Hence in our approach, the cameras
also pan towards the centroid of the gap so that the loss of
resolution is shared by cameras farther away from the gap. For
a globally optimal solution, the parameters of cameras through
out the network would need to be adjusted to minimize the loss
of resolution but this is infeasible in a large network. Hence
only the PTZ parameters of cameras withinAL are adjusted.
In §IV, we test the impact of different sizes ofAL on the loss
of resolution.

In order to determine the new configuration, the cameras
within AL are first ordered based on proximity to the location
of the tracking camera. Let this ordered set of cameras be de-
noted as{CL}. The initial configuration for all these cameras
is marked as the configuration corresponding to theinitial state
which is described in§II. Then, in the predetermined order the
PTZ parameters of each camera are incrementally updated at
the tracking camera that is computing the new configuration,
based on the following steps. (Recall from Table I that each
contiguous unobserved area in the network is called agap.)

• R1: The total unobserved area is determined by summing
the areas of allgaps.

• R2: If the leading edge of a camera’s field of view is
adjacent to at least onegap, the camera’s tilt is adjusted
so that the length of the camera’s FOV (represented as
parameterl in Fig. 2) increases by1 foot. This adjustment
is denoted as∆tilt in Fig. 4.

• R3: If either of the two side edges of the camera’s field of
view is adjacent to at least onegap, the camera’s zoom
is adjusted so that parameterb1 of the camera’s FOV
is incremented by1 foot. This adjustment is denoted as
∆zoom in Fig. 4.

• R4: The largestgap after taking into account the above
parameter changes is then determined. The camera’s pan
parameter is adjusted to move towards the centroid of the
largest gap by a unit of∆pan. The unit of∆pan is set
to a constant of3◦. The total unobserved area is then
determined by summing the areas of all the gaps after
the panning adjustment. If the total unobserved area does
not decrease by at least by1 square foot from the area
determined in step 1, the panning adjustment is reverted.

The above steps are repeated for each camera in the prede-
termined order repeatedly until there are no moregaps. The
algorithm is guaranteed to converge because each round of
the algorithm for a given camera results in reducing the total
unobserved area by at least1 square foot. Note that, the tilting
up and zooming out rules (rules 2 and 3) will always result in
reduction of unobserved area. The only rule likely to resultin
an increase in the unobserved area is rule4, but by performing
a convergence check we ensure that this does not occur. Note
that the panning step is important to ensure that the loss of

coverage resolution is shared by cameras beyond the perimeter
of a gap created by removal of the tracking camera. In other
words, the cameras adjacent to the newly created gap are able
move some of the unobserved area into the vicinity of cameras
farther from the gap. As a result the cameras have to tilt and
zoom out lesser and this results in reduction in the loss of
coverage resolution.

Once the new parameters are determined, they are dis-
tributed to all cameras withinAL, which then make a single
adjustment directly to the new configuration. When the target
leaves the FOV of the currently tracking camera and a new
reconfiguration event is triggered, the cameras that are not
involved in the new reconfiguration return to their initial state.

IV. PERFORMANCEEVALUATION

In this section, we evaluate the performance of our algo-
rithm in simulations.

A. Simulation model

We simulate an area of1 Square Kilometer and deploy cam-
eras at different densities to monitor this region. A standard
way to define camera density would be the number of cameras
per unit area. But this is not meaningful with PTZ cameras
that have different coverage resolutions at different settings of
tilt and zoom. Hence in this paper, we analyze the impact of
network density by measuring density in relation to a reference
deployment. Consider the FOV as depicted in Fig. 2, for a
camera which is tilted up and zoomed out completely such
that the area covered by the camera is maximized and let us
denote this as ˆFOV . We define unit network density to be a
deployment with the value ofh set equal tol in ˆFOV and
the value ofw set to be equal tob1 + b2 in ˆFOV . Let w′

and h′ denote the values forw and h respectively in a unit
density deployment. Under this deployment density, the initial
state for the camera system will be such that the coverage
resolution offered by any camera cannot be increased any
further. As a result, whenever a camera has been assigned
for tracking, the system cannot be completely covered any
more. With this deployment density as reference, we define the
camera network density to beD whenw = w′

√
D

andh = h′

√
D

.
The cameras are deployed at a height 8 feet from the ground.

Under the highest coverage resolution offered by each camera,
the values ofb1, b2 and l for the camera’s FOV (Fig. 2) are
approximately25 feet, 3 feet and29 feet respectively. Under
the lowest coverage resolution offered by each camera, the
values ofb1, b2 and l are equal to1 foot, 1 foot and2 feet
respectively. As a result in a unit density deployment,w and
d are set to be equal to25 feet and29 feet respectively.
We consider a single target in the system at a time that is
introduced at different locations, mainly near the center of the
network. We consider two different target speeds, 2.5mph (A
walking target) and 7.5mph (A running target).

B. Impact ofAL on coverage resolution forD > 1

Here, we analyze the impact of the size of the area con-
sidered for reconfiguration (AL) on the coverage resolution
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Fig. 5. Impact ofAL on coverage resolution. The y-axis shows the
normalized coverage resolution for all points inAM .

at various network densities greater than1. Recall that at
camera density of1, the network is observing the entire area at
minimum coverage resolution and as a result the area cannot
be completely covered when one or more cameras arelost for
tracking a target. Hence for the case of unit network density,
we subsequently evaluate the loss of coverage as a function
of AL.

In Fig. 5, we show the impact ofAL on coverage resolution.
The areaAL is considered as a circle of radiuszh around the
location of the camera assigned to track the target, whereh is
the separation between adjacent rows of cameras. The x-axis
in Fig. 5 represents the radius of this circle for different values
of z. The coverage resolution is normalized with respect to the
coverage resolution ofAM in the initial state (RI(AM )) as a
reference point. LetR(AM ) denote the coverage resolution
achieved in simulation for a particular trial of the experiment.
The normalized coverage resolution for that trial is then equal
to R(AM )

RI(AM ) . The values for normalized coverage resolution
depicted in Fig. 5 are based on an average over1000 trials
for each value ofz andD. We observe that the improvement
in resolution coverage starts decreasing significantly at values
of z > 2 and this remains true at all the evaluated network
densities.

Note that by definitionR(A) reflects the lowest coverage
resolution among all points in an areaA. In order to understand
the coverage resolution for a majority of points withinAL,
in Fig. 6 we use the75th percentile of coverage resolution
among all points inAL as a metric for evaluating the impact of
locality size on coverage resolution. In other words only25%
of points within AL have a lower coverage resolution than
those shown in Fig. 6. We observe from Fig. 6 that coverage
resolution for a majority of points is significantly higher than
those shown in Fig. 5.

C. Impact ofAL on loss of coverage atD = 1

In this subsection, we evaluate the impact of the size of
the area considered for reconfiguration (AL) on the loss of
coverage atD = 1. Note that atD = 1, the cameras are
unable to zoom out or tilt up to cover any more space. The
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Fig. 6. The impact ofAL on coverage resolution. The y-axis shows the75th
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the original gap created by thelossof the tracking camera in a network with
unit density.

cameras can only pan towards a gap to decrease the size of
the largest gap and spread the uncovered space more evenly
across the network. With respect to the stepsR1 − R4 for
the reconfiguration algorithm, we note that stepsR2 andR3
are inactivated. Also stepR4 cannot result in any decrease in
unobserved area. So we use a heuristic and modifyR4 so that
the pan parameter of a camera is adjusted to move towards the
largest adjacent gap only if the area of that gap can decreaseby
1 square foot while not increasing the total uncovered area.
The algorithm terminates when no camera’s pan parameters
can be adjusted in a single round or in a maximum of10
rounds to avoid oscillations.

Fig. 7 shows the impact ofAL on the size of the largest
gap in the area being monitored. We notice that as the size
of the local area increases, the size of the largest gap also
decreases. This is due to the increasing number of smaller
gaps throughout the larger area.

D. Impact of target speed on stability of the system

The speed of a moving target is expected to influence the
frequency of reconfiguration events. We simulate targets attwo
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speeds moving through the network and determine the time
between successive reconfiguration events. Fig. 8 shows the
25th, 50th and75th percentile of time between reconfiguration
events for2 target speeds, a walking speed and a running
speed, at different camera densities. For example atD = 2,
there is an average of5 seconds between two reconfiguration
events at a running speed which implies that the time for
reconfiguration certainly needs to be smaller than this and
greater the difference, better the stability of the system.This
signifies the importance of having smaller reconfiguration
times and highlights the merit of choosing a local approach and
performing just a single PTZ adjustment per reconfiguration
event.

V. CONCLUSIONS ANDFUTURE WORK

We have considered a network of PTZ cameras used for
monitoring a large region and described a local algorithm
that can track targets at a high resolution while maximizing
the coverage resolution at all non-target points. We evaluated
the performance of our algorithm in simulations and analyzed
the impact of network density and the size of the area over
which the reconfiguration is performed on the achievable
coverage resolution. We observe that by progressively increas-
ing the size of the locality over which the reconfiguration
is performed, the improvement in coverage resolution starts
decreasing significantly, thus highlighting the merits of a
localized approach. As a result, we are able to track targets
at a high resolution, observe the entire space at an acceptable
resolution, and keep the observing cameras stable for long
periods of time by only performing the reconfiguration in a
local area around the target.

Completely decentralized systems for determining cover-
age where each camera successively makes adjustments and
communicates this change to neighboring cameras before
converging to an optimum configuration [7] have an advantage
in that they do not rely on a single camera for computing
the reconfiguration parameters. However, when dealing with
mechanical systems like PTZ motors that consume significant
time to affect a change, it is more suitable to adopt a strategy
where the nodes are able to reach a final configuration within

a single round. Hence we have opted for a non-iterative
strategy that relies on computation at a single node and
then propagating the new parameters back to the respective
cameras.

Our initial analysis has thrown open several interesting
avenues for further research. In this paper, we have considered
the case of a single target being tracked. We would like
to modify our algorithm to handle multiple targets in the
system and evaluate its performance. In the future, we would
also like to demonstrate a working prototype of our dynamic
reconfiguration system at a small scale, using a wireless
network of PTZ cameras integrated with local processing
capability. We are also interested in integrating an active
camera based face recognition system such as [9], [10] with
our reconfiguration system for maintaining coverage at high
quality while performing human identification.

In this paper, we have assumed the existence of a target
detection algorithm that is also able to localize the target.
We also rely on a network level service for reliably electing
a camera that is responsible for tracking a target. Designing
network services for target detection and camera assignment in
a way that is appropriate for a distributed implementation,and
integrating those with the reconfiguration algorithm presented
in this paper is also a subject of our ongoing research.
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