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Abstract—In this paper, we describe how information obtained 8 cameras, we analyze achievable system performance under
frombmmgple Vie\lf(\;S USinlg glnetwgrr of %ameras can be effectely  different camera densities and view availabilities.
combined to yield a reliable and fast human action recognitn P ; :
system. We dgscribeascore-based fusion technique for cog'mhng 2. Local_ processing: In Order .to.aVO'd overloading the
information from multiple cameras that can handle arbitrary ~network with too much data, it is important to ensure that
orientation of the subject with respect to the cameras. Our individual frames are locally processed and only relevatad
fusion technique does not rely on a symmetric deployment otie  is sent to a fusion center for final classification [15]. At the
cameras and does not require that camera network deployment same time, in the context of real-time recognition, it is @ty

configuration be preserved between training and testing phses. ; ;
To classify human actions, we use motion information charac important to keep the computational overhead low so that dat

terized by the spatio-temporal shape of a human silhouettever an be locally processed at a high enough frame rate. Lower
time. By relying on feature vectors that are relatively easyto frame rates of processing will lead to lower data sampling
compute, our technique lends itself to an efficient distribbed rate and key motion information will be lost resulting in

implemelntationhwhile fmaintainingfa high frame c%pturglﬁrate. lower classification accuracy. Therefore, there is a need to
We evaluate the performance of our system under different o\qiq computationally expensive approaches for localufeat

camera densities and view availabilities. Finally, we demustrate f In thi h h dl i
the performance of our system in an online setting where the €Xtraction. In this paper we show how aggregated locality-

camera network is used fo identify human actions as they are Specific motion information obtained from the spatio-tensho
being performed. shape of a human silhouette, when used concurrently with
information from multiple views using our fusion strategy,
can yield good classification rates. Our feature descsptor
Real time recognition of human activities is increasinglyise only size-normalized binary background subtractedamum
becoming important in the context of camera based surveiithouette images, divide them into blocks and capture the
lance applications to quickly detect suspicious behavigria spatio-temporal shape of individual blocks using first and
the context of several interactive gaming applicationsthis  second order image moments. Relying on such computation-
paper we design and evaluate a wireless camera network bagigdsimple operations for local processing lends itselfato
action recognition system that can be used to classify humetficient distributed implementation.
actions in real-time. While camera networks have the p@ent 3. Real-time operation: We evaluate the performance of
to increase the accuracy of action recognition by providingur system in a real-time setting where data extracted from
multiple views of the scene, using a multi-camera netwokle cameras is transmitted and actions are recognized ahile
for real time action recognition poses several challendés. subject is performing the different actions. In such a sdepa
now describe these challenges and our contributions t@vathe start and end times for each action are unknown and
addressing them. also the data collected by the different cameras may not
A. Contributions be perfectly synchronized in time. We implement our local
feature extraction technique on an embedded camera network
assembled using LogitechD00 cameras and an Intel Atom
rocessor based computing platform and use this system to
é@ognize actions in a real-time setting.

I. INTRODUCTION

1. Combining multi-view information: When using infor-
mation from multiple views for action recognition we not
that the angle made by the subject with respect to a cam
while performing an action is not known. Pose estimation of
human subject based on body posture itself is a hard probl8m Related work
and it is therefore not feasible to assume that information.Human action recognition has received significant research
In this paper, we describe a fusion technique that effdgtiveattention over the past several years [8], [13], [2] and many
combines inputs from cameras capturing different views ofdad these systems have exploited spatio-temporal featunes f
subject without knowledge of subject orientation. Moreagveaction recognition [6], [10], [4], [7]. For example in [4] ape-
the cameras acquiring data may not be deployed in any sytimme shapelets based on human silhouettes are used fon actio
metry. It is not feasible to assume that entit® degree view recognition and in [7] the shape of a human silhouette over
for the action being performed is available. It is also isfble time is characterized for human action recognition. Quu$oc
to assume that camera configuration stays the same betweehis paper is on combining spatio-temporal shapes etgiina
the training phase and the actual testing phase. Only data frfrom multiple views and performing this classification irake
some viewing directions may be available and additionaltyme. In [12], spatio-temporal interest points are comgute
some of these views may be partially occluded. We shawn action being performed and a histogram based approach
how our fusion technique can seamlessly handle these caseapplied that uses the number of spatio-temporal cubdids o
Using synchronous data collected from a network with up &ach type in a region surrounding the interest points tesiflas
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Fig. 1. The8 camera layout for our experiments. The subject is shown at

location z and can be anywhere within the square region. The relativ®@ rjg 2 vView-angled of cameraC with respect to action being performed.
orientations are assumed to be known but may not conformetsymmetric  The gupject is at poinZ and performing an action while facing direction
arrangement shown. Different subsets of cameras may balyadr fully  ghown by rayZ B. The view-angle is measured in a clockwise direction from
occluded. the ray ZD parallel to the optical axis of the camera.

individual actions. However, the histogram based approach
loses information about the relative location of motion folewer cameras. A subject can be performing any one of the
each action, which is an important basis for classification following 10 actions in any (unknown) orientation with respect
our approach. to the cameras: standing still, clapping hands, waving ome a

Several multi-camera based approaches have also been fegt or right), waving two arms, punching, jogging in place
posed for action recognition [3], [1], [9], [11], [15], [12Pome jumping in place, kicking, bending and underarm bowling.
of these techniques such as [9] and [11] have used featiYe useA,, (1 < x < 10) to denote these actions. We have
descriptors that are invariant to the view point for actioassumed that each action is performed at approximately the
recognition. By way of contrast, in this paper we train viewsame pace and that there is only one subject within the region
specific classifiers for each action. In [14], [16], a seqeesic R at any given time. The subject can be at an any location
3D visual hulls generated from multiple views have been usedthin regionR but this location is fixed for the duration of the
for action recognition. In [1], a human body model is used taction. The objective of the system is to recognize the actio
extract feature descriptors that describe motion of imtlisi being performed based on data captured by the cameras at a
body parts. A key difference of our work lies in the practicasampling rate off fps (frames per second).
aspects of implementing a real time action recognitionesyst  In our specifc experimental setting, we use a network of
We have relied on computationally simpler operations taat cup to 8 cameras deployed over a square regiors®feet by
provide higher frame rate for processing and also decreasgkefeet. The cameras are denoted@s(l < i < 8) and are
communication overhead. deployed along the square region at a heigh8 déet from

Fusion strategies for multi-view action recognition havéhe ground. The subject can be at any location within this
been presented in [5]. In contrast to the best view classifi@gion such that each camera is able to capture the complete
presented in [5], our technique uses data from all availabifeage of the subject (Fig. 1). We use the Logit@€io0 USB
views for classification and we highlight the robustnesswaf ocameras for our experiments with data sampledOafps and
approach by considering cases when the best view(s) are @ath frame captured &tl0 x 480 resolution.
available. The view combination method presented in [5] andWe defineview-angleof a camera with respect to an action
[12] combines feature vectors from individual cameras teefobeing performed as the angle made by the optical axis of the
performing the classification and this imposes a requiremexamera with the direction along which the subject performs
on the configuration of cameras to be identical between ttiee action sequence. View-angle is measured in the cloekwis
test and training phases. In contrast, we combine inputs fralirection from the ray originating at the subject locatidwait
different views at a score-level by exploiting the relativés parallel to the optical axis of the camera (lllustrated in
orientation between cameras and as a result, we do not eeqéiiilg. 2). We divide the view-angle range 6f— 360° into NV,
the camera configuration to be preserved between trainidg alifferent sets by considering that different instances e t
test phases. same action captured with small view-angle separations are
C. Outline of the paper likely to appear similar. For our specific experimentaliseft

In Section2, we describe our system model and probleff€ considerNy =8, but we note thatV, can be chosen

statement. In SectioB, we describe our action recognition"dependent of the number of the cameras in the system. The
system. In Sectiont, we evaluate the performance of ouf View-angle sets are denoted & (1 < j < 8) and are

system. In sectiors, we present conclusions and state futurlustrated in Fig. 3 for camerd’. For example, in Fig. 3,
work. when the subject is facing the region between rays and

Z B, the camera’ provides viewls.
Il. MODEL AND PROBLEM STATEMENT From here on, we say that a came¥a provides viewV;

Our system consists df cameras that provide completelyof an action being performed if the view-angle 6f with
overlapping coverage of a regioR from different viewing respect to the action being performed belongs tol5etAt
directions. The relative orientations between the camaras any given instant, it is not necessary that data from all siew
assumed to be known, but the cameras may not conformUg(1 < j < 8) are available. For instance, some cameras may
the symmetric arrangement shown in Fig. 1 and there may et be active. It is also possible in certain deploymentsttiea



Fig. 4. Extracting local feature descriptors. A bounding tieat encloses
all background subtracted silhouette is drawn around eiftobugtte. The box
is then scaled to a standard size 3900 by 100 pixels and divided inta36
blocks. Only binary information is retained for each bloélar each block
in each frame, we obtain the zeroth, first and second ordegenmaoments.
Also, for each block we compute the average motion energy.

Fig. 3. The8 view-angle sets for camei@ with respect to the action being
performed. The subject is located at paihand could be facing any direction.
The view-angles of camer&@ with respect to the action are grouped irgo
sets as shown in the figure. For example, when the subjectiigféhe region
between raysZ A and Z B, the cameraC' provides viewVs.

c Q Ci Cs
angle between the principal rays of adjacent cameras aré sma % VO
enough and therefore the cameras provide the same views of
the action being performed. Nyt

I1l. SYSTEM DESCRIPTION
In this section, we describe our action recognition system. el < v, 'z B Je
We divide our presentation intd parts: () extraction of fea-
ture descriptors,2) collection of training data and3) fusion
of inputs from distributed cameras for action classifiaatio
A. Extraction of local feature descriptors OA Q@
Consider a window off’ consecutive frames acquired by c. c,
a camera that contain an action being performed. By sub- S

:LaeCiTJ%ng? g:l’(]il(;?rﬁggdtfféognctleoar::r;rferag(?r'a::qz dSII,QO[;J()elEtﬁ(?iéf' 5. Collection of training data. The subject is at theteeof the network
. . performs each training action while facing the regiotwben raysZ A

box that envelopes all the background subtracted silhesietand ZB. All cameras record the data. Because of symmetry, dateated

is determined and drawn around each of theextracted N cameraC; corresponds to view; (vi:1<i<8)

silhouettes as illustrated in Fig. 4. Only binary infornoati

is retained for each box (each pixel in the box is either part . . .
of the human silhouette or outside of it). The bounding box&§cond windows from the training samples corresponding to

and the images within them are then normalized to a stand&&Fh action and obtain feature descriptors as describétein t
size of300 pixels by 100 pixels. Each box is then subdividedPr€vious subsection for each window. Corresponding to each
into m smaller blocks to enable the charecterization of Iocali?tt'On class and for each view, a two-class Linear Discramin
specific motion information. (In this paper we have divide@nalysis based projection vector is obtained by grouping
each box into & by 6 grid yielding 36 blocks). For each together data belonging to that particular action agaiasa d
block in each of theF” frames, we compute the zeroth, firsffom all other actions corresponding to the respective viat
and second order image moments that capture the shape'of correspond to the LDA projection vector corresponding to
the silhouette. Using this feature descriptor we are able 310N Aa(1 < a < 10) using data from view’;(1 < j < 8).
characterize the locality specific motion information irclea C. Action classification

block of the human silhouette. We now describe how feature vectors are generated at
B. Collection of training data each camera for a test action and how these are combined
In order to collect training data, videos of subjects pete generate a classification output. Consider that the stubje
forming each action are collected with the subject standing performing a test action is at a poiat as shown in Fig. 6.
the center of the square region and facing a reference camiega the view provided by camer&’..; with respect to the
(cameraC, in Fig. 5). The actions are performed at differenaction being performed b&; (In Fig. 6, ref = 1). Note
view-angles all of which belong to séf with respect to the that V; cannot be determined b{,.;. However, the angles
reference camer@;. Because of symmetry, data collected i, ; between the principal axes of each pair of caméras)
cameraC; corresponds to view; (Vi : 1 < < 8).50 training is known. And usingf,.;s : (1 < s < N.), relative to
action sequences are obtained for each action frognaéws. each of theN, possible viewsV;(1 < j < N,) that camera
Note that the symmetry is introduced only for ease of trajninC'..; can provide for the action being performed, the views
data collection. During testing, the symmetry does not hapeovided by all other cameras can be computed. This gives
to be maintained and the subject does not have to be at thse to a set) of NV, possible configurations, which we denote
center. as{¢r},1 <k < N,. We let¢i denote the view provided by
Once the training data is collected, we extract sev8ralcameraC; in configurationk.



Ce C under each configuration. For each actibf the net matching
score S, i, Which represents the likelihood that the test data
| from all cameras in the system corresponds to actignin

o o A configurationg;, is computed as follows:
Nc
z % Sa,k = Zsa,k,i (3)
c, i=1
LK After the configuration specific scores are generated, we
compute the likelihood that the test data corresponds toract
A, by determining the maximum of,, , over all configura-
tions in the set). We denote this as,,.
ﬁ ﬁ S = max(Sa k)k=1.8 4)
C

CS

6

The actionAr(1 < F < 10), with the highest score is

Fig. 6. Determining configuration set for subject locatign ConsiderCy  classified as the action corresponding to the test data where
as the reference camera. The real orientation of the subijiglctrespect to . det ined foll

the reference camera is not known. But the angles between the principal IS determined as follows.

axes of each pair of camerds, s) is known. Then for each possible view F— S 5
V;(1 < j < 8) that cameraC; can provide for the action being performed, = argmaz(Sa)a=1..10 (5)
the views provided by other available cameras can be detethriesulting in

N possible configurations. IV. PERFORMANCE EVALUATION

In order to systematically evaluate the performance of our
action recognition system, we first present the classifioati
¢ = {{o1}, ., {dno}} (1) performance using data collected by theamera network and
({6}, ... 6, .., {oh oNe1y @) analyzed offline. Using this data, we evaluate the perfomaan
Lo L S AN = BN when views from different subsets of cameras are occluded
Note that if the cameras retained the symmetric deploymeéncluding the case when data from cameras with most favor-
during test, the& configurations would have followed a cyclicalable views for identifying the specific action being perfewan
shift resulting in: are suppressed. Then we show how our fusion scheme can
. be altered to handle partial occlusions in all cameras, ne.
o ={{, Vs, Ve}, {2, Vi, .. ik (W, VA, Vi) camera has completepview of the subject but it is required tha
However, the relative orientations between cameras ndegftial views available from a subset of cameras be combined
not be symmetric and two camerasand s can provide the for action recognition. Finally, we describe the implenatioin
same view with respect to an action being performed,jf of our system on an embedded camera network and evaluate
becomes very small. For illustration, suppose cameras @3 performance n real-time where actions are classifietes t
and C2 provide the same views with respect to a subjede being performed.
performing the action. In this case, tReonfigurations would A. Fewer cameras

be: We first collect test data from all th8 cameras with
_ different subjects performing a total &f0 test actions of
¢ = VL Ve Voo Vol {V2, Vo, Vi, o Vi o} each class, at different locations in the network. Then in
Note that in the scenario where certain cameras are absamater to evaluate the system performance with occlusioes, w
or if their views are completely occluded. now reflects the selectively use data from subset of cameras. We note down the
number of cameras from which data is available and each gebund truth for each test action to determine the classifica
¢r In ¢ contains fewer number of elements. accuracy for our system. In the offline analysis, we assuie th
Once the configuration set is determined, we use theeach test action snippet is exaclyseconds that is entirely
feature descriptor generated from the test data at evergancomposed of the same action.
to obtain matching scores under every configuration. ThisIn Fig. 7, we plot the average classification accuracy of
is done as follows. Consider score generatiin,; with our system when different number of views are completely
respect to actiord, for data acquired by camer@; under occluded. For the results shown in Fig. 7, the cameras whose
configurationpy,. Let¢: = j, i.e., camera’; is associated with data is unavailable are determined randomly. We note that
view V; under configurationp;. Let F'V; denote the feature classification accuracies are relatively high 90%)with up
vector computed for test data generated by car6erén order to 4 cameras in the system.
to generate scor§, 1 ;, we determineF’V; x A, ; , calculate ~ We then analyze the robustness of our system by computing
the distance of this product from the mean LDA score fdhe clasification accuracies when data from cameras that are
action A,, and then normalize the result to a range[®fl] likely to yield the most suitable views for each action ar¢ no
(0 indicates no match whilé indicates perfect match). Forused. We order the favorable views for identifying eachaacti
each action4,, S, 1, represents the likelihood that test datdased on the average motion energy observed in the training
from camerai corresponds to actiod, in vonfigurationg,. dataset for those actions from a given view. We define the
Similarly, a matching score is generated for each canigra average motion energyEf ) for a given training sample
in all configurations{¢, },1 < k < 8. If certain cameras have corresponding to an actioﬁa from a camera providing view
failed or occluded as shown in Fig. 6, then the matching score; as the average number of pixels that have changed sign in
corresponding to only the available cameras are computaetessive frames of the training sample. [Egt; denote the
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data from all actions when different number of views are cletefy occluded. computed over test data from all actions when data from casngroviding

The cameras whose data is unavailable are determined réyndom 1 to 4 most favorable views for each action are suppressed and50fity of
the data is available from the other cameras.
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« Suppose data fror@’; is used for determining the match
score for actionA4, under view V;, then we retrain

Average Recognition
(]
[s=]

10 ‘ our classifier to obtain.D A/, ; based only on training
0 . . . data from blocks in the sefB, ;}. We useLDA] ; to
0 1 2 3 4 determine the match scores. For the results presented in
Number of most favorable views removed Fig. 9, we sets = 50.

Fo 8 A \assificati . X aver test We note that if the regions of the silhouette that are most
o S e e ooty st pertinent for recognizing a given action are blocked froin al
views for each action are suppressed. available VIEWS, then it is difficult to recognize that aatio
The objective of this particular experiment is to evaludte t
achievable recognition rate, when data suitable for reizagm
average ofE; ; computed over all training samples available given action is available at least from a partial set of casie
for the corresponding actiod, and viewV;. Let ¢)¢ denote For the results shown in Fig. 9, we retain only the data froen th
the ith favorable view for actiom: determined by ordering blocks in{B,_ ;(50)} and occlude all other data for each action
E, ; over all views, withy{ being the most favorable. Fora and viewV;. We then additionally suppress all data from
each test action sample belonging to actibn we determine 0 to 4 most favorable views and determine the recognition
the respective cameras that provide these views. Fig. 8sshagcuracies shown in Fig. 9.
the recognition accuracy when data from cameras providigg Real-time performance evaluation

'1|'htgsi Teossljlt?vsor:g\?\/letr:lzﬁvg/efﬁrﬁﬁgg ?ﬁé'ogegtr evisel\j\?spraefesed'kn order to evaluate the real-time performance of our system
e implemented the background subtraction and local featur

?g:ggr?;et;l lnr:‘iorrr]ng[lc(())n r:cirt(i)cm ;égﬁ:a\élevt\ﬁeibabriie g?@q:ﬁg'd%escriptor extraction on an embedded camera network assem-
y g 9 Y yhig bled using Logitecl9000 cameras and an Intel Atom processor

significance of multi-vieV\_/ fusion. Accuracy of the systenl g computing platform equipped with a2.11 wireless
is observed to progressively decrease as more numbercg d for communication. We deployed a sysfemJ‘sz 5

favorablle VIEWS "_ﬂe removed. cameras over thé0 by 50 region (specifically camerass C1,
B. Partial occlusions C3, C5, C6, C7 in Fig. 1). Each subject performs one of the
In this subsection, we consider the case where some camei@sons stated in Section |l for a duration tf seconds, then
have partial view of the subject but none have full view odwitches to another action from the list fé6 seconds and
the subject performing an action. To handle partial ocolusi this is repeated times for each subject.
we make an assumption that the regions of occlusion in eachrhe distributed cameras perform local processing on an
camera are known. Then we modify our fusion scheme in ta@alysis window of3 seconds. However, it is important to
following way to perform classification. note that the start of an action may not exactly align with the
» Let £, ;, denote the average motion energy per block start of an analysis window. Since an action can happen at
based on all training data available for the correspondilagy time and the system needs to be continuously acquiring
action A, and viewV;. and processing data, we apply the feature vector extraotion
« Let {B, ;(s)} represent the set of toght of the blocks analysis windows with an overlap 8fseconds. In other words,



we only move the window by second each time. The embedextraction and fusion technique in an embedded camera net-
ded cameras run the NTP protocol for clock synchronizatiavork and by classifying actions as they are being performed.
in order to enable the computation of feature descriptors byln future, we would like to relax our assumptions with
different cameras over synchronous time windows. Howeveespect to knowledge of occluded areas of a silhouette and
we empirically note a time synchronization error of approxinstead plan to use the information from multiple views to

mately 50 mS between the different cameras. reliably detect occluded regions of a foreground object. We
also plan to apply our action recognition system towards
Recognition accuracy (% recognizing long duration activities and activities invialg
Steady state 852 more than one subject by modeling the sequence of estimated
Transition state 70.1 actions by our system.
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We tested the performance of our system using data col-
lected from an8 camera network. Our system is able to
achieve an accuracy ¢f5% in classifying actions when all
cameras are present. We showed that our system can tolerate
non-availability of data from cameras that provide thest
views for classifying a given action. We also described how
the locality-specific feature descriptors enable our syste
handle partial occlusions. We then tested the performafice o

our system in an online setting by implementing our feature



