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Abstract—In this paper, we describe how information obtained
from multiple views using a network of cameras can be effectively
combined to yield a reliable and fast human action recognition
system. We describe a score-based fusion technique for combining
information from multiple cameras that can handle arbitrar y
orientation of the subject with respect to the cameras. Our
fusion technique does not rely on a symmetric deployment of the
cameras and does not require that camera network deployment
configuration be preserved between training and testing phases.
To classify human actions, we use motion information charac-
terized by the spatio-temporal shape of a human silhouette over
time. By relying on feature vectors that are relatively easyto
compute, our technique lends itself to an efficient distributed
implementation while maintaining a high frame capture rate.
We evaluate the performance of our system under different
camera densities and view availabilities. Finally, we demonstrate
the performance of our system in an online setting where the
camera network is used to identify human actions as they are
being performed.

I. I NTRODUCTION

Real time recognition of human activities is increasingly
becoming important in the context of camera based surveil-
lance applications to quickly detect suspicious behavior and in
the context of several interactive gaming applications. Inthis
paper we design and evaluate a wireless camera network based
action recognition system that can be used to classify human
actions in real-time. While camera networks have the potential
to increase the accuracy of action recognition by providing
multiple views of the scene, using a multi-camera network
for real time action recognition poses several challenges.We
now describe these challenges and our contributions towards
addressing them.

A. Contributions

1. Combining multi-view information: When using infor-
mation from multiple views for action recognition we note
that the angle made by the subject with respect to a camera
while performing an action is not known. Pose estimation of a
human subject based on body posture itself is a hard problem
and it is therefore not feasible to assume that information.
In this paper, we describe a fusion technique that effectively
combines inputs from cameras capturing different views of a
subject without knowledge of subject orientation. Moreover,
the cameras acquiring data may not be deployed in any sym-
metry. It is not feasible to assume that entire360 degree view
for the action being performed is available. It is also infeasible
to assume that camera configuration stays the same between
the training phase and the actual testing phase. Only data from
some viewing directions may be available and additionally
some of these views may be partially occluded. We show
how our fusion technique can seamlessly handle these cases.
Using synchronous data collected from a network with up to

8 cameras, we analyze achievable system performance under
different camera densities and view availabilities.

2. Local processing: In order to avoid overloading the
network with too much data, it is important to ensure that
individual frames are locally processed and only relevant data
is sent to a fusion center for final classification [15]. At the
same time, in the context of real-time recognition, it is equally
important to keep the computational overhead low so that data
can be locally processed at a high enough frame rate. Lower
frame rates of processing will lead to lower data sampling
rate and key motion information will be lost resulting in
lower classification accuracy. Therefore, there is a need to
avoid computationally expensive approaches for local feature
extraction. In this paper we show how aggregated locality-
specific motion information obtained from the spatio-temporal
shape of a human silhouette, when used concurrently with
information from multiple views using our fusion strategy,
can yield good classification rates. Our feature descriptors
use only size-normalized binary background subtracted human
silhouette images, divide them into blocks and capture the
spatio-temporal shape of individual blocks using first and
second order image moments. Relying on such computation-
ally simple operations for local processing lends itself toan
efficient distributed implementation.

3. Real-time operation: We evaluate the performance of
our system in a real-time setting where data extracted from
the cameras is transmitted and actions are recognized whilea
subject is performing the different actions. In such a scenario,
the start and end times for each action are unknown and
also the data collected by the different cameras may not
be perfectly synchronized in time. We implement our local
feature extraction technique on an embedded camera network
assembled using Logitech9000 cameras and an Intel Atom
processor based computing platform and use this system to
recognize actions in a real-time setting.

B. Related work
Human action recognition has received significant research

attention over the past several years [8], [13], [2] and many
of these systems have exploited spatio-temporal features for
action recognition [6], [10], [4], [7]. For example in [4] space-
time shapelets based on human silhouettes are used for action
recognition and in [7] the shape of a human silhouette over
time is characterized for human action recognition. Our focus
in this paper is on combining spatio-temporal shapes estimated
from multiple views and performing this classification in real-
time. In [12], spatio-temporal interest points are computed for
an action being performed and a histogram based approach
is applied that uses the number of spatio-temporal cuboids of
each type in a region surrounding the interest points to classify
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Fig. 1. The8 camera layout for our experiments. The subject is shown at
locationz and can be anywhere within the square region. The relative camera
orientations are assumed to be known but may not conform to the symmetric
arrangement shown. Different subsets of cameras may be partially or fully
occluded.

individual actions. However, the histogram based approach
loses information about the relative location of motion for
each action, which is an important basis for classification in
our approach.

Several multi-camera based approaches have also been pro-
posed for action recognition [3], [1], [9], [11], [15], [12]. Some
of these techniques such as [9] and [11] have used feature
descriptors that are invariant to the view point for action
recognition. By way of contrast, in this paper we train view-
specific classifiers for each action. In [14], [16], a sequence of
3D visual hulls generated from multiple views have been used
for action recognition. In [1], a human body model is used to
extract feature descriptors that describe motion of individual
body parts. A key difference of our work lies in the practical
aspects of implementing a real time action recognition system.
We have relied on computationally simpler operations that can
provide higher frame rate for processing and also decrease
communication overhead.

Fusion strategies for multi-view action recognition have
been presented in [5]. In contrast to the best view classifier
presented in [5], our technique uses data from all available
views for classification and we highlight the robustness of our
approach by considering cases when the best view(s) are not
available. The view combination method presented in [5] and
[12] combines feature vectors from individual cameras before
performing the classification and this imposes a requirement
on the configuration of cameras to be identical between the
test and training phases. In contrast, we combine inputs from
different views at a score-level by exploiting the relative
orientation between cameras and as a result, we do not require
the camera configuration to be preserved between training and
test phases.
C. Outline of the paper

In Section2, we describe our system model and problem
statement. In Section3, we describe our action recognition
system. In Section4, we evaluate the performance of our
system. In section5, we present conclusions and state future
work.

II. M ODEL AND PROBLEM STATEMENT

Our system consists ofNC cameras that provide completely
overlapping coverage of a regionR from different viewing
directions. The relative orientations between the camerasare
assumed to be known, but the cameras may not conform to
the symmetric arrangement shown in Fig. 1 and there may be
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Fig. 2. View-angleθ of cameraC with respect to action being performed.
The subject is at pointZ and performing an action while facing direction
shown by rayZB. The view-angle is measured in a clockwise direction from
the rayZD parallel to the optical axis of the camera.

fewer cameras. A subject can be performing any one of the
following 10 actions in any (unknown) orientation with respect
to the cameras: standing still, clapping hands, waving one arm
(left or right), waving two arms, punching, jogging in place,
jumping in place, kicking, bending and underarm bowling.
We useAx, (1 ≤ x ≤ 10) to denote these actions. We have
assumed that each action is performed at approximately the
same pace and that there is only one subject within the region
R at any given time. The subject can be at an any location
within regionR but this location is fixed for the duration of the
action. The objective of the system is to recognize the action
being performed based on data captured by the cameras at a
sampling rate off fps (frames per second).

In our specifc experimental setting, we use a network of
up to 8 cameras deployed over a square region of50 feet by
50 feet. The cameras are denoted asCi (1 ≤ i ≤ 8) and are
deployed along the square region at a height of8 feet from
the ground. The subject can be at any location within this
region such that each camera is able to capture the complete
image of the subject (Fig. 1). We use the Logitech9000 USB
cameras for our experiments with data sampled at20 fps and
each frame captured at640 × 480 resolution.

We defineview-angleof a camera with respect to an action
being performed as the angle made by the optical axis of the
camera with the direction along which the subject performs
the action sequence. View-angle is measured in the clockwise
direction from the ray originating at the subject location that
is parallel to the optical axis of the camera (Illustrated in
Fig. 2). We divide the view-angle range of0 − 360o into Nv

different sets by considering that different instances of the
same action captured with small view-angle separations are
likely to appear similar. For our specific experimental setting,
we considerNV = 8, but we note thatNv can be chosen
independent of the number of the cameras in the system. The
8 view-angle sets are denoted asVj , (1 ≤ j ≤ 8) and are
illustrated in Fig. 3 for cameraC. For example, in Fig. 3,
when the subject is facing the region between raysZA and
ZB, the cameraC provides viewV2.

From here on, we say that a cameraCi provides viewVj

of an action being performed if the view-angle ofCi with
respect to the action being performed belongs to setVj . At
any given instant, it is not necessary that data from all views
Vj(1 ≤ j ≤ 8) are available. For instance, some cameras may
not be active. It is also possible in certain deployments that the
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Fig. 3. The8 view-angle sets for cameraC with respect to the action being
performed. The subject is located at pointZ and could be facing any direction.
The view-angles of cameraC with respect to the action are grouped into8
sets as shown in the figure. For example, when the subject is facing the region
between raysZA andZB, the cameraC provides viewV2.

angle between the principal rays of adjacent cameras are small
enough and therefore the cameras provide the same views of
the action being performed.

III. SYSTEM DESCRIPTION

In this section, we describe our action recognition system.
We divide our presentation into3 parts: (1) extraction of fea-
ture descriptors, (2) collection of training data and (3) fusion
of inputs from distributed cameras for action classification.
A. Extraction of local feature descriptors

Consider a window ofF consecutive frames acquired by
a camera that contain an action being performed. By sub-
tracting the background from each frame, the silhouettes of
the subject performing the action are extracted. A bounding
box that envelopes all the background subtracted silhouettes
is determined and drawn around each of theF extracted
silhouettes as illustrated in Fig. 4. Only binary information
is retained for each box (each pixel in the box is either part
of the human silhouette or outside of it). The bounding boxes
and the images within them are then normalized to a standard
size of300 pixels by100 pixels. Each box is then subdivided
intom smaller blocks to enable the charecterization of locality
specific motion information. (In this paper we have divided
each box into a6 by 6 grid yielding 36 blocks). For each
block in each of theF frames, we compute the zeroth, first
and second order image moments that capture the shape of
the silhouette. Using this feature descriptor we are able to
characterize the locality specific motion information in each
block of the human silhouette.
B. Collection of training data

In order to collect training data, videos of subjects per-
forming each action are collected with the subject standingat
the center of the square region and facing a reference camera
(cameraC1 in Fig. 5). The actions are performed at different
view-angles all of which belong to setV1 with respect to the
reference cameraC1. Because of symmetry, data collected in
cameraCi corresponds to viewVi (∀i : 1 ≤ i ≤ 8). 50 training
action sequences are obtained for each action from all8 views.
Note that the symmetry is introduced only for ease of training
data collection. During testing, the symmetry does not have
to be maintained and the subject does not have to be at the
center.

Once the training data is collected, we extract several3

Fig. 4. Extracting local feature descriptors. A bounding box that encloses
all background subtracted silhouette is drawn around each silhouette. The box
is then scaled to a standard size of300 by 100 pixels and divided into36
blocks. Only binary information is retained for each block.For each block
in each frame, we obtain the zeroth, first and second order image moments.
Also, for each block we compute the average motion energy.
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Fig. 5. Collection of training data. The subject is at the center of the network
and performs each training action while facing the region between raysZA
and ZB. All cameras record the data. Because of symmetry, data collected
in cameraCi corresponds to viewVi (∀i : 1 ≤ i ≤ 8)

second windows from the training samples corresponding to
each action and obtain feature descriptors as described in the
previous subsection for each window. Corresponding to each
action class and for each view, a two-class Linear Discriminant
Analysis based projection vector is obtained by grouping
together data belonging to that particular action against data
from all other actions corresponding to the respective view. Let
λa,j correspond to the LDA projection vector corresponding to
actionAa(1 ≤ a ≤ 10) using data from viewVj(1 ≤ j ≤ 8).

C. Action classification

We now describe how feature vectors are generated at
each camera for a test action and how these are combined
to generate a classification output. Consider that the subject
performing a test action is at a pointZ as shown in Fig. 6.
Let the view provided by cameraCref with respect to the
action being performed beVj (In Fig. 6, ref = 1). Note
that Vj cannot be determined byCref . However, the angles
θr,s between the principal axes of each pair of cameras(r, s)
is known. And usingθref,s : (1 ≤ s ≤ Nc), relative to
each of theNv possible viewsVj(1 ≤ j ≤ Nv) that camera
Cref can provide for the action being performed, the views
provided by all other cameras can be computed. This gives
rise to a setφ of Nv possible configurations, which we denote
as{φk}, 1 ≤ k ≤ Nv. We letφi

k denote the view provided by
cameraCi in configurationk.
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Fig. 6. Determining configuration set for subject locationZ. ConsiderC1

as the reference camera. The real orientation of the subjectwith respect to
the reference camera is not known. But the anglesθr,s between the principal
axes of each pair of cameras(r, s) is known. Then for each possible view
Vj(1 ≤ j ≤ 8) that cameraC1 can provide for the action being performed,
the views provided by other available cameras can be determined resulting in
Nv possible configurations.

φ = {{φ1}, .., {φNv}} (1)

= {{φ1

1, .., φ
Nc
1 }, .., {φ1

Nv, .., φ
Nc
Nv}} (2)

Note that if the cameras retained the symmetric deployment
during test, the8 configurations would have followed a cyclical
shift resulting in:

φ = {{V1, V2, .., V8}, {V2, V3, ..., V1}, .., {V8, V1, .., V7}}

However, the relative orientations between cameras need
not be symmetric and two camerasr and s can provide the
same view with respect to an action being performed ifθr,s

becomes very small. For illustration, suppose cameras C1
and C2 provide the same views with respect to a subject
performing the action. In this case, the8 configurations would
be:

φ = {{V1, V1, V3, .., V8}, {V2, V2, V4, ..., V1}, ..}

Note that in the scenario where certain cameras are absent
or if their views are completely occluded,Nc now reflects the
number of cameras from which data is available and each set
φk in φ contains fewer number of elements.

Once the configuration setφ is determined, we use the
feature descriptor generated from the test data at every camera
to obtain matching scores under every configuration. This
is done as follows. Consider score generationSa,k,i with
respect to actionAa for data acquired by cameraCi under
configurationφk. Letφi

k = j, i.e., cameraCi is associated with
view Vj under configurationφk. Let FVi denote the feature
vector computed for test data generated by cameraCi. In order
to generate scoreSa,k,i, we determineFVi × λa,j , calculate
the distance of this product from the mean LDA score for
actionAa, and then normalize the result to a range of[0, 1]
(0 indicates no match while1 indicates perfect match). For
each actionAs, Sa,k,i represents the likelihood that test data
from camerai corresponds to actionAa in vonfigurationφk.
Similarly, a matching score is generated for each cameraCi

in all configurations{φk}, 1 ≤ k ≤ 8. If certain cameras have
failed or occluded as shown in Fig. 6, then the matching scores
corresponding to only the available cameras are computed

under each configuration. For each actionAa, the net matching
scoreSa,k, which represents the likelihood that the test data
from all cameras in the system corresponds to actionAa in
configurationφk is computed as follows:

Sa,k =

Nc∑

i=1

Sa,k,i (3)

After the configuration specific scores are generated, we
compute the likelihood that the test data corresponds to action
Aa by determining the maximum ofSa,k over all configura-
tions in the setφ. We denote this asSa.

Sa = max(Sa,k)k=1..8 (4)

The actionAF (1 ≤ F ≤ 10), with the highest score is
classified as the action corresponding to the test data whereF
is determined as follows.

F = argmax(Sa)a=1..10 (5)

IV. PERFORMANCE EVALUATION

In order to systematically evaluate the performance of our
action recognition system, we first present the classification
performance using data collected by the8 camera network and
analyzed offline. Using this data, we evaluate the performance
when views from different subsets of cameras are occluded
including the case when data from cameras with most favor-
able views for identifying the specific action being performed
are suppressed. Then we show how our fusion scheme can
be altered to handle partial occlusions in all cameras, i.e., no
camera has complete view of the subject but it is required that
partial views available from a subset of cameras be combined
for action recognition. Finally, we describe the implementation
of our system on an embedded camera network and evaluate
its performance n real-time where actions are classified as they
are being performed.
A. Fewer cameras

We first collect test data from all the8 cameras with
different subjects performing a total of20 test actions of
each class, at different locations in the network. Then in
order to evaluate the system performance with occlusions, we
selectively use data from subset of cameras. We note down the
ground truth for each test action to determine the classification
accuracy for our system. In the offline analysis, we assume that
each test action snippet is exactly3 seconds that is entirely
composed of the same action.

In Fig. 7, we plot the average classification accuracy of
our system when different number of views are completely
occluded. For the results shown in Fig. 7, the cameras whose
data is unavailable are determined randomly. We note that
classification accuracies are relatively high (> 90%)with up
to 4 cameras in the system.

We then analyze the robustness of our system by computing
the clasification accuracies when data from cameras that are
likely to yield the most suitable views for each action are not
used. We order the favorable views for identifying each action
based on the average motion energy observed in the training
dataset for those actions from a given view. We define the
average motion energy (Es

a,j) for a given training samples
corresponding to an actionAa from a camera providing view
vj as the average number of pixels that have changed sign in
sucessive frames of the training sample. LetEa,j denote the
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Fig. 7. Average classification accuracy of our system computed over test
data from all actions when different number of views are completely occluded.
The cameras whose data is unavailable are determined randomly.

Fig. 8. Average classification accuracy of our system computed over test
data from all actions when data from cameras providing1 to 4 most favorable
views for each action are suppressed.

average ofEs
a,j computed over all training samples available

for the corresponding actionAa and viewVj . Let ψa
i denote

the ith favorable view for actiona determined by ordering
Ea,j over all views, withψa

1 being the most favorable. For
each test action sample belonging to actionAa, we determine
the respective cameras that provide these views. Fig. 8 shows
the recognition accuracy when data from cameras providing
1 to 4 most favorable views for each action are suppressed.
These results show that even when the best views are not
available, information from other views is able to provide
reasonably high recognition accuracy, thereby highlighting the
significance of multi-view fusion. Accuracy of the system
is observed to progressively decrease as more number of
favorable views are removed.
B. Partial occlusions

In this subsection, we consider the case where some cameras
have partial view of the subject but none have full view of
the subject performing an action. To handle partial occlusions,
we make an assumption that the regions of occlusion in each
camera are known. Then we modify our fusion scheme in the
following way to perform classification.

• Let Ea,j,b denote the average motion energy per blockb,
based on all training data available for the corresponding
actionAa and viewVj .

• Let {Ba,j(s)} represent the set of tops% of the blocks

Fig. 9. Partial occlusions: Average classification accuracy of our system
computed over test data from all actions when data from cameras providing
1 to 4 most favorable views for each action are suppressed and only50% of
the data is available from the other cameras.

in terms of the motion energy for actionAa under view
Vj . In the presence of partial occlusions at cameraCi,
the data fromCi is used for determining the match score
for actionAa under viewVj only if none of the blocks
in {Ba,j(s)} are occluded.

• Suppose data fromCi is used for determining the match
score for actionAa under view Vj , then we retrain
our classifier to obtainLDA′

a,j based only on training
data from blocks in the set{Ba,j}. We useLDA′

a,j to
determine the match scores. For the results presented in
Fig. 9, we sets = 50.

We note that if the regions of the silhouette that are most
pertinent for recognizing a given action are blocked from all
available views, then it is difficult to recognize that action.
The objective of this particular experiment is to evaluate the
achievable recognition rate, when data suitable for recognizing
a given action is available at least from a partial set of cameras.
For the results shown in Fig. 9, we retain only the data from the
blocks in{Ba,j(50)} and occlude all other data for each action
a and viewVj . We then additionally suppress all data from
0 to 4 most favorable views and determine the recognition
accuracies shown in Fig. 9.
C. Real-time performance evaluation

In order to evaluate the real-time performance of our system,
we implemented the background subtraction and local feature
descriptor extraction on an embedded camera network assem-
bled using Logitech9000 cameras and an Intel Atom processor
based computing platform equipped with an802.11 wireless
card for communication. We deployed a system ofNc = 5
cameras over the50 by 50 region (specifically camerass C1,
C3, C5, C6, C7 in Fig. 1). Each subject performs one of the
actions stated in Section II for a duration of10 seconds, then
switches to another action from the list for10 seconds and
this is repeated5 times for each subject.

The distributed cameras perform local processing on an
analysis window of3 seconds. However, it is important to
note that the start of an action may not exactly align with the
start of an analysis window. Since an action can happen at
any time and the system needs to be continuously acquiring
and processing data, we apply the feature vector extractionon
analysis windows with an overlap of2 seconds. In other words,
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we only move the window by1 second each time. The embed-
ded cameras run the NTP protocol for clock synchronization
in order to enable the computation of feature descriptors by
different cameras over synchronous time windows. However,
we empirically note a time synchronization error of approxi-
mately50 mS between the different cameras.

Recognition accuracy (%)
Steady state 85.2

Transition state 70.1

Fig. 10. The classification accuracy for the real-time system separately for
the steady and transition states in each action sequence: The2 seconds interval
at the start of each new action sequence as the transition state.

Once the feature vectors are computed at camerai for every
1 second, the scoresSa,k,i are determined corresponding to
each actionAa in every configurationφk that camerai can
belong to. Only these scores are transmitted wirelessly to a
fusion center. The LDA vectorsλa,j for each actionAa and
view Vj are pre-computed and stored on each camera to enable
the computation of scoresSa,k,i. Thus in our system with
10 actions and trained for8 view-angles, we transmit only
320 bytes per second from each camera (where each score
is represented as4 bytes). The feature descriptors are then
combined at the fusion center based on our score-based fusion
technique. A classification result is generated every1 second,
but with a2 seconds lag to ensure that all data corresponding
to a given interval has arrived at the fusion center before
processing data for that interval.

In Table 10, we have presented the classification accuracy
for the real-time system separately for the steady and transition
states in each action sequence. We have defined the2 seconds
interval at the start of each new action sequence as the tran-
sition state. We notice that during the transition phase when
moving between actions we notice higher mis-classifications
but in the steady state we observe significantly fewer mis-
classifications.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have described a score-based fusion
strategy to combine information from a multi-view camera
network for recognizing human actions. By systematically
collecting training data from different views for an actionand
combing data from cameras at a score-level, we are able to
accomodate arbitrary camera orientations during the testing
phase. We applied our fusion technique on view specific classi-
fiers designed over computationally simple feature descriptors
obtained at each camera that capture the spatio-temporal shape
of a human action. We note that the fusion technique described
in this paper for combining data from multiple views can
also be applied in conjunction with view-specific classifiers
obtained using feature descriptors other than the ones usedin
this paper.

We tested the performance of our system using data col-
lected from an8 camera network. Our system is able to
achieve an accuracy of95% in classifying actions when all
cameras are present. We showed that our system can tolerate
non-availability of data from cameras that provide thebest
views for classifying a given action. We also described how
the locality-specific feature descriptors enable our system to
handle partial occlusions. We then tested the performance of
our system in an online setting by implementing our feature

extraction and fusion technique in an embedded camera net-
work and by classifying actions as they are being performed.

In future, we would like to relax our assumptions with
respect to knowledge of occluded areas of a silhouette and
instead plan to use the information from multiple views to
reliably detect occluded regions of a foreground object. We
also plan to apply our action recognition system towards
recognizing long duration activities and activities involving
more than one subject by modeling the sequence of estimated
actions by our system.
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