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Abstract. Convolutional neural networks (ConvNets) coupled with Long Short Term Memory (LSTM) networks
have been recently shown to be effective for video classification as they combine the automatic feature extraction
capabilities of a neural network with additional memory in the temporal domain. This paper shows how multi-view
fusion can be applied to such a ConvNet LSTM architecture. Two different fusion techniques are presented. The
system is first evaluated in the context of a driver activity recognition system using data collected in a multi-camera
driving simulator. These results show significant improvement in accuracy with multi-view fusion and also show that
deep learning performs better than a traditional approach using spatio-temporal features even without requiring any
background subtraction. The system is also validated on another publicly available multi-view action recognition
dataset that has 12 action classes and 8 camera views.
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1 Introduction

Convolutional Neural Networks (ConvNets) are simple feed forward networks with automatic fea-

ture extraction capability using randomly initialized convolution filters. ConvNets have been ap-

plied for pattern recognition applications with great success in recent years.1–7 They can be ex-

tended for classification in the temporal domain using recurrent neural networks. Long Short Term

memory networks (LSTMs) are a particular type of recurrent neural networks that have become

very popular in speech recognition, hand-writing recognition8, 9 because they can learn mappings

from sequential inputs to single or sequential outputs. Noting that the combination of ConvNets

with LSTMs can be used to classify data in a temporal domain, recent studies have applied this

idea successfully for video classification.10–13

In this paper, we seek to extend the ConvNet LSTM architecture for multi-view camera sys-

tems. Multi-camera networks have been shown to improve the robustness of the system by provid-
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ing complementary views of a scene.14, 15 In this paper, we present two fusion techniques that can

be applied for video classification using ConvNet LSTMs. We evaluate our multi-view deep neu-

ral network in the context of a driver activity recognition system, which has several applications

in vehicular safety. Our work is specifically motivated by a critical need for quantitative analysis

of driver distraction in operators of surface mine equipment who are distracted by the presence of

several safety gadgets inside haul trucks such as push button radios, navigation sensors, tire sensors

and proximity warning systems.16

We carry out experiments in a driving simulator equipped with 3 cameras and classify actions

into 7 different classes. We do not make any assumption regarding the length, start time and end

time of each action sequence being known before hand. Since LSTMs inherently learn temporal

relationships, the classifier can be directly applied to continuous video streams. We evaluate us-

ing a 10-fold cross validation and our results show significant improvement by utilizing multiple

cameras. On the same dataset, we also implement a popular, more traditional approach using His-

togram of Gradients on motion history images.14, 17, 18 Our comparative study shows that the deep

learning technique performs better in terms of recognition accuracy and more importantly, it is

able to do so without requiring any background subtraction on the input video.

Next, we also validate our technique on a publicly available multi-view action recognition

dataset. Specifically, we use the WVU dataset,19 which is a comprehensive 12 action dataset

that contains data from 8 camera views. Data from all views is synchronized in time. For each

action, there are about 47 samples available from each view. We train our ConvNet LSTM on

two-thirds of the samples and use the remaining for testing with a 3 fold cross validation. We

compare the recognition accuracy with prior results that use spatio-temporal motion history image

as features.14, 17 The ConvNet LSTM is found to be more tolerant to missing views and has a
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significantly higher accuracy even with single or two views. Moreover, spatio-temporal techniques

require reliable foreground extraction while the ConvNet LSTM is directly fed the input samples.

2 Related Work

Action recognition is a widely studied topic in computer vision with applications in several areas

such as surveillance, gesture recognition and gaming.20, 21 Much of the traditional techniques for

activity recognition have been based on supervised feature learning techniques that exploit the

spatio-temporal characteristics of an action for classification. However, such techniques often rely

on accurate foreground extraction techniques in order to be able to discern the characteristics of

an activity being performed. Foreground extraction is challenging in applications such as driver

activity analysis inside surface mines because of vehicle motion in uneven terrain and camera

motion. Moreover, camera deployment is challenging inside vehicles and the view obtained of

each driver may change because of changes in height and seat position. Therefore, in this paper we

explore the use of automatic feature learning techniques using deep neural networks for activity

recognition. Moreover, we do not make any assumption regarding the length, start time and end

time of each action sequence being known before hand. Since LSTMs inherently learn temporal

relationships, the classifier can be directly applied to continuous video streams.

Convolutional neural networks have been successfully applied for pattern recognition applica-

tions in recent years.1–7 For classification of actions, there is a need to capture relationships in the

temporal domain. One way to do so is by applying convolution filters that extend in time, with

higher layers progressively learning features over larger intervals of time.22 Another method to ex-

tend ConvNets into the temporal domain is using recurrent neural networks such as LSTMs.8, 9 The

combination of ConvNets with LSTMs can thus be used to classify spatio-temporal data.10–13, 23–25
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Fig 1 ConvNet LSTM architecture: The original image is downsized to 256 x 256 and is used as the input layer. This
is followed by 3 convolutional neural network layers. The first layer consists of 20 kernels of size 5 x 5. The second
layer consists of 50 kernels of size 5 x 5. The third layer consists of 50 kernels of size 4 x 4. These operations result
in 50 channels of 29 x 29 resolution which are fed to two dense, fully connected layers. Finally, two LSTM layers are
used to discover long-range temporal relationships.

This is the idea we seek to exploit in this paper for activity recognition, augmented with a multi-

view camera network. Specifically, we show how such deep neural networks can be used to easily

fuse features from multiple views and apply it for the problem of driver activity analysis. 3D con-

volutional neural networks26 were not explored in this work as they are computationally expensive

to train as compared to a 2D convolutional neural network.

3 System architecture

In this section, we describe our multi-view ConvNet LSTM architecture. In Section 3.1, we first

describe the components of our basic ConvNet LSTM architecture for processing data from a

single camera. Then, in Section 3.2, we show how this architecture can be extended to combine

data from multiple cameras.
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Fig 2 Illustration of the convolution operations (using a few convolution filters) on image data

3.1 Building blocks of the deep neural network

As seen in Fig. 1, our ConvNet LSTM architecture consists of 3 convolutional neural network

layers (conv1, conv2 and conv3), 2 fully connected layer blocks (FC1 and FC2), and 2 LSTM

layer blocks. The design and functionality of each of the blocks are described below.

The original image is a grayscale image of size 640 x 480 pixels. This is resized to 256 x 256

and passed as an input to the first convolutional layer (conv1). The first convolutional layer consists

of 20@5 x 5 kernels. All the convolutions are applied with a stride of 1. Note that a convolution

operation with a kernel of size c x c (and stride 1) on an image of size n x n gives rise to an image

that is of size m x m, where m, n and c are related as m = n− c+ 1.

Thus, the convolution operation at conv1 gives 20 channels of reduced sized images, each with

a size 252 x 252. A 2D max pooling operation is then performed on the output from conv1, which

reduces the size of the input to 126 x 126. Fig. 2 illustrates the convolution operation on a sample

input image using 5 out of the 20 convolution filters and highlights how the convolutional neural

network blocks act as automatic visual feature extractors.

The output from the first ConvNet block is passed through convolutional layer conv2, consist-
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ing of 50@5x5 kernels (with a stride of 1), followed by a second pooling layer. The 50 channels

of output from conv2 are passed to a third convolutional layer conv3 and convolution operation

is performed with 50@4x4 kernels (with a stride of 1). The output from this layer is passed to a

third pooling layer which gives 50 output channels each of size 29 x 29. The output from conv3 is

connected to the first fully connected layer (FC1) of size 1000. The output from FC1 is connected

to the second fully connected layer (FC2) of size 500. The feature vector representation at FC2

is passed to the subsequent LSTM layers, each with a hidden layer size of size 512.

The goal of the LSTM layers is to use information between multiple successive frames in mak-

ing the classification. LSTMs use memory cells to discover long-range temporal relationships. We

specifically use LSTMs with peephole connections as shown in.11 Let x = (x1, x2, ...xT ) denote

the input sequence, h = (h1, h2, ...hT ) denote the hidden vector sequence and y = (y1, y2, ...yT )

denote the output sequence. The hidden layer of the LSTM is computed using the following set of

equations. At each time t, let it, ft, ot and ct denote the input gate, forget gate, output gate and the

cell state respectively. W is used to denote the respective weight matrices. b terms denote the bias

vectors. For example, bo is the output bias vector. ⊗ denotes the element-wise product.

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (1)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (2)

ct = ft ⊗ ct−1 + it ⊗ tanh(Wxcxt +Whcht−1 + bc) (3)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (4)
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ht = tanh(ct)⊗ ot (5)

The output is computed using the following equation.

yt = Who ⊗ ht + bo (6)

In our system, we have obtained results with both 1 and 2 layer LSTMs and compared their

performance. Each LSTM layer is constructed with 512 memory cells. The output of the LSTM

layers is a 1 x 100 vector that is fed to a Softmax classifier. The Softmax classifier outputs a vector

of size 1 x K where K is the number of actions to be classified. This 1 x K output represents the

probability of each action class at every time t.

The output from the Softmax layer can be used in a number of ways: (i) the output class can be

predicted independently for each image frame as the maximum of probabilities for each class or

(ii) a history of Softmax output over the last several frames can be used to group a set of frames into

a particular action class. For computing the system accuracy in this paper, we have used the former

approach, i.e., the output label for each image frame is the action with the maximum probability

as predicted by the Softmax classifier. Thus, we use the output predicted at each time frame by the

Softmax classifier to match it with the labeled data and then compute the accuracy. We note that by

using suitable outlier detection strategies and by using temporal clustering of the output labels, we

can further improve the performance of the action recognition system, but this analysis is beyond

the scope of this paper.
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3.2 Multi-view fusion using deep neural networks

In this section, we describe two strategies for fusing data from multiple cameras using deep neural

networks. Let Nc denote the number of cameras. A block diagram of the two approaches is shown

in Fig. 3.

3.2.1 Using ConvNet LSTMs as feature generators

In this technique, we feed the data from each camera into Nc different ConvNet LSTM blocks and

thus the output from each view is a 1 x 100 vector per frame. The total dimension of the feature

vector from the multi-view system is thus 1 x Nc ∗ 100. A linear SVM classifier is then trained on

these feature vectors to classify each action. Thus, in this technique, we use the LSTMs as feature

generators for multi-view classification and fuse the feature vectors before classification.

(a) (b)

Fig 3 Two fusion architectures used for deep neural networks. (a) Feature vector fusion and (b) Score fusion

Note that due to minor differences in sampling rate and I/O processing rate, data frames may

not be available from each camera at the exact same rate. For instance, if the sampling rate is 15

frames per second, over a given second one camera may only generate 14 frames while another

may generate 15. To correct this, we only feed data into the multi-view classifier for those time

instants when data from all Nc cameras is available. Thus, over any given time period T , the
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Fig 4 Due to frame rate inconsistencies across multiple cameras, we only generate outputs at time instants when
images from all 3 cameras are available.

number of frames for which output is generated corresponds to the lowest frame processing rate in

that time period. This is illustrated in Fig. 4.

3.2.2 Score fusion

In the score fusion approach, the output from the softmax layer from each view is treated inde-

pendently and then simply added across the Nc views to determine the score distribution across

different actions. Let Sa,v determine the score for a given action a in view v. We then calculate

fused score Fa for a given action s as described in Eqn. 7.

Fa =

∑
Sav

Nc

(7)

The action a with the maximum score is labeled as the output class. We have experimented

with both these fusion strategies and the results are described in the next section.

4 Experimental evaluation

4.1 Evaluation on data from a multi-camera driving simulator
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Fig 5 Schematics of the 3 camera network in a driving simulator. One of the cameras faces the driver at an angle of
approximately 30 degree angle while the other two cameras are on the two sides.

Fig 6 Driving simulator used for data collection. The three monitors present the road view to the driver. The tablet
represents the console interface operated by the driver. This setup emulates the cabin inside haul trucks at surface
mines.

To evaluate the performance of the multi-view deep neural network classifier, we applied it in

the context of a driver activity recognition system where the goal is to identify a driver’s action

into one of 7 different classes shown in Table 1. The experiment was carried out using a driving

simulator and a 3 camera system. A schematic of the camera layout is shown in Fig. 5. The

driving simulator consists of three monitors that present the road view to the driver. The tablet

represents the console interface operated by the driver. This setup emulates the cabin inside haul
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Action Label
Gears S1
Driving S2
Talking on Phone S3
Picking up Phone S4
Controls S5
Looking Right S6
Looking Left S7

Table 1 Multi-view Simulator ConvNet LSTM action legend.

(a) (b)

(c) (d)

Fig 7 Comparison of classification accuracy across different views (a) Left view only (b) Right view only (c) Front
Side view Only (d) With all three views and score fusion

trucks at surface mines. Data was collected on 3 different subjects, each performing the 7 actions.

The dataset consists 30 minutes of video for each subject collected at 15 frames per second with a

resolution of 640 x 480. A 10-fold cross validation was performed on the dataset (10 sets of data
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each with 90% data for training and 10% data for testing).

The neural network was built using Theano27(in Python). The network was trained on a Quadro

K2200 GPU (with 4 GB memory). The learning rate was set to α = 105. Dropout28 was used to

avoid over-fitting in the network. Smaller values of dropout probability are likely to not drop

enough connections, thereby leading to overfitting and reliance on too few neurons for perfor-

mance. Initially, we started with dropout value of 0.3 in convolutional layers and fully connected

layers. Performance started to fall drastically with values higher than 0.6. So, it was set at 0.6

for our network in the convolutional layers and 0.5 in the fully connected layers. The input to the

network was an image of size 256 x 256 with mean subtraction. The non-linear layers used were

ReLU (Rectified Linear Unit) units. The batch size for mini-batch gradient size was set to 32 and

RMSProp29 was used to optimize the gradients.

Fig. 7 shows the classification accuracy when only data from a single view is utilized in the

ConvNet LSTM classifier, and compares that with the case where data from all three views are used

with score fusion strategy. We notice significant improvement in accuracy when combining data

from all views. In Fig. 8(a) and Fig. 8(b), we compare the performance of feature vector fusion

and score fusion respectively with a single layer LSTM. Both the fusion strategies perform equally

well, although a slight improvement is observed with feature vector fusion when comparing the

average and maximum error rates - this is illustrated more clearly in Table 2.

All of the above results are using only a single layer LSTM. Addition of a second LSTM layer

does not have significant impact as seen in Fig. 8(c) and Fig. 8(d), which shows the classification

accuracy using 2 layer LSTMs. The combined average and maximum error rates across all actions

are listed in Table 2 when single and two layer LSTMs are used. We observe that with score fusion

strategy, there is a slight decrease in error rates when 2 layer LSTMs are used. But in the feature
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(a) (b)

(c) (d)

Fig 8 Classification accuracy with multi-view fusion: (a) One layer LSTM and feature vector fusion (b) One layer
LSTM and score fusion (c) Two layer LSTM and feature vector fusion (d) Two layer LSTM and score fusion

vector fusion strategy there is actually a slight increase in error rate. We observe from these results

that multi-view fusion has a far more significant impact compared to additional LSTM layer.

4.1.1 Comparison with spatio-temporal motion history feature technique

Next, we also implement a more traditional technique based on spatio-temporal features to com-

pare with the deep learning technique. Specifically, for each action sample, we first perform back-

ground subtraction on the images and then compute the motion history image17 across each action

video sample. A motion history image, computed across a sequence of images, captures the amount

of motion at each pixel in the image. Histogram of Gradient features30 are then obtained on this
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Fig 9 Recognition accuracy for individual actions using histogram of gradients on motion history images as feature
vectors.

motion history image and are used as feature vectors for training and testing.14 To obtain the HoG

features, we have used 8 orientations, 8 x 8 pixels per cell and 24 x 24 cells per block. An SVM is

used for classification per view and the score fusion approach described above is used to combine

data from multiple views. Here also, we have used a 10 fold cross validation.

As seen in Fig. 9, recognition accuracy for actions such as S2, i.e., driving, is quite low. This

is possibly because of the low spatio-temporal motion content associated with this action. As

the number of action classes increase, we expect the spatio-temporal signatures to become more

similar and thus increase the error rates. This is illustrated in Sec 4.2, where we compare on a

dataset with 12 action classes. In Table 2, we show the maximum and average error rates using this

spatio-temporal motion history feature technique. This table also shows that error rates with the

deep learning approach is lower. Note that the maximum error rates are especially high with the

spatio-temporal feature approach. But more importantly, we note that computing spatio-temporal

features requires a good foreground extraction technique so that the motion history images contain

relevant features from the human subject performing an action. This is relatively difficult in appli-
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Classification Technique Max Error Rate Average Error Rates
Left View ConvNet LSTM (1 layer LSTM) 17.13 9.21
Right View ConvNet LSTM (1 layer LSTM) 18.08 8.90
Side View ConvNet LSTM (1 layer LSTM) 17.13 9.21
Fused Score ConvNet LSTM (1 layer LSTM) 6.92 2.21
Fused Features ConvNet LSTM (1 layer LSTM) 4.75 1.92
Left View ConvNet LSTM (2 layer LSTM) 13.01 5.77
Right View ConvNet LSTM (2 layer LSTM) 15.54 6.34
Side View ConvNet LSTM (2 layer LSTM) 13.625 7.54
Fused Score ConvNet LSTM (2 layer LSTM) 5.23 1.51
Fused Features ConvNet LSTM (2 layer LSTM) 6.41 2.95
Left view Motion history HOG 35 7.2
Right view Motion history HOG 35 6.9
Side view Motion history HOG 50 9.3
Fused Motion history HOG 37.5 8.9

Table 2 Comparison of error rates with 1 layer LSTM, 2 layer LSTM and spatio-temporal motion history image
technique on data from 3 camera driving simulator

cations such as driver activity analysis, especially in rugged terrains such as surface mines, where

the cameras are subject to large vibrations. The ConvNet LSTM approach does not require this

step. The input videos are directly fed to the neural network after downsizing to the required 256

x 256 resolution.

4.2 Evaluation on WVU multi-view action recognition dataset

In this section, we describe the evaluation of the ConvNet LSTM approach on the publicly available

WVU multi-view action recognition dataset19 (cited in31–34). This dataset has data of subjects

performing a set of 12 actions, captured from 8 cameras. The multi-camera network system in this

dataset consists of 8 cameras that provide completely overlapping coverage of a rectangular region

(about 50 x 50 feet) from 8 different viewing directions. The schematic of camera deployment is

shown in Fig. 10. The data from all the cameras is synchronized in time. The dataset is provided in
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Fig 10 Schematic of WVU multi-view action recognition dataset. The multi-camera network system consists of 8
cameras that provide completely overlapping coverage of a rectangular region (about 50 x 50 feet) from 8 different
viewing directions. The subject is at the center and performs actions facing camera C1.

3 parts for each action.19 We have used data from parts 1 and 2 in which the subject is always at the

center of the rectangular region. This ensures that the resolution of the subject performing actions

is consistent across all images and there is no need to scale and normalize the images. There are

47 action samples per action from each view. We divide this into a 2 : 1 train-test ratio and use 3

fold cross validation. The data has a frame rate of 20 fps with 640 x 480 resolution.

We train the neural network with the same configuration as described in Section 4.1. We

compute the recognition accuracy with different number of available camera views. The views to

be retained are the ones with the lowest motion energy, i.e., the lowest information content. The

most favorable views in terms of action content are removed.14 Suppose that in Fig. 10, the subject

performs the actions facing camera c1. Then, we remove the views in the following order (C1, C5,

C3, C7, C2, C8, C4, C6).
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Fig 11 Recognition accuracy of ConvNet LSTM on WVU multi-view action recognition dataset with different number
of available views. Accuracy is compared with those using motion history images as described in.14

Fig. 11 shows the recognition accuracy using the deep learning technique and compares it with

the results obtained using the more traditional approach using spatio-temporal features (motion

history images) as used in.14 In Fig. 11, LMEI corresponds to the technique where the image is

divided into rectangular blocks and motion history images are computed per block. The localized

motion energy images are used as feature vectors. This technique incorporates spatial locality

in the feature vectors.14 In the HOG-SVM technique, histogram of gradients is computed for

the motion history image as described in Section 4.1.1 and used as feature vectors. The result

shows that the ConvNet LSTM technique has higher accuracy even with fewer views. As number

of views increase towards 8, both spatio-temporal and deep learning techniques perform almost

equally. However, the ConvNet LSTM technique does not show a sharp drop in accuracy when

there are fewer views available. Note that the results with motion history image in this dataset are

worse than those in the driving simulator dataset, especially with fewer views. This is because the

number of action classes are larger and thus the spatio-temporal motion history signatures become
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more similar across the actions.

5 Conclusion

In this paper,we have shown how deep neural networks with LSTMs can be used to easily fuse

features from multiple camera views and have applied it for the problem of driver activity analysis.

We have presented two different fusion techniques and our results show significant improvement in

accuracy using both these approaches. We also evaluated the impact of multiple layers of LSTMs

and we observed that an additional LSTM layer had much lesser impact than the addition of camera

views. We also showed that the deep learning technique performs better than using motion history

images by comparing on the driving simulation dataset as well as another publicly available multi-

view action recognition dataset with 8 camera views and 12 action classes.

As an immediate next step, we would like to design higher level classifiers that can utilize the

sequential output of the multi-view ConvNet LSTMs and use that to temporally cluster the output

labels, identify outliers and predict start and end of action sequences. We would also like to apply

the activity analysis technique designed here to study the effectiveness of interactive consoles on

vehicles and quantitatively evaluate the distraction caused to drivers because of these interactions.
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