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ABSTRACT Thus far most of the applications of sensor networks have fo-

cussed on observation. Examples include habitat mong@iral
area surveillance applications where the sensors gatheietyw
of information and this information is processed centraltyin
a distributed manner. That said, it is widely believed thnet t
number of applications of wireless sensor networks wiltéase
manifold when they also perform actuation and control.

Sensor-actuator networks are increasingly being usedstrilah

uted control of large scale systems. Often these applitatioe
mission-critical and are required to maintain satisfactmerfor-
mance in the presence of component failures. On the one hand,
sensor-actuator network components are becoming ineixgens
but they also tend to be unreliable, especially when deplaye

harsh or unpredictable environments. The various comgonen Some actuation based applications do exist currently. -Actu
failures can manifest themselves in the form of arbitratyiac ators such as sound and radio are being used to solve problems
tor behavior in which case their effect on the underlyingeys such as localization. Mobility is another form of actuatieinich

can be severe. In this paper we focus our attention on applica IS Peing applied to distributed pursuer-evader applicatiosing
tions of sensor networks in control of linear systems andvsho ~SeNsor networks [1]. Sensor-actuator networks are beiog pr
how to deal with Byzantine faults of actuators. We first dieger ~ (Otyped in the control of distributed parameter systemé s

a fault-tolerant control scheme using locally redundantators, ~ flexible structures. A specific example is the vibration coknf

We then relax the requirement on actuators to be at the same@ fairing during payload launch using embedded MEMS compo-
location and design a fault-tolerant scheme where the fstua  Nents based sensor-actuator networks [2, 3]. Since MEM&dbas
redundancies are further reduced as well. We demonstrate ou Sensor-actuator devices are potentially cheap, a largéeuat
methodologies using a beam vibration control applicatisraa these devices can be embedded on flexible structures and-comb
nations of these sensors can be used to obtain the requirge mo

case study. atiofls Ot \ )

vibration information and then the output from these corabin
Keywords: Reliable Control, Byzantine Faults, Sensor- tons can be used to provide adequate distributed contirilzs
actuator networks, Fault-tolerance, Local on-off conttahear applications arise in the control of chemical plants andearc
systems. reactors.

It is also important to note that although most of the liter-
ature on sensor networks focusses on wireless networksy man
of these control applications are better suited to wiregvoeks.
Fueled in part by recent advances in MEMS and communica- Wired networks have higher network bandwidth and provide be
tion technologies, sensor networks are increasing in @ojyl ter network reliability compared to wireless networks dnid ts

1 Introduction
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crucial to guarantee stability and performance in confrslesms.

Yet the constraint in most distributed control applicatias
that of mission critical stability, and despite the accesatre re-
sources in wired networks this is a challenge. Distributattiol
systems have applications in space missions and nucleaspla
where degradation of systems performance may even compro-
mise human safety. Hence satisfactory performance in t® pr
ence of faults is a requirement for these systems. But in our
experiences with deploying and using large sensor netwdiks

one of the key learnings has been that these networks are un-

reliable in many ways. Sensor-actuator network based @ontr
systems typically comprise of embedded sensors and actyato
microprocessor-based controllers (central or distridjugend an
underlying network that provides information processimg s
vices to the controllers such as controller group synclzation,
communication, (re)parameterization, reconfiguration, Each

of the above subsystems are subject to faults: there arevheed
faults and these will increase when subject to harsh andednpr
dictable environments, there are faults in the underlyaftysare
and middleware services such as information loss, delagand
ruption, and there are configuration faults which given tteles

of these networks this will increase even more. Early experi
ments conducted on a vibration control system of a fairiraysh
that the effect of faults on the stability and performanceaf-
trol systems can be particularly severe [5]. This leads fisdos

on fault-tolerant distributed control systems.

One of the methodologies for the design of fault-tolerant
control systems involves real-time fault detection, iiolaand
control system reconfiguration [6—10]. An appropriate@tis
taken after the diagnosis of the faults. Another methodplng
fault-tolerant system design is to use redundancy and ydtn
achieve tolerable performance in the presence of faultsorin
rect data generated by faults in control software and semgor
ures can be tolerated by voting based schemes which estimate
filter the correct data by using multiple redundant inputs 12].

But these methods still leave the following challenges. The
hardware can be faulty causing the actuators to fail-stolaodn
fer no control or debond from their surface causing them ferof
incorrect control. The underlying fault detection serviset-
self vulnerable to faults in the middleware. It is sometimes
feasible to integrate the fault detection, diagnosis acdng-
uration in dynamical systems particularly when the avi@ab-
action time is limited. In the voting based schemes, faults i
underlying middleware services can affect each of the rddnon
component in the same way and then the voting fails. For exam-
ple a network error such as delay or dropping of data is likely
affect each redundant component. Also, the voter itselfligext
to faults [12].

Thus the faults in the hardware and underlying software ser-
vices can cause the actuator to behave in a nondetermiamstic
potentially malicious manner. This suggests a Byzantindeho
for the actuator faults. A Byzantine actuator can producaran
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bitrary control input to the plant at all times. The behavior
non-deterministic and it can even be the worst possibleevatu
all times. In this paper we focus on designing systems thatma
tain asymptotic stability in the presence of Byzantine attits
that apply arbitrary control input to the plant.

Problem statement

Assuming that a bounded number of network actuators
can exhibit incorrect (and potentially arbitrary) behav-
ior, how can distributed control be designed to be prov-
ably stable?

Specifically, in this paper we describe a distributed, Ipcal
output feedback control system and use that to design twe con
trol schemes that maintain asymptotic stability in the pnes
of a given number of actuators that are Byzantine. We demon-
strate our methodologies using a beam vibration contrdicgp
tion [13, 14] as a case study.

Related Work A control system designed to tolerate failures
in system components while maintaining closed loop systam s
bility and performance has been defined as a reliable control
system [15]. Such systems are also called systems poggpessin
integrity against component failures. Redundancy is a key i
gredient in all such reliable control systems. A basic défece
between robust control techniques and reliable contrbldsthe
former deals with small parameter variations and systememod
uncertainties while the latter handles more drastic chaingthe
control system configuration. There exist several reliablerol
schemes [15—20] that provide stability in the presence et afs
failed actuators and sensors that are non responsive. Howev
in this paper we design control schemes that guaranteditstabi
in the presence of malfunctioning actuators which contirslyp
offer detrimental input and thereby can lead the systemdtain
bility.

Outline of the paper In Section 2 we describe the system and
fault model and provide a sufficient condition for the stitypibf

the system in the absence of faults. In Section 3, we firsgdesi
reliable control scheme using redundant colocated actuatal
then design a reliable control scheme where the redundant ac
ators are not colocated and the redundancy is further desulea

In Section 4, we demonstrate our methodology using a beam vi-
bration control application [13, 14] as a case study.

2 System and Fault Model

In this section we describe the system and fault model arideder
sufficient conditions for the asymptotic stability of thesgym
without faults.
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2.1 System Model

Consider a marginally stable linear time-invariant mualtiable
systenmSwith msensor-actuator pairs, described by the following
equations and control law.

X = AXx+Bu
y =Cx

1)
()

wherex is ann-dimensional state vectfx, Xz, - ,xn]T, uis an
m-dimensional actuator vectd is ann x m dimensional ma-
trix and the individual sensor-actuator pairs are colatatd/e
assume that the system is controllable and observable frdim i
vidual locations. Sinc&is marginally stableA has eigenvalues
on the imaginary axis. Since the individual pairs of sensoics
actuators are colocated, we have the following condition.

B=C' (3)

Starting at any state, without any control being appliedsys

tem maintains its energy as it is marginally stable. We afipdy
following local on-off output feedback control law to sthbe

the system.

U = a x sign(yi), i=21..m 4)

wherea is less than zero. Further equals zero when is zero.
Thus a correct actuator can have 3 possible control valuesO,
anda. We chooséa|, the magnitude of the actuator force, to be

the maximum force that an actuator can apply and assume that

this is the same across all actuators.

2.2 Asymptotic Stability Without Faults

We now analyze and prove the stability propertiesSah the
absence of faults.

Theorem 2.1. If m> nand the matrix B is of rank n, the system
S is asymptotically stable.

Proof. We use the Lyapunov approach to prove stability. Now,
let us define functio¥ as

V = x"Mx 5)

whereM is a symmetric, positive definitex n matrix. The Lya-
punov derivative can then be written as

V =x" (ATM + MA)x+ 2x"MBu (6)

SinceAis marginally stable, we can transfofto be skew sym-
metric andAT + A equals zero. Thusl can be the identity ma-
trix.

V =2x"Bu (7)

Let B; denote theé™ column of matrixB. For the system de-
scribed in Eqg. 1, we have

v~ 2xa(3 (.8 xsigny) )
_2x a(é(xT).(cF) < sign(y,) ©)
- 2xa(3 () xsigny) (10)
- 2xa(3 [00).(8) 1)

Note that we can use the magnitude of the dot pro¢idct (B;)
because we see from Eq. 10 tly} x sign(y;) is always positive.
Sincem s at least equal ta andB is of rankn, the statex can
be orthogonal to at most— 1 actuators. Hence the Lyapunov
derivative is strictly negative. Thus the system is asy!tiqady
stable.

2.3 Fault Model

We now describe the fault model acting on syst&m\e start
with the definition of aByzantineactuator.

Definition A Byzantine actuatoq is one that can gen-
erate arbitrary value dfiy in the range—a to a at all
times.

We note that a Byzantine actuator behavior also captures the
case of an actuator fail-stoppingy(= 0, and an actuator debond-
ing form its surface thereby applying a fraction of the cohtr
force (0 < ug < o). In our fault modelk out of them actuators
are Byzantine in systel®

We will prove that the system remains asymptotically stable
even when the Byzantine actuators behave in the worst gessib
way at all times. This is described below. Lei(t) be the cor-
rect actuator value at any tintdor actuaton. Letusi(t) be the
corresponding value generated if the actuator is Byzantikie
then have the following conditions.

W1: ug(t) #0 = uyi(t) = —ugi(t)
W2: u(t)=0 = usi(t) =+a

(12)
(13)
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Note: If the systemSis in equilibrium and is acted upon by
a Byzantine actuator, then the system is subject to pettiorba
and the energy of the system increases. We do not consiger thi
case in our fault model. We are interested in maintaining the
asymptotic stability oin the presence of Byzantine actuators.

3 Reliable Control System Design

In this section, we design two reliable control schemesrttwn-
tain asymptotic stability of the Systei® in the presence of
Byzantine actuators.

3.1 Reliable Control System Using Redundant Colo-
cated Actuators

In this scheme we place multiple actuators at each locafibas
the effect of each redundant actuator on the control stags th
same.

Theorem 3.1. A sufficient condition to tolerate k Byzantine ac-
tuators at each location and guarantee asymptotic statitithe
system S is to havgk + 1 actuators at each of the m locations,
where m> n and the B matrix formed by the m distinct locations
is of rank n.

Proof. Since there arekt 1 actuators at each location, the Lya-
punov derivative in Eq. 11 can be written as follows

. m

V= 2x a(Z((2k+ 1) x |(x")-(Bi)]))

(14)
=
First of all, we see from Eq. 14 that if the actuators are naaBy
tine, the redundant actuators still keep the energy dérevatg-
ative. We now analyze the effect of Byzantine actuators el ea
location. Without loss of generality let us consider ¢f&loca-
tion and assume thatactuators at this location are Byzantine.
We consider the 2 conditio1 andW2, described in the fault
model.

When conditionV/1 of the fault model applies, the energy
derivative term corresponding to th# actuator location can be
written as follows.

(15)

Vg = 2xa((k+1) x |(x").(Bg)| — (k) x| (x").(B)])
| (16)

= 2xa(|/(x").(Bg)|)

Thus we see that the energy derivative corresponding tofthe
location still stays negative. This can similarly proved &l
locations.

Now consider conditioW2. If uc(t) =0, it implies that
yq(t) =0, i.e the local output is zero. Thus the current skt
is orthogonal to the vectdy. Since the actuators are colocated,
the current state(t) is also orthogonal to the vectBy. Thus, the
termx'.(By) is equal to zero no matter what force the Byzantine
actuator applies.

Hence the systerS with 2k+ 1 actuators at each of the
locations, is asymptotically stable in the presenckBfzantine
actuators at each location.

Note that this scheme tolerateByzantine actuators per lo-
cation. If the expected reliability ratio of the actuators enown,
then we can design for the number of actuators required at eac
location.

Given a reliability ratio for the actuators (greater thah)p.
denoted ap, we can choose ksuch that the system is reliable
against Byzantine faults.

k
(2k+1)

> (1-p) (7)

Note  However it should be pointed out that placing the re-
dundant actuators at the same location may not be feasible in
control systems. Moreover the redundancy rapidly increase
increases because the actuators are replicated at eatibioca

We now describe a reliable control scheme where the colo-
cation of redundant actuators is not required and givenkthat
tuators are Byzantine we add redundant controllers to tsiesy
as a whole thus decreasing the redundancy required.

3.2 Reliable Control System Without Using Colocated
Actuators

We first state the minimum number of actuators to be added to
the systenS which ensures that the energy derivative of Eq. 11
is less than zero at all times.

Lemma 3.2. For the energy derivative of Eq. 11 to be less than
zero at all times in the presence of k Byzantine actuators, we
require m>= 2k+n

Proof. Let the number of actuators in the system lerAh — 1.

The statex can be orthogonal to at most- 1 actuators. Let all

of these be non-Byzantine actuators. Thus the energy tggva
terms corresponding to these actuators is zero. Ther&kae@-
ators left. Without loss of generality assume that in thespnee

of any k Byzantine actuators belonging to set df &ctuators,
the energy derivative is less than zero. Then for the sante sta
X, if the remaining set of actuators had been Byzantine the en-
ergy derivative would be greater than zero. Thus we needst le
2k+ nactuators for the energy derivative of Eq. 11 to be less than
zero at all times in the presenceloByzantine actuators.

However, finding an actuator configuration that satisfies
such a lower bound for anlyandn is a complex problem. We
now focus our attention on second order systems) &€2 and
show that 8+ 1 is an upper bound on the number of actuators
needed.
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Definition ~ An m-uniform configuratiorof the sys-
tem is the actuator configuration of the system in which
each of them columns of theB matrix has the same am-
plitude and are uniformly distributed in the state space
of n dimensions such that the column vectorsBodre
pairwise equi-angular and the angle between consecu-
tive pairs of vectors is equal t8.

A second order system with 4-uniform and 7-uniform con-
figuration is depicted in Fig. 1. For simplicity, Let be equal
to 1. Thus given the actuator locations, each actuator veato
either be equal or opposite to the direction shown depenaling
the current state of the system.

o
the angles between two veclorszs%
y

X X
Y, U Uy
Us U
Us 450 | 45 Yy 2
Ug, U,
Uy 4 U
[ ] x [ ] g
1 1
6 X 49
Xo \ 0 P\ f2s5°
cy-y) cuy-y)

(a) 4-uniform configuration (b) 7-uniform configuration

Figure 1. 4-uniform and 7-uniform configurations for the
second-degree system

Let a unit state vectaxg form an angleb with the vertical

axis as shown in the figure. When an actuator is behaving cor-

rectly, the actuator vector would be such that its dot proditt
the state vector is less than or equal to zero. This is bethase

system is observable from each location and each actuator ap gpk ¢) —

plies control in a direction opposite to that of the localpuit

The inner product would be equal to zero when the actuater vec

tor is orthogonal to the current state.

Thus, the 4-uniform configuration shown in Fig. 1(a) is the

proper actuator configuration whéns between ®and 45. In
this configuration, the four normal actuatars, - - - ,Us keep the
energy derivative negative whérlies anywhere betweer? @nd

45°, Note that the dot product of the state vector with each actu-

ator vector is less than or equal to zeroB i between 45and
90°, the first actuator changes its direction so thais the new
actuator vector. Thus the whole configuration is rotated3yir
the clockwise direction. Thus in an— uniformconfiguration,
if all the actuators are correct, then the actuator vecemrsin
pairwise equi-angular at all times.

Therefore while showing that a particular— uniformcon-
figuration is sufficient to guarantee asymptotic stabilitythe
presence of Byzantine faults, it is enough to consider the tizat
the unit state vectory is located in théasic rangg0.0°,45.0°].

In general, the basic range wkuniform configuration system is
[0.0, T]. Also note that it is enough to consider unit state vectors
because all the actuator vectors are of same magnitude and th
total dot product depends only on the angle.

Definition In an m-uniform system of second-
degreefn = 3k + 1), let S(k,0) denote the set ok
Byzantine faulty actuators such that, for a unit state
vectorxg, the corresponding energy derivative becomes
maximized among all possible subsets of actuators.
Let ED(k,0) be the corresponding energy derivative.

For example, in the 4-uniform configuration of the system,
S(1,0°) andS(1,45°) are{U,} and{Us}, respectively.

ED(1,0°) = Xge - (Up —Uz +Uz+Uy)
= (c0s 135 —cos 180 + cos 235)
= —0.4142

Likewise,ED(1,45°) turns out to be equal t60.4142. Thus, in
the boundary angles of the basic rari§®°,45.0°], the system
is asymptotically stable due to the negative valueEDf1,0°)
andED(1,45°).

It is seen that for any m-uniform configuration, when the
state vector is at the boundary of the basic range, one ofthe a
ator vectors is orthogonal to the state vector and offerontrol.
Thus ifED(k,0°) andED(k, &) are both negative, the system is
asymptotically stable in the presencekoByzantine faults. We
now write down the expressions f&D(k,0°) andED(k, T ) in
any m-uniform configuration.

¢ =1/m=1/(3k+1) (18)

k s(n » 2% S(n " 3k+1 S(T[ o
cog 5 +i-¢) — coy - +i-@) + cof = +i-@
2,00z 10T g gt 2 0%

o R 21
ED(k,0) = Z)COS(E +i-Q) — Z(

i@+ S coxrivg
cogs+i-@+ Y cog-+i-@
2 i:%k 2

ED(k) = min(ED(k,0),ED(k.¢)) (19)

Upon numerical analysis &D(k) for a large spectrum of
values fork from 1 to 1000, it turns out to be that all values
of ED(k) are negative as shown in the figure below. Thus an
m-uniform configuration of actuators is sufficient to guaesn
asymptotic stability of a second order system in the presefic
k Byzantine actuators whan= 3k + 1.

Remark  Note that the case af = 2 andk = 1, where we
need 4 actuators to guarantee asymptotic stability satitffie
lower bound R+ n. Further, an upper bound on the redundancy
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-0.5000
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-0.8000
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-1.0000
the nowmbet of faulty actnators (k) x 103

0.0000

Figure 2. The maximum energy derivativED(k) in m-
uniform configuration system

0.5000 1.0000

required to tolerat& faults for higher dimension systems can be
found in a related technical report [21].

4 Application to Beam Vibration Control System

We now apply our reliable control system designs on a locil ou
put feedback control scheme to a beam vibration controégyst
Given is a uniform beam of unit length, unit mass, and uriit-sti
ness factor, that is restricted by pins at both ends and cigloie
to an initial disturbance. The beam has no dampening factor s
that it may vibrate endlessly. The beam has colocated \tgloci
sensors and actuators to reduce the vibration. For sirhphee
consider two fundamental modes of vibration.

The two fundamental vibration modes, denotedvgsand
M, are derived [22] as follows:

M1 : 1.4142sinz, A\ = wf =97.41
M : 1.4142sin2wz, A, = w3 = 155855

(20)
(21)

wherez € [0.0,1.0] denotes the position in the beam spatial
axis and\; andw, i = 1,2, represent the eigenvalues and the
frequencies of-th modes, respectively.

Since each mode is governed by a second-degree differen-
tial equation, the state vector for the system contains Vour
ablesx = [xq,X2,%3,X4]T. X1(X2) andxz(x4) denote the vertical
displacement and velocity of first (second) vibration mage,
spectively. Then, the system matiin Eqg. 1 is denoted as

0 0 10

A 0 0 01
—97.41 0 00

0 —15585500

Note that we use a velocity feedback control. So the contplt
does not have any effect on the statésandx2. The actuation

6

is used to control the velocity statg3 andx4. We will assume
that the beam cannot be deformed permanently. Thus when the
velocity of the beam comes to zero, the displacement is aisn z
Thus in this specific example although the number of statés is
the control affects only the 2 velocity states.

We first show that using 2 sensor-actuator pairs that form a
B matrix of rank 2, we can asymptotically stabilize the system
We choose the followin® matrix.

0 0
0 0

B= 1 14142
13066 1

The Fig. 3(a) shows the energy of the system staring from an
arbitrray initial state going down to zero in the absenceaofts.
The energy of the system at tinés calculated ag” (t) x X(t),
wherex(t) is the state of the system.

.

‘‘‘‘‘‘‘‘‘‘‘

(a) Energy of the system with 1 ac- (b) Energy of the system with 3 ac-
tuator at each location, no faults ~ tuators at each location of which 1
is Byzantine

Figure 3. Energy of the Beam Vibration System - 2 Actuator Locations

We now show that 1 Byzantine actuator at each location can
be tolerated and asymptotic stability can be maintainediinigy
3 actuators at each location. The Fig. 3(b)shows the enéthg o
system staring from an arbitrray initial state when one atciu
at each location is Byzantine.

We now show that whek= 1, we can asymptotically stabi-
lize the system using 4 actuators that are distributed dougpto
the 4— uniform configuration. We choose 4 pairs of colocated
sensors and actuators such that the columnB ofatrix have
equal magnitude and successive column vectors are sephbsate
an anglejy.

0 0 0 0

0 0 0 0
—0.5754 01715 08179 09852
—0.8179—-0.9852 05754 01714

(22)

The following graphs show the states of the-4iniform
configuration system staying asymptotically stable in thesp
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ence of no actuator faults and one actuator failing.

1250

1200
1100]

%m0

1000

850

(a) Energy of the 4-uniform configura- (b) Energy of the 4-uniform configura-
tion - No Faults

rrrrrrrrr

tion - 1 Byzantine Actuator

Figure 4. Energy of the 4-Uniform Configuration Beam Vibration Sys-

tem

5 Conclusions and Future Work

In this paper we designed two reliable control schemes using
local output feedback control system that maintain asytigto
stability in the presence of Byzantine actuators that catsly
generate erroneous control inputs. The first scheme wagrsbi
using redundant actuators that were colocated. Howeveyt

not

ond scheme does not require the actuators to be colocated. Th

be feasible to collocate actuators in all systems. The se

other advantage with the second scheme is that the req@red r
dundancy is reduced. ut in this scheme the restrictionsén th
choice of actuator locations increased. The design of thtegy

becomes more complex when the number of state dimensions

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

12]

[13]

of the system increases. (Upper bounds for tolerating Byzan [14]
tine faults in higher dimension systems can be found in dadla
Technical report[21]). We gave an application of both thetoml
schemes in stabilizing a beam subjected to an initial peation.

We plan to extend our results on tolerating faulty actuators

to systems that use centralized and decentralized statbdek.
An interesting topic for future study is also to design rieléacon-
trol schemes based on adaptive control laws using statbde&d
Extending some heuristic studies in this area [23] to seffiCi
conditions is a subject of ongoing work.
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