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Abstract

The influence field of an object, a commonly exploited
feature in science and engineering applications, is the re-
gion where the object is detectable by a given sensing
modality. Being spatially distributed, this feature allows
us to tradeoff nodal computation with network communica-
tion. By the same token, not only is its calculation subject
to nodal failures and false detections, but also to channel
fading and channel contention. In this paper, we study how
to accurately and efficiently estimate the influence fields of
objects in such an unreliable setting and how this reliable
estimation of influence fields can be used to classify and
track different types of objects. We derive, for node and net-
work fault models, the necessary nodal density for reliably
estimating the influence fields so that objects can be classi-
fied and tracked. We present four algorithmic techniques:
Temporal Aggregation, Probabilistic Reporting, Temporal
Segregation and Spatial Reconstruction, to deal with cases
where the effective network density differs from this min-
imum. We provide corroboration of our analysis through
field experiments with Mica2 sensor nodes wherever appro-
priate. Finally, we demonstrate how these results and tech-
niques were applied to achieve reliable and efficient classi-
fication and tracking in a fielded system of 90 Mica2 sensor
nodes that we called “A Line In The Sand”.

Keywords: wireless sensor networks, reliability, fault-
tolerance, intrusion detection

1 Introduction

The influence field of an object j with respect to a given
sensing modality is the region surrounding j where it can
be “detected” by a sensor of that modality. This region de-
pends on both the characteristics of the object, such as its
size and shape, as well as the sensing modality being used.
Differences in the area and/or shape of the influence fields
of different objects can often be used to distinguish between
them. Fig. 1 illustrates the differences between magnetic in-
fluence fields for two objects, a person carrying a metal rod
and a vehicle. The size and shape of the influence fields
shown in this figure depend on the amount and distribution
of metallic content in each object type and the orientation of
the object (e.g., the dumbell shape of the vehicle influence
field is attributed to the positions of its axles). The influence
field feature is thus useful in sensor network applications for
surveillance, where typical tasks include detection, classifi-
cation, and tracking of various types of objects.

To estimate the influence field, each node merely has to
detect a binary “presence” of an object; network-based ag-

Figure 1. Magnetometer based influence
fields for two object types.

gregation of these bits yields the influence field without sub-
stantial or complex node operation. The influence field fea-
ture is thus well suited for wireless sensor network applica-
tions where individual nodes are constrained due to limited
processing, sensing and communication capabilities. The
key challenge in realizing the influence field is the unreli-
ability of wireless sensor networks. Event losses –both in
nodes and in the network– are fundamental to wireless sen-
sor node platforms and their impact on the application can
be substantial. Thus, both node and network unreliability
have to be dealt with while estimating the influence field.

In a system that we recently fielded in several outdoor
settings, the influence field feature was successfully ex-
ploited as the primary basis for classification and tracking
of people, people carrying significant amount of metal (aka
“soldiers”) and vehicles, via a dense, wireless sensor net-
work. The intended use of this system, which we called A
Line in the Sand [1], is to use a sensor network to protect
high-valued assets, secure extended perimeters, and mon-
itor activity of personnel or vehicles in remote or access-
denied areas. A Line in the Sand was originally demon-
strated in a 18m x 7m area using 90 Mica2 [2] sensor nodes.
More recently, the same approach has also been demon-
strated to achieve accurate classification and tracking of in-
truders in a large scale network, which we called ExScal [3],
of over 1000 nodes deployed over a 1.3km x 300m area.

Contributions of the paper. In this paper, we address
the problem of reliably estimating the influence fields of
various object types in the presence of multiple sensor net-
work faults, in terms of preserving the differences in the
area and/or shape across various object types. For each
fault type, we provide: (1) analytical results about the fault-
affected influence field estimates, (2) procedures for calcu-
lating the ideal sensor node density for efficient and reliable
estimation, (3) algorithmic techniques to provide efficient
and reliable estimation when the deployment density does
not meet or exceeds the ideal density, and (4) where appro-
priate, experimental corroboration of our analysis or algo-
rithmic techniques realized using experiments with 40–50
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Mica2 sensor nodes in our testbed.
We show that node and network faults impose competing

(i.e., two-sided) constraints on network density. However,
since our results can be instantiated in a compositional way,
we can deal with cases where multiple types of faults occur.

Finally, we show how we experimentally validated the
reliable estimation of influence fields so as to accurately
classify and track persons, soldiers, and vehicles in A Line
in The Sand. This case study also provides a data point for
the importance of dealing with network unreliability at both
the network and the application level. It identifies a need
for routing protocols in sensor networks to provide uniform
reliability (at least for nodes that are equidistant from the re-
ceiver). We also describe possible extensions to estimation
of influence fields for classification and tracking of objects.
Organization of the paper. In Sec. 2, we present the sys-
tem and fault models and formally define the problem of
reliable estimation of influence fields. Then, in Sec. 3, we
analyze the impact of faults on estimation, derive necessary
conditions for reliably estimating the area and shape of var-
ious objects’ influence field in a manner that preserves their
difference, and provide algorithmic techniques to deal with
these faults whenever necessary. Sec. 4 describes how these
results and techniques can be composed and applied to iden-
tify and track objects. In Sec. 5, we provide details of our
implementation of a A Line in the Sand and how we dealt
with different fault classes in our design. Some extensions
to the influence field approach are noted in Sec. 6. We dis-
cuss related work in Sec. 7 and make concluding remarks
and discuss future work in Sec. 8.

2 System and Fault Models

In this section, we outline the system and fault mod-
els and define the problem of reliably estimating influence
fields.

2.1 System model

The system consists of N wireless sensor nodes, each
with a unique identifier. We assume a localization service
that provides the relative or absolute position for each node
and a global time synchronization service that enables each
node to timestamp its detections.

The sensor nodes are distributed uniformly over a geo-
graphic region that is to be monitored. We model this re-
gion as a large finite number, Ω, of perfectly spaced logical
points that serve as the potential locations where nodes can
be deployed. When we refer to the area A of a subregion,
we mean A is the number of these Ω points in the subregion.
We denote the ratio N /Ω by ρ, which represents the sensor
density in the network.

We assume that the wireless network is connected, hence
it is possible to aggregate messages from any subset of
nodes in the system, possibly over multiple hops. We as-
sume a central aggregator node known to the rest of the
nodes for simplicity, however our results are applicable
even for dynamically chosen aggregators.

Recall that the influence field of an object j with respect
to a sensing modality is the region surrounding j wherein j
will be “detected” by a sensor of that type. For simplicity
of presentation, we assume that the size of the influence
field of j is invariant with respect to its location. Likewise,
the shape of the influence field is invariant with respect to
location, up to rotation. We limit our attention to one given
sensing modality which will remain implicit in our notation.

2.2 Fault model

Sensor networks are subject to a large class of faults, re-
sulting from inexpensive hardware, limited resources, un-
reliable communications and extreme environmental condi-
tions. We consider both node and network fault types.
Node faults. Sensor nodes fail in a variety of ways, includ-
ing hardware and software failures, or simply in the form of
a transient event loss. They also occasionally generate false
positives due to unreliable hardware, environmental pertur-
bations and transient state corruption. Thus at any time, the
net effect of a node fault can be modelled as missing the
detection of an object, i.e. a false negative, or asserting a
detection when there is no object, i.e. a false positive.

Node fault model: The probability that any
node misses the detection of an object,
whether it is due to a transient, permanent
or intermittent node fault, is 1 − pn, while the
probability that any node generates a false
positive is pfp.

In other words, we assume that false negatives and false
positives at nodes are independent of each other and of the
objects. It follows trivially that for any meaningful detec-
tion to be possible, the probability of a node detecting an
event, pn, must be greater than the probability of a node
generating a false positive, pfp.
Network faults. Wireless communications in a multi-hop
network are subject to both fading and contention effects.
Channel fading loss depends on link characteristics such as
distance, relative orientation of sender and receiver, envi-
ronmental conditions, etc.

Fading model: The probability of message
loss due to fading for any single hop commu-
nication in the network is 1 − pf .

It follows that in the absence of any other faults, the proba-
bility of message loss due to fading for any h hop commu-
nication is 1 − ph

f .
Channel contention losses occur when multiple senders

try to transmit messages at the same time. The degree
of message loss depends on factors such as the Medium
Access Control (MAC) protocol used, the synchronicity
of message transmissions, and the number of nodes try-
ing to send data simultaneously. We assume a standard
CSMA/CA MAC protocol wherein nodes try to avoid colli-
sions using random backoffs and channel sensing.

Contention model: The probability of mes-
sage contention loss, which is a function of
the number of nodes simultaneously trying to
send a message and of the number of slots
available for a node to choose its random
backoff from, is 1 − pc.

The end-to-end network reliability of message reception
for a given source depends on several factors including the
size of the traffic load, the number of hops traversed by each
message and the routing protocol. We use the term traffic
source to indicate a set of nodes that detect a phenomenon
and report it to the aggregator concurrently. We assume a
convergecast routing model rooted at the aggregator.

End-to-end reliability model: The probabil-
ity of end-to-end message loss for a traffic
source i, which is a function of the number
of senders in i, and the distance or number
of hops h between the traffic source and the
aggregator, is 1 − prcvih

.
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Our model postulates that network reliability is uniform
across nodes equidistant from the aggregator. It is possible
to realize this end-to-end model by careful design of the
routing protocol. The GridRouting protocol [4], used in A
Line In The Sand achieves this by uniformly balancing the
traffic load over paths including stable, reliable links. An
experimental validation of the end-to-end reliability model
can found in a related technical report [5].

All the fault classes discussed above and their associated
probabilities, are the result of several factors ranging from
hardware failures to protocol design. In this paper, we an-
alytically characterize these fault models wherever possible
(e.g. an analytical characterization of the contention model
is presented in Sec. 3). However, not all fault models can be
characterized in this manner as they may depend on factors
which are hard to model (e.g. environmental perturbations
or choice of protocol). In such cases, we resort to empirical
characterizations of these faults.

2.3 Problem Definition

Estimation consists of calculating the area and the shape
of the influence field. If we assume that sensor node density
ρ exceeds some lower bound that depends on the objects at
hand, estimating the area A of the influence field of object
j is effectively reduced to counting the number of nodes
that detect j. With uniform distribution, the number of sen-
sors in any region of area A follows a binomial distribution
with parameters (A, ρ). For practical values of A and ρ, we
can exploit the rule of thumb for the normal approximation
to this binomial distribution that the value of the random
variable lies within 3 times the standard deviation of the ex-
pected value in more than 99% of the trials. We use the 3
standard deviation rule in the rest of this paper as it satisfies
the desired classification accuracy of 99%, and denote it as
whp (for ‘with high probability’).

Proposition 1 Given uniform deployment of sensors the
number of sensors that lie in the influence field of j is, whp,
in the interval

[(A×ρ)−3×
√

A × ρ × (1 − ρ) , (A×ρ)+3×
√

A × ρ × (1 − ρ)]

Similarly, estimating the shape of the influence field of j
is effectively reduced to calculating the shape of the region
that smoothly bounds the sensor nodes that detect j.

Relation to sensor coverage Sensor coverage in a region
is the minimum number of sensors that “cover” (i.e., will
detect at) each point in that region. While this typical defi-
nition is independent of the type of objects at hand, a more
useful definition for our purposes would be one with respect
to each object type. (Thus, the sensor coverage of object j
may differ from the coverage of another object in the same
region.)

Classification is an example of an application that can
exploit area estimation. Different object types may be clas-
sified via separation between the areas of their influence
fields. Errors in area estimates can thus result in misclassi-
fications. Tracking is an example of an application that can
exploit shape estimation. Object location may be tracked
from the locations of sensors that detect it. Shape distortion
errors can thus result in inaccuracy of tracking. (The same
argument applies for classification based on the shape of the
influence field.) Node and network faults impact estimation
of the area and shape of the influence field of an object.
More importantly, these faults may produce a non-uniform

distribution of sensors whose detections are aggregated, re-
sulting in area and/or shape distortion errors.

We are thus led to the problem of how to reliably esti-
mate the size and shape of the influence fields of objects so
that they can be distinguished from each other and local-
ized. More specifically, we focus on two subproblems of
reliable estimation:
• Problem 1: How to ensure for objects whose respec-

tive influence field areas are separable, that the fault-
affected estimates of their respective influence field ar-
eas are also separable?

• Problem 2: How to preserve the influence field shape
of an object in its fault-affected estimate by preserv-
ing the uniformity of distribution of the sensors whose
detections are not affected?

3 Reliable Estimation

In this section, we address problems 1 and 2 out-
lined above successively for each of the fault models dis-
cussed in Sec. 2. It should be noted that our approach
is compositional and thus the analysis, which is presented
separately for each fault type, can build upon the con-
straints/distributions identified for other fault types.

3.1 Node faults

Recall from Sec. 2 that the net effect of node faults is
modelled as false negatives and false positives.

3.1.1 False Negatives

Let A1, A2, ... Ak be the influence fields of k types of
objects ranging from the smallest to the largest. Recall that
pn is the probability that a sensor node detects an object.
The number of non-faulty nodes in a region of area Ai thus
has a binomial distribution with parameters (ni, pn), where
ni is the number of nodes in the area Ai. However, recall
from Proposition 1 that ni itself is a random variable that
has a binomial distribution, characterized by:

E(ni) = ρ × Ai (1)

V (ni) = Ai × ρ × (1 − ρ) (2)

The mean and variance of the number of nodes detecting
object i, E(di) and V (di) respectively are:

E(di) = ρ × Ai × pn (3)

V (di) = Ai × ρ × pn × (1−ρ × pn) (4)

For this distribution, for variously chosen values of Ai,
ρ and pn, we heuristically observe that in 99% of the trials,
the value of the random variable lies within three standard
deviations of the mean.

In order for separation between estimated influence
fields of object types to be maintained whp, we require the
following inequality to hold for each pair (i, i+1) of objects.

E(di+1)−(3×
√

V (di+1)) > E(di)+(3×
√

(V (di)) (5)

Let ρfni(i+1) be the minimum density required to distinguish
between objects i and i+1 whp. By solving Eqns. 3, 4, and
5, we obtain ρfni(i+1) as:

ρfni(i+1) = B
(pn+B×pn)

where
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B = 9 × (
√

A(i+1)+
√

Ai)
2

(A(i+1)−Ai)2

Theorem 1: The minimum network density, ˆρfn, required
to maintain separation between the estimated influence
fields of all objects in the presence of false negatives is the
maximum of all pairwise densities ρfni(i+1) .

3.1.2 False positives

We now study the impact of false positives on estimation. In
order for separation to be maintained between the estimated
influence fields of objects i and i + 1, we require that the
number of detections in area Ai, when combined with the
false positives in the region of area Ai+1 − Ai, should be
lower than the number of detections in area Ai+1. The mean
and variance of the number of false positives in the area
Ai+1 − Ai, respectively E(fpi) and V (fpi), are:

E(fpi) = ρi(i+1) × (Ai+1 − Ai) × pfp (6)

V (fpi) = E(fpi) × (1−ρi(i+1) × pfp) (7)

We thus require the following inequality to hold in or-
der to maintain separation between the estimated influence
fields of two objects Ai and Ai+1.

E(ni)+(3×√
(V (ni))+E(fpi)+(3×√

V (fpi)) <

E(ni+1)−(3×√
V (ni+1)) (8)

Note that the term on the right hand side does not con-
tain any expression for false positives. This is because false
positives outside the area Ai+1 would affect the estimation
of both objects equally. Let ρfpi(i+1) be the minimum den-
sity necessary to distinguish between objects i and i + 1,
obtained by solving Eqns. 6, 7 and 8.

Theorem 2: The minimum network density, ˆρfp, required to
maintain separation between the estimated influence fields
of all objects in the presence of false positives is the maxi-
mum of all pairwise densities ρfpi(i+1) .

3.1.3 Density compensation techniques

The conditions derived above state the minimum density
required for preserving separation between the estimated
influence fields of objects. However, in many cases, net-
work density is a function of other factors such as cost and
communication range, and thus may not be a parameter of
choice. We therefore present techniques for dealing with
both inadequate and excess network density.

Temporal Aggregation. This technique is used to obtain
the necessary separation of estimated influence fields when
the network density does not meet the minimum require-
ments. Temporal Aggregation involves the following steps:

1. Using Theorems 1 and 2, compute minimum density ρ̂
required to distinguish all objects

2. Given network density ρ, choose the aggregation in-
terval t such that ρ × t > ρ̂

3. Aggregate node detections over time t to estimate ob-
ject influence fields.

The aggregated influence field, used in a spatio-temporal
context, is the area covered by an object in time t and it de-
pends on the size, shape and motion model of the object.
The proof of why temporal aggregation helps achieve sepa-
ration can be deduced by rewriting Eq. 5 as

E(di+1)−E(di) > (3×
√

V (di+1))+(3×
√

(V (di)) (9)

We can see that when aggregated over time, expected val-
ues grow faster than standard deviations, hence the desired
inequality can be satisfied. Thus, temporal aggregation can
also be used to distinguish between objects that have the
same influence field but different speeds or motion models.

Theorem 3: Separation between estimated influence fields
of objects is preserved in networks with insufficient density
or for objects with different speeds, by aggregating detec-
tions over interval t.

Probabilistic Reporting. This technique is used to im-
prove system efficiency and lifetime in cases where network
density exceeds the minimum specified by Theorems 1 and
2. Probabilistic Reporting involves the following steps:
For each node:

1. Compute probability pr of reporting a detection.
2. For each detected object, send message to aggregator

with probability pr

Computing pr: Consider the analysis presented earlier
wherein each node detects an object with probability pn. If
each detecting node reports with probability pr, the number
of reporting nodes in an area Ai is a random variable with
mean and variance as given below:

E(ri) = ρ × Ai × pn × pr (10)

V (ri) = Ai × ρ × pn × pr × (1−ρ × pn × pr) (11)

In order for separation between estimated influence
fields to be maintained whp, the following inequality must
hold for each pair (i, i+1) where (pr)i(i+1) is the probability
of reporting.

E(r(i+1))−(3×
√

(V (r(i+1))) > E(ri)+(3×
√

V (ri)) (12)

Let (pr)i(i+1) be the minimum probability required to
distinguish between objects i and i + 1. By solving
Eqns. 10, 11 and 12, we get

(pr)i(i+1) = B
((pn×ρ)+(B×pn×ρ))

where

B = 9 ×(
√

A(i+1)+
√

Ai)
2

(A(i+1)−Ai)2

Theorem 4: The minimum probability, pr, of reporting a
detection required to distinguish between all object types
is the maximum of all pairwise reporting probabilities
(pr)i(i+1).

3.2 Network faults

In this subsection, we discuss the impact of fading and
contention faults on reliable estimation.

3.2.1 Channel fading

Recall that pf is the probability of message reception over
a single hop in the presence of fading. Thus, over h hops,
the probability of successful reception of a message equals
(pf )h. Since messages from nodes closer to the aggregator
have lower probability of failure, the estimated influence
field of a small object close to the aggregator can overlap
with that of a large object far away. We therefore need to
compensate for the effect of distance of an object from the
aggregator during its estimation.
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3.2.2 Distance compensation techniques

We now present necessary conditions to maintain separa-
tion between the estimated influence fields of object types
in the presence of fading over multiple hops en route to the
aggregator. For simplicity, we assume that the object size
is small as compared to the distance from the aggregator,
hence all detections corresponding to the same object travel
the same number of hops.

Probabilistic Reporting. To compensate for non-uniform
reception probability, we use the probabilistic reporting
technique presented earlier. In this case however, the re-
porting probability pr is not uniform for all nodes, rather it
depends on the distance to the aggregator.
Selecting pr: Let D be the maximum number of hops to
the aggregator in the network . The probability of report-
ing for a sensor at distance of h hops from the aggregator is
chosen to be p

(D−h)
f . Thus, the probability of reporting for

nodes D hops from the aggregator is 1, while for h = 1, the
probability of reporting is p

(D−1)
f .

We first show that distance-dependent probabilistic re-
porting compensates for the effect of distance on estima-
tion. Since fading errors are independent, the number of
successful transmissions at any distance has a binomial dis-
tribution. The number of messages successfully received
for an object i which is h hops away from the aggregator, is
thus a random variable f(h) whose mean and variance are
obtained as follows:

E(f(h)i) = Ai × ρ × pD−h
f × ph

f = Ai × ρ × pD
f (13)

V (f(h)i) = Ai × ρ × pD
f × (1 − (ρ × pD

f )) (14)

From Eq. 13 and Eq. 14, we observe that the distribution
of the number of successfully received messages is now in-
dependent of the number of hops.

We now derive a necessary condition for distinguishing
objects whp. To achieve this, it can be shown that for each
pair of objects (i, i+1), the number of messages success-
fully received whp for the smaller object i located at h = 1
should be less than the number of messages successfully re-
ceived whp for the larger object i+1 located at h = D, as
this represents the worst case. We thus have:

E(f(D)j)−(3
√

V (f(D)j)) > E(f(1)i)+(3
√

V (f(1)i))
(15)

Let ρi(i+1) be the minimum density required to maintain
separation between estimated influence fields of objects i
and i+1. Solving Eqns. 13, 14 and 15, we get:

ρi(i+1) = B
(pD

f
+(B×pD

f
))

where
B = 9 ×(

√
A(i+1)+

√
Ai)

2

(A(i+1)−Ai)2

Theorem 5: Let each node h hops from the aggregator
report its detections with probability p

(D−h)
f where D is the

maximum number of hops to the aggregator. The minimum
density ρ̂ required to maintain separation between the esti-
mated influence fields for all object types in the presence
of multi-hop fading faults, is the maximum of all pairwise
densities ρi(i+1).

Note that since our techniques are compositional, we can
deal with conditions where we have less than or more than

this density ρ̂ by using the techniques discussed earlier.

Spatial Reconstruction. As an alternative to probabilistic
reporting, we present the spatial reconstruction technique
which involves the following steps:

1. Upon detecting an object, each node sends a message
to the aggregator.

2. For each distance h, aggregator scales number of re-
ceived messages from that distance by 1

ph .

Thus, if the aggregator receives k messages from distance h,
it considers this as having received k

ph messages. The scal-
ing factor is a result of the uniform probability of receiving
a message from a node h hops away being ph

f . Spatial Re-
construction is the dual of distance-dependent Probabilistic
Reporting. In this case, all detecting nodes transmit with the
same probability, which may be lower than 1 for reasons of
efficiency. The minimum network density required to dis-
tinguish between object types is the same as in Theorem 5
because the probability of fading loss is independent of the
number of messages being transmitted.

3.2.3 Channel contention

In this subsection, we analyze the effect of interference due
to channel contention on a single hop. In our event based
traffic model, all nodes detect an object and hence compete
for the channel at nearly the same instant. Thus, as the event
size increases, the message losses increase too. We analyze
the effect of channel contention on aggregation, under the
assumption of the following one hop model.

Suppose n nodes, all within one hop of each other and
the aggregator, want to send a detection message to the ag-
gregator. Each node randomly chooses one of c time slots
for transmitting the message. Let c be greater than n. If
multiple nodes choose the same slot, their messages col-
lide and all of them are lost. This models a random backoff
MAC scheme, commonly used in wireless communications.

The expected number of messages successfully received
by the aggregator is the expected number of time slots that
are chosen by exactly one node. This is an instance of a
classical occupancy problem in combinatorics. The proba-
bility that a slot is chosen by exactly one node is equal to
the probability that all other nodes choose different slots.
This is the probability that a message does not get lost due
to channel contention, which we denoted as pc in Sec. 2.

pc = (1 − 1/c)(n−1) (16)

The number of nodes with a time slot for themselves, i.e.,
the number of messages that do not get lost due to channel
contention is a random variable having a binomial distribu-
tion with parameters (n, pc). The mean and variance of the
distribution, denoted as E(s) and V (s), are as follows:

E(s) = n × pc = n × (1 − 1
c
)(n−1) (17)

V (s) = n × pc × (1 − pc) (18)

From Eq. 17, it is seen that for a given c, as n increases,
the expected number of successful messages reaches a max-
imum and then starts decreasing.

Definition: The inversion point of a network with
respect to a given observer is the number of
senders for which the expected number of mes-
sages received is maximum.

The inversion point, denoted as ninv , obtained by solving
for the maxima of Eq. 17 is as follows:
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ninv =
1

ln(1 + 1
c )

(19)

Due to inversion, the aggregator may receive fewer
detection messages for a larger object than it receives for a
smaller object, hence the separation between the estimated
influence fields of the object types may not be preserved.

Experimental results.

(a) (b)

Figure 2. Inversion in a one hop network.

Fig. 2 shows the experimentally measured impact of in-
creasing the number of transmitters on the network reliabil-
ity of the single hop model. This experiment was performed
using Mica2 motes running TinyOS [6], using globally syn-
chronized time to generate concurrent messages. The nodes
were placed within one hop of each other and of the aggre-
gator and their transmit power was set to be high enough
to negate fading losses. The experimental results in Fig. 2
have been averaged over 50 trials for each of the traffic loads
of size 2,5,10,20,30 and 40 sources. For these traffic loads,
not only does the reliability of the network decrease signifi-
cantly as the number of nodes increases as seen in Fig. 2(a),
but it leads to the inversion effect seen in Fig. 2(b). This in-
version may cause an overlap between the number of mes-
sages received at the aggregator implying that previously
separable influence fields will no longer be separable.

3.2.4 Contention compensation techniques

In this subsection, we describe two techniques to compen-
sate for inversion effects produced by network contention to
preserve separation between estimated influence fields.

Probabilistic Reporting. We use the same technique de-
scribed earlier to compensate for contention effects, how-
ever the constraints for choosing the reporting probability
pr differ as follows.

If each detecting node reports with probability pr, the
number of reporting nodes is a random variable with ex-
pected value and variance as follows:

E(ri) = Ai × ρ × pr (20)

V (ri) = Ai × ρ × pr × (1 − ρ × pr) (21)

Recall from Eq. 16 that the probability of a message be-
ing successfully received for an object i is dependent on the
number of reporting nodes, which itself is a random vari-
able. We make a simplifying, yet conservative, assumption
that while the number of reporting nodes for an object is a
random variable, the probability of successful reception is
uniform and depends on the expected number of reporting
nodes. This assumption results in a smaller traffic load than
the expected value being subjected to larger contention than
it would really experience. Similarly, larger traffic loads are
subjected to lower contention than actual. Consequently,
the interval over which the number of received messages
is distributed subsumes the interval that would be obtained

in practice. Hence, the necessary conditions for maintain-
ing separation between object types, resulting from our as-
sumption are conservative. We now have for object i

pci
= (1 − 1/c)(E(ri)−1) (22)

Using Eqns. 20 and 22, the number of messages that are
successfully received for this object is now a random vari-
able whose mean and variance are given by:

E(si) = Ai × ρ × pr × pci
(23)

V (si) = Ai × ρ × pr × pci
× (1 − (ρ × pr × pci

)) (24)

For separation between estimated influence fields to be
maintained whp, we require the following inequality to hold
for each pair (i, i+1):

E(s(i+1))− 3×
√

V (s(i+1)) > E(si) + 3×
√

V (si) (25)

Selecting pr: Solving the above inequality yields a
quadratic whose solutions denote the minimum and max-
imum probabilities of reporting for which the two object
types can be distinguished. The following procedure can
be used to select the probability of reporting such that the
estimated influence fields for all object types are separable.

1. For each pair (i, i+1), where 1 ≤ i and i < k, using
Eq. 23, 24 and 25, obtain a range of probabilities given
by the closed interval (min((pr)ij),max((pr)ij)).

2. Let (prmin, prmax) denote the intersection of all
such ranges.

3. If the intersection is not empty, choose pr = prmin.

Theorem 6: Assume pr is the probability determined by
the selection procedure. Separation between estimated in-
fluence fields of all objects is achieved when each node re-
ports its detections with probability pr.

Note that there may be cases where the selection proce-
dure returns an empty intersection in Step 2. We now de-
scribe an additional algorithmic technique to deal with such
cases.

Temporal Segregation. If the procedure described above
returns an empty range of feasible reporting probabilities, it
means that there exist objects a, b, c in order of increasing
influence field sizes such that max((pr)ab) < min((pr)bc).
Thus, there exist pairs for which eliminating inversion re-
quires such a small probability of reporting that other ob-
jects are no longer distinguishable. To overcome this prob-
lem, the inversion point ninv , has to be increased. Accord-
ing to Eq. 19, this can be achieved by increasing the num-
ber of time slots c. In other words, we temporally segregate
the messages. Temporal segregation is also achieved by us-
ing additional application level backoffs before reporting a
detection. Note that one can also eliminate the problem of
channel contention by precisely scheduling the transmission
of messages. One example of such a scheme is TDMA. The
drawback of all such schemes is that they incur an addi-
tional delay overhead.

Experimental results. Recall the inversion effect demon-
strated experimentally in Fig. 2. We now demonstrate how
the techniques described above compensate for the inver-
sion effect, allowing us to distinguish between object types
under consideration. The experimental setup is the same as
in the previous experiments with the same internode dis-
tances, same transmit power and the same traffic source
sizes. Fig. 3(a) demonstrates the results of using Proba-
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(a) Probabilistic reporting (b) Temporal segregation

Figure 3. Dealing with inversion using Con-
tention compensation techniques.

bilistic Reporting with probability 0.5. At each concur-
rent sending event, all the potential transmitters indepen-
dently decide whether or not to transmit their message. The
graph shows that by using probabilistic reporting, inversion
is avoided for the traffic loads under consideration. How-
ever, note that the intersection in this case is empty for
sources of size 5, 10 and 20. Thus, even with probabilistic
transmission, we do not achieve disjoint ranges of message
reception.

Fig. 3(b) demonstrates how Temporal Segregation helps
achieve this separation. In this experiment, the number of
slots available for choosing when to transmit was increased
4 times as compared to the previous case. As seen from
the graph, by increasing the number of slots, we are able
to avoid inversion for the traffic loads under consideration.
The graphs also demonstrate that the overlap between mes-
sages received is eliminated for sources of size 5, 10 and 20.
In fact, if the number of slots were increased even further,
there would be no overlap for any source size.

4 Putting it all together: Classification and
Tracking

In this section, we show how the analysis and techniques
for isolated fault classes presented earlier are composed,
and discuss the effect of end-to-end unreliability on reliable
estimation. We also present a procedure for distinguishing
objects from false positives and discuss how object loca-
tions can be tracked by shape estimation of influence fields.

4.1 Composing fault classes

In this subsection, we describe how the necessary con-
ditions for maintaining separation between estimated influ-
ence fields of objects can be derived when multiple faults
can occur simultaneously. We illustrate this compositional
approach through an example of node faults; other fault
classes can be dealt with similarly.

Recall from Sec. 3.1, Eqns. 5 and 8, which specify con-
ditions for maintaining separation between the estimated in-
fluence fields of two objects i and i + 1 in the presence of
false negatives and false positives respectively. However,
if both these faults can occur, neither of these conditions is
sufficient. The necessary condition for distinguishing be-
tween two objects i and i + 1 in the presence of both type
of node faults can thus be stated as:

E(di)+(3×√
(V (di))+E(fpi)+(3×√

V (fpi)) <

E(di+1)−(3×√
V (di+1)) (26)

Let ρnodei(i+1) be the minimum density required to distin-
guish between i and i + 1, obtained using Eq. 26.

Theorem 7: The minimum density ρnode required to dis-
tinguish between all objects in the presence of both false
negatives and false positives is the maximum of all pairwise
densities ρnodei(i+1) .

End-to-end reliability. The method described above can
be used to analyze the effects of multiple fault classes af-
fecting reliable estimation. We now present a unified analy-
sis for studying the impact of end-to-end reliability. This net
reliability encapsulates all losses that may be encountered
including false negatives, fading and contention losses. We
do distinguish false positives in this analysis as they are ad-
ditive faults. As discussed in Sec. 2 and as we will demon-
strate in the next section, we characterize end-to-end reli-
ability empirically. We denote the uniform probability of
receiving a detection from a node in the influence field as
prcvih

. Using distance-dependent Probabilistic Reporting
or Spatial Reconstruction, we can compensate for the ef-
fect of distance on reliability. The mean and variance of the
number of detections received by the aggregator for object
i, respectively E(rcvi) and V (rcvi), then are as follows:

E(rcvi) = ρ × Ai × prcvi
(27)

V (rcvi) = Ai × ρ × prcvi
× (1−ρ × prcvi

) (28)

Similarly, the mean and variance of the number of false
positives in the area Ai+1 − Ai which are received by the
aggregator, respectively E(fpi) and V (fpi), are:

E(fpi) = ρi(i+1) × (Ai+1 − Ai) × pfp × prcvi
(29)

V (fpi) = E(fpi) × (1−ρi(i+1) × pfp × prcvi
) (30)

From Eqns. 27, 28, 29 and 30, we obtain:

E(rcvi)+3×√
V (rcvi)+Efpi+3×√

V (fpi) <

E(rcvi+1)−3×√
V (rcvi+1) (31)

Let ρneti(i+1) be the minimum density required to maintain
separation between the estimated influence fields of objects
i and i + 1, obtained using Eq. 31.

Theorem 8: The minimum network density ρnet required
to maintain separation between all object types whp in
the presence of false positives and end-to-end unreliabil-
ity in the network is the maximum of all pairwise densities
ρneti(i+1) .

4.2 Identifying and isolating objects

The analysis presented earlier describes how to choose
network density and/or fault compensation techniques so
that the estimated influence fields of all objects can be dis-
tinguished. Assuming these requirements are satisfied, we
now describe a procedure to filter false positives from a set
of detections received for one or more objects so that these
objects can then be classified and tracked.

Let ρnet be the network density which, as described in
the previous subsection, suffices to distinguish between all
object types in the presence of faults. We now define the
active density adi for object i as the ratio of the minimum
number of detection messages that may be received for ob-
ject i to the influence field area of object i.

adi =
(E(rcvi) − 3 × √

V (rcvi))
Ai

(32)

Let admin be the minimum active density among all ob-
jects and let imin be the object with this minimum active
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density. We then apply the following spatial filtering algo-
rithm to isolate object detections from false positives:

1. For each received detection m, apply filtering windows
of size A1 around it.

2. If a window contains more than A1 x admin detec-
tions, mark all these as object detections, else mark m
as a false positive.

3. Repeat steps 1 and 2 till no more detections are un-
marked.

It can be shown that the spatial filtering window size in Step
1 should be the influence field area of the smallest object,
A1. The uniform reliability property of the routing protocol
in our model guarantees that if the minimum active density
threshold is exceeded in a window, then all detections must
belong to some object type. The above procedure thus iden-
tifies and isolates object boundaries.

4.3 Tracking using shape estimation

Having derived the minimum network density and/or
compensation technique to achieve separation between es-
timated influence fields of detected objects, we can use the
estimated shape of the influence field to track the object lo-
cation. For instance, a metallic object, which generates a
uniform, circular influence field around it can be tracked at
the centroid of the locations of magnetometers that detect
it, while a light source producing a conical beam can be
tracked at the vertex of the photosensors detecting it.

To achieve tracking, we require that nodes from which
detections used in shape estimation are received, should be
distributed uniformly across the influence field, otherwise
the estimated shape of the influence field may be distorted.
False negatives and false positives occur independently at
nodes hence their distribution is uniform across the influ-
ence field. The one-hop contention model for faults is based
on nodes randomly selecting the same slot for transmission,
hence the distribution of these faults is uniform. Also, recall
from Sec. 2 that the GridRouting protocol has the property
of uniform reception probability for nodes equidistant from
the aggregator. In the multi-hop case though, the probability
of failure is non-uniform because farther nodes are subject
to a higher loss rate. However, as shown in Sec. 3, the tech-
niques of distance dependent probabilistic reporting and
spatial reconstruction compensate for this non-uniformity
of network failures.

5 Case study: A Line In The Sand

In this section, we describe the design and implemen-
tation of a distributed classification and tracking system
which we called A Line In The Sand. This system con-
sists of 90 Mica2 motes deployed in a 1.5m spaced grid to
cover a 18m x 7m area. A Line In The Sand has been de-
ployed in several outdoor settings to accurately distinguish
between civilians, soldiers and vehicles by estimating their
influence fields based on magnetometer and micro-power
impulse radar sensors. For simplicity of presentation, we
only describe classification between a soldier and a car us-
ing magnetometer based influence fields. We first describe
how we derived system parameters like density using the
theorems presented earlier. We then validate, both theoret-
ically and experimentally, that accurate classification and
tracking can be achieved whp (99%) in this network.

5.1 Experimental measurements

We first describe the experimental setup to measure key
system parameters. To measure the magnetic influence
fields of a soldiers and a car, a dense, regular grid of Mica2
motes with magnetometers was deployed. These objects
were then made to traverse this network at different speeds
and orientations. We then averaged the observations from
over 100 such trials. The influence field areas A1 and A2,
for a soldier and a car, were thus measured to be 12m2 and
63m2 respectively. The probability of node faults, 1 − pn,
which included node failures and false negatives was mea-
sured to be 10%. By observing the number and distribution
of false positives in the network over time and location, we
determined the probability of false positives, pfp to be 2%.

5.2 Determining network density

Substituting for the experimentally measured values of
A1, A2, pn and pfp in Theorem 7, we obtained the follow-
ing conditions for minimum network density:

ρ01 > 0.6 , ρ12 > 0.65

where ρ01 is the minimum density needed to distinguish
false positives from a soldier and ρ12 is the minimum den-
sity needed to distinguish a soldier from a car. The min-
imum density needed to distinguish between all three, ρ̂
was thus 0.65. Based on the communication radius of these
nodes, we deployed 90 nodes in a 1.5m spaced grid to cover
the 18m x 7m area with a network density of 0.7.

5.3 Effect of network unreliability

As mentioned in Sec. 4, we characterized the end-to-end
network reliability function empirically. To do so, we de-
ployed the network with the desired density of 0.7 and re-
peated the earlier trials with a soldier and car traversing the
network and measured the network reliability at the aggre-
gator. By averaging over more than 100 such trials, we ob-
tained the values of prcv1 and prcv2 as 0.85 and 0.55 respec-
tively. Substituting for prcv1 ,prcv2 and pfp in Eqns. 27, 28,
29 and 30, we obtain:

E(rcv1) = 7.1, V (rcv1) = 2.9
E(rcv2) = 24.25, V (rcv2) = 14.9

E(fp1) = 0.6, V (fp1) = 0.6

It can be seen that these values satisfy the inequality in
Eq. 31, thereby validating that the estimated influence fields
of a soldier and a car can be separated in the presence of
end-to-end unreliability and false positives.

5.4 Experimental validation

We now present experimental data to demonstrate that
we were able to distinguish between the given object types
in the presence of node faults and network unreliability.

Fig. 4(a) shows the probability distribution function for
the influence fields of a soldier and a car as measured at the
aggregator. In this outdoor experiment, timestamped de-
tections were recorded in the non-volatile memory at each
mote during 100 runs of a soldier and vehicle each, mov-
ing through the network. These detections were then down-
loaded and time-correlated to recreate the measured influ-
ence fields and their probability distribution. It can be seen
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(a) Measured at motes (b) Measured at aggregator (c) Temporal evolution

Figure 4. Impact of network reliability on in-
fluence fields in A Line In The Sand

from Fig. 4(a) that these measured influence fields are in-
deed clearly separable. Fig. 4(b) shows the probability dis-
tribution of the influence fields estimated by the aggregator
based on detections received using the GridRouting proto-
col in 100 runs of a soldier and a car each. It can be seen
that in the presence of false positives and network unrelia-
bility, separation between the estimated influence fields of
a soldier and a car is lower than in Fig. 4(a). However, as
calculated earlier, we see that these distributions are non-
overlapping meaning that the number of detections received
for a vehicle is always greater than that for a soldier. From
this data, we also calculate that there exists little variabil-
ity (7.2%) in network reliability across these runs. Fig. 4(c)
shows the temporal evolution of influence field estimation
at the aggregator. The proximity of traces for individual
runs indicates that in addition to reliability, network delays
are also quite predictable, allowing us to choose tight la-
tency bounds at the aggregator. This serves to validate our
model that uniform, predictable end-to-end reliability can
be obtained by careful design of the routing protocol.

Figure 5. Classification and tracking of a car
in A Line In The Sand

System performance. Finally, we give some performance
data for A Line In The Sand. By considering the influence
field analysis and appropriately tuning the desired network
parameters, we were able to achieve the desired classifica-
tion accuracy of 99%. The accuracy of tracking was higher
for a soldier (1-2m) as compared to a vehicle (3-5m) provid-
ing further evidence of the claim that reliability and unifor-
mity are dependent on the object type. The system was able
to classify and track multiple objects moving concurrently
through the network as long as they were separated by a
minimum distance threshold. Fig. 5 shows a snapshot of
the classification and tracking output produced by the sys-
tem for a car moving through the network.

6 Extensions to the Influence Field Approach

In this section, we describe extensions to the influence
field to increase the confidence in classification and also de-
crease the required density of deployment. One such exten-
sion is the use of multiple sensing modalities at each node to

estimate multiple influence fields. As an example, consider
the case where we wish to distinguish between a motorcy-
cle, a SUV and a truck. The influence field areas for these
objects using a magnetometer are 28m2, 78m2 and 150m2

respectively. The minimum density required to distinguish
all three objects in the presence of faults, as calculated us-
ing the theorems presented earlier, is quite high (2-3m grid
spacing). However, the influence field areas of the same ob-
jects with respect to an acoustic sensor are 1250m2, 700m2

and 1250m2 respectively. By estimating the influence fields
for both these modalities, it is possible to distinguish be-
tween these objects with a much lower network density (8-
10m grid spacing). The basic idea is to use the estimated
acoustic influence field to distinguish a SUV from the other
two object types and then use the magnetic influence field to
distinguish between a motorcycle and a truck. Thus, using
multiple sensing modalities reduces the network density to
6-10% of what was originally required. This simple exam-
ple serves to demonstrate that estimating multiple influence
fields can be used to classify multiple types of objects with
higher confidence and lower network density. Multimodal
influence field estimation was successfully demonstrated in
the ExScal [3] network, which is one of the largest sensor
deployments to date. ExScal used three types of sensors –
magnetometers, acoustic and motion sensors – to estimate
the influence fields of a person, a car and an ATV and clas-
sify and track them accurately.

Another extension to the influence field concept involves
communicating not only presence outputs from each node,
but some vector of features about the object like peak am-
plitude, total energy or distance from the object. Such an
enhanced influence field can be used to improve confidence
in the estimation output.

Regardless of whether the basis chosen for determining
the influence field is merely presence as in the case of A
Line In The Sand, a combination of multiple modalities, or
a vector of features, reliable estimation is still an important
problem and the same techniques described in this paper
can be applied to each of these extensions.

7 Related Work

The notion of influence of an energy source is used in
other science and engineering applications. In some for-
mulations, the distribution of the intensity of the source at
various points is considered while modelling its influence.
For example, Kellogg et al [7] model the temperature distri-
bution of a heat source across a region as an influence graph
and use the graph to design algorithms for distributed con-
trol. In other formulations, including Zhao et al [8] and
ours, the distribution of the intensity is not modelled. Zhao
et al [8] define an influence area as the number of sensors
that detect an object. Our definition of the influence field
also captures the shape of the influence field. We are un-
aware of previous work that has used influence field estima-
tion as a basis for classification and tracking of objects.

The influence field approach should be contrasted to
traditional approaches for classification and tracking using
Unattended Ground Sensors [9]. The Remotely Monitored
Battlefield Sensor System (REMBASS) is a representative
example. The approach is centralized, requires complex
pattern matching [10] and the sensing and processing de-
vices are expensive, require careful and precise deployment
as well as frequent remote monitoring. Meesookho, et al
[11] describe a collaborative classification scheme based on
exchanging local feature vectors, which imposes a high load
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on the network. By way of contrast, most of the work on
distributed tracking that decreases the load on the network
is based on collaborative signal and information processing,
sequential Bayesian filtering, and extended Kalman filter-
ing [8, 12–17], that require significant node computation.

For the case of node faults, Krishnamachari et al [18]
have presented probabilistic decoding mechanisms to de-
tect regions of events in the presence of uncorrelated sensor
faults with relatively low probability (around 10%). Our
work accommodates the case of uniform nodal failures and
we have also presented techniques to handle network faults
whose impact is non-uniform across the network such as
fading, and network faults whose failure probability grows
with the event size such as contention. To the best of our
knowledge, the impact of network unreliability in estimat-
ing the influence field has not been addressed before, nor
has it been addressed in the context of distributed classifi-
cation and tracking, which has led us to the present work.

Our work also relates influence field to sensor cover-
age [19, 20] and highlights the important similarities and
distinctions between the two concepts. Existing work on
sensor coverage gives necessary conditions for detecting an
object moving through a network. We are not aware of ex-
tensions that deal with the problem of classification.

8 Conclusions and Future Work

In this paper, we considered the problem of reliably esti-
mating the influence fields of different target types in a wire-
less sensor network subject to a variety of faults. We pro-
vided mechanical procedures for sensor node density selec-
tion as well as algorithmic techniques appropriate for deal-
ing with each fault class. Corroboration of our results and
techniques was provided through at-scale experiments.

We showed how reliable estimation was achieved to en-
able accurate classification and tracking in A Line In The
Sand. The case study also provided a data point for the
significant impact of network unreliability on network and
application design, as well as one for a need for routing pro-
tocols in sensor networks to provide uniform reliability.

Our work reveals a notable co-dependence between ap-
plication design and network design. To achieve the de-
sired estimation reliability, we needed in some cases to use
both techniques that affected the network (such as tuning of
MAC or routing protocol parameters) and that affected the
application (such as tuning the probability of reporting and
the rate of temporal aggregation). How to design stable and
scalable systems when there are such cyclic dependencies
involved is an issue of interest to us.

Although our compositional models allow us to reason
about the effects of different types of node and network
faults, there are some relevant and more complex fault
models that we have not dealt with analytically. One
such model, which we dealt with only experimentally in
A Line In The Sand concerns multi-hop contention and
fading errors. In future work, we seek to address this
model analytically. We will also incorporate in our analysis
consideration of multiple concurrent targets that we dealt
with experimentally, towards addressing the gap between
existing theory and practice.
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