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Abstract— Surveillance systems based on sensor network tech-
nology have been shown to successfully detect, classify and
track targets of interest over a large area. State information
collected via the sensor network also enables these systems to
actuate mobile agents so as to achieve surveillance goals such
as target capture and asset protection. But satisfying these
goals is complicated by the fact that track information in a
sensor network is routed to mobile agents through multi-hop
communication links and is thus subject to delays and losses. In
addition, as the sensor network is scaled in size, high throughput
rates for all pursuers cannot be sustained at all times, which
necessitates a network communication strategy that adapts to
pursuer information requirements.

In this paper, we concentrate on the formulation of optimal
pursuit control strategies in the presence of network effects,
assuming that target track information has been established
locally in the sensor network. We adapt ideas from the theory
of differential games to networked games —including ones
involving non-periodic track updates, message losses and message
delays— to derive optimal strategies, bounds on the information
requirements, and scaling properties of these bounds. Moreover,
we present a specific network communication protocol which has
the required scalable information characteristics and conclude
with the results of experimental studies.

I. I NTRODUCTION

Sensor network technology has enabled new surveillance
systems [1], [2], where sensor nodes equipped with processing
and communication capabilities can collaboratively detect,
classify and track targets of interest over a large area. These
surveillance systems make it viable to use the state informa-
tion collected through the sensor network to guide mobile
agents to achieve surveillance goals such as target capture
and asset protection. A sensor network surveillance system
has the advantage of giving the mobile agents access to the
global information so that they can optimize their motion for
pursuit tasks, as opposed to resource-intensive search and map
building tasks. That said, using sensor networks to implement
“active” surveillance strategies introduces new challenges as
well. Target track information obtained by local processing of
sensor information needs to be routed to mobile agents through
multi-hop communication links, which results in delays, mes-
sage losses and random arrival times of the packets carrying
track information. In addition, as the network is scaled in size,
high throughput rates for all pursuers cannot be sustained at all
times, which necessitates a network communication strategy
that adapts to pursuer information requirements.

In previous work, Schenatoet al [3] studied a pursuit-evasion
game application using sensor networks. They considered a
detailed system model with periodic time updates and pre-
sented models of vehicle dynamics and uncertainty in track

information. Sensor network measurements are assumed to be
fused at local base stations to produce track information [4].
Evader assignment and pursuer control strategy is calculated
at the base station and then communicated to the pursuer
agents. Network effects in communicating this information to
the pursuer agents and communicating pursuer locations back
to the base station are not considered. Within this framework,
they derived a series of algorithms to coordinate the pursuers
so as to minimize the time-to-capture of all evaders.

In this paper, we concentrate on the formulation of optimal
pursuit control strategies despite network effects. We assume
target track information has been established through local
fusion of sensor data. This track information is communi-
cated through the multi-hop wireless network infrastructure
to pursuer agent, which calculates optimal pursuit strategy
based on evader and its own state. We adapt ideas from theory
of differential games to networked games in the presence of
non-periodic track updates, message loss and delays to derive
optimal strategies, bounds on their information requirements
and the scaling properties of these bounds. In summary, we
show (i) pursuer agents should dictate the information refresh
rate based on the requirements of the pursuit strategy, and
(ii) network delays and update periods should scale linearly
with the pursuer-evader distance to guarantee the existence of
optimal min-max pursuit strategies leading to Nash equilbria.

Differential games entail the study of dynamic interactions
between rational agents with conflicting interests [5]. The the-
ory of differential games combines solution concepts of game
theory with control theory formalism to formulate optimal
feedback strategies for the players. Pursuit and evasion games
are natural applications of the theory of differential games and
are extensively studied by Isaacs in his seminal work [6]. In the
literature, pursuit-evasion games are traditionally modeled as
continuous-time perfect information games where the players
have access to the global state of the game at all times
with no delays. By way of contrast, in this paper, we study
the optimal strategies for pursuit using a communication-
constrained network structure. We restrict our attention to a
specific pursuit-evasion game called “asset protection game”
where pursuers try to protect a linear target by intercepting the
evaders as far as possible from the target. This game structure
has practical applications in real world applications of border
and pipeline protection and the techniques introduced in this
paper can be generalized to a wide variety of pursuit-evader
games.

The rest of this paper is organized as follows. First, we intro-
duce the game model and review the optimal min-max strate-



gies for the pursuer and the evader for this scenario. Second,
we derive the optimal strategies under network communication
constraints. We study lower bounds on network performance
requirements and derive scaling properties of these bounds.
Next, we present a specific network communication protocol
with the required scalable information characteristics and
conclude with the results of experimental studies.

II. PROBLEM DEFINITION

We first consider a game between two players: a single
pursuer and a single evader. (For manyn pursuer –n evader
games the min-max solution can be reduced ton two player
games, by first solving the combinatorial problem of optimal
pairing using the value function of the two player game. We
discuss this extension to multiple pursuer and evader games in
Section VI-B.) The game state is given by the two dimensional
coordinates of the pursuer and evaderx = {xp, yp, xe, ye}.
Each player travels at constant speedvp and ve and controls
the direction of its motion, denoted byθp andθe.
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Fig. 1. The pursuer and evader game

We assume that there are no obstacles in the enviroment
to constrain the movement of the players. The players employ
feedback strategies(up(x(t)), ue(x(t))) which determine their
direction of motion given the current state. The linear asset is
assumed to be infinitely long. With this assumption, the state
space can be reduced to three dimensions by defining relative
coordinates,xr = xe − xp andyr = ye − yp. The state vector
x evolves according to:

ẋ =
∂

∂t

 xr

yr

yp

 = f(x, θp, θe) =

 ve cos(θe)− vp cos(θp)
ve sin(θe)− vp sin(θp)

vp sin(θp)


A catch is said to happen whenx2

r + y2
r < r2, where r is

the catch radius. In the following, we consider the limiting
case ofr → 0. The effect of finite catch radius is discussed in
Section VI. Starting from the initial conditionx0, if the control
strategiesup(x), ue(x) satisfy the catch condition at timeT
then the payoff is given byJ (up, ue, x0) = yp(T ). The game

is zero-sum, so the pursuer’s goal is to maximizeJ whereas
the evader’s goal is to minimizeJ . Min-max optimal feedback
strategiesu∗p(x), u∗e(x) are defined by the saddle condition:

Jup(up, u
∗
e, x0) ≤ J (u∗p, u

∗
e, x0) ≤ Jue(u

∗
p, ue, x0) (1)

We also note that the min-max optimal strategy pair
u∗p(x), u∗e(x) is also the Nash equilibrium [8] for this zero-
sum game, where none of the players have an incentive to
change its strategy unilaterally given the rival is maintaining
its strategy choice.

For each initial conditionx0 the value of the game is defined
as V (x0) = J (u∗p, u

∗
e, x0). The value function is uniquely

defined irrespective of the number of min-max stratetegy pairs
that satisfy the saddle point property in 1. In this paper, we
limit our discussion to initial statesx0 with finite positive value
V (x0) and to games where the speed of the pursuer is greater
than the speed of the evader.

III. O PTIMAL PURSUIT UNDER PERFECT INFORMATION

The value function and the associated optimal strategies for
the game defined in Section II can be derived using the Isaac
conditions, a form of Hamilton-Jacobi-Bellman equations of
optimality. Here we chose to present geometric solutions to
provide intuition for the pursuit-evasion game under network
effects.

Theorem 1: If the ratio of the pursuer speedvp to the the
evader speedve α is larger than 1, then the min-max optimal
strategy for the evader and pursuers is given by:

θe(x) = tan−1(tan γ + α
√

1 + (tan γ)2) (2)

θp(x) = tan−1(tan γ +

√
1 + (tan γ)2

α
) (3)

whereγ = tan−1 yr

xr
.

V (x) = yp +
α2yr + α

√
y2

r + x2
r

α2 − 1
(4)

Proof: Given the current location of the evader and
pursuer, the set of points that the evader can reach before the
pursuer is given by the well known Appolonius circle. The
min-max optimal strategies for the pursuer and evader is to
directly to the boundary point of the circle that is closest to the
target. In the following we characterize this critical boundary
point:

1) Evader below pursuer:In this case, the evader is in
between the pursuer and linear asset. We use the coordinate
system to simplify the proof (cf. Figure 2). Without loss of
generality, we assume the pursuer location is(0, 0); the evader
location is (xr, yr). At the locationC(x, y), the evader is
caught by the pursuer. Because the pursuer speedVp is α times
of the evader speedVe, thenAC = αBC (Note: this straight
line movement can be proved to be optimal). In coordinate
form, we can rewrite this equation as:√

x2 + y2√
(x− xr)2 + (y − yr)2

= α



⇒ x2 − α2(x− xr)2 = α2(y − yr)2 − y2

Differentiating the right side byx, we get:

d(x2 − α2(x− xr)2)
dx

= 0 ⇒ x =
xrα

2

α2 − 1

Putting this equation into the previous equation, we get

(α2 − 1)y2 − 2α2yyr + y2
rα2 =

x2
rα

2

α2 − 1

⇒ y =
α2yr + α

√
y2

r + x2
r

α2 − 1

to get the maximal value ofy. So,

θe(x) = tan−1 y − yr

x− xr
= tan−1(tan γ + α

√
1 + (tan γ)2)

θp(x) = tan−1 y

x
= tan−1(tan γ +

√
1 + (tan γ)2

α
)

V (x) = yp +
α2yr + α

√
y2

r + x2
r

α2 − 1
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Fig. 2. Linear asset protection with evader in between pursuer and asset

2) Evader above pursuer:The proof is similar for this case,
but here we have a negative value ofyr, and the result is:

d(x2 − α2(x− xr)2)
dx

= 0 ⇒ x =
xrα

2

α2 − 1

⇒ y =
α2yr + α

√
y2

r + x2
r

α2 − 1

and:

θe(x) = tan−1(tan γ + α
√

1 + (tan γ)2)

θp(x) = tan−1(tan γ +

√
1 + (tan γ)2

α
)

V (x) = yp +
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√
y2

r + x2
r

α2 − 1

X

Y

A(Pursuer)
(0,0)

B(Evader)
(x

r
,y

r
)

C(x,y)

θ
e
(x)

Linear Asset

γ

θ
p
(x)

Fig. 3. Linear asset protection with pursuer in between evader and asset

At each time instantt, the pursuer will calculate the best
location (x′, y′)) that the evader can reach:

x′ =
xrα

2

α2 − 1
+ xp (5)

y′ =
α2yr + α

√
y2

r + x2
r

α2 − 1
+ yp (6)

then it will move towards that location( see Figure 5).

We illustrate the performance of the optimal strategy using
a simulation. The results are given in Figure 4. The solid line
shows the pursuer-evader trajectories when both employ min-
max optimal strategies. The dashed lines show the case when
evader uses non-optimal straight line strategies. We observe
that min-max optimal pursuit strategy catches non-optimal
evaders at a larger distance to the target.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350
 α=1.3

Pursuer1
Evader1
Pursuer2
Evader2
Pursuer3
Evader3

Linear Asset

Fig. 4. The P-E trajectory under perfect information



IV. OPTIMAL PURSUIT UNDER COMMUNICATION

CONSTRAINTS

A. Sampling rate requirements of the optimal pursuit strategy

In Section III, we assumed that the global state is available
to the pursuer at all times. This is an unrealistic assumption for
a sensor network implementation where the information can
be provided only at discrete time intervals. In this section,
we derive the sampling rate requirements of the optimal
strategy and show that it is inversely proportional to the
relative distance between the pursuer and evader. The result
is particularly important for sensor network implementations
using resource constrained nodes, because it informs how
the information data rate can be reduced based on the state
of the game so as to conserve the energy and bandwidth
resources of the network. Again, we use the min-max solution
concept to formulate a robust pursuit strategy that will perform
satisfactorily irrespective of evader motion. To design for worst
possible case of evader motion, we assume the pursuer has
perfect information about the location of the evader and the
sampling period. The sampling period is then chosen such that
the evader does not benefit from switching from the optimal
direction given in Theorem. 1, although the evader’s deviation
will be detected by the pursuer after the sampling period
interval.

Theorem 2: The evader does not deviate from its min-max
equilibrium strategy if and only if the distance moved by the
pursuer before getting the next sample of state information
satisfies:

vpTsample <

√
α2(xr)2 + (α(yr) +

√
(xr)2 + (yr)2)2

α
(7)

Equivalently, the pursuer can move up to(α2−1)
α2 of the total

distance to the predicted evader location before sampling the
global state without loss of optimality.
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Fig. 5. The sampling rate for tracking

Proof: Assume the pursuer moves first. It will move
αds toward to the predicted optimal location(x, y), where

ds is the maximum distance the evader can move during that
time interval. Without loss of generality, we assume the initial
location of pursuer is(xp, yp) = (0, 0). So the next location
based on the pursuer strategy is(x′p, y

′
p), which is decided by

equation:

x′p =
α2xeds√

α2x2
e + (αye +

√
x2

e + y2
e)2

y′p =
(αye +

√
x2

e + y2
e)αds√

α2x2
e + (αye +

√
x2

e + y2
e)2

The evader can move to any location in the circle which is
centered at(xe, ye) and has the radiusds. So, the next move
for evader must satisfy:

(x′e − xe)2 + (y′e − ye)2 < ds2

and the next optimal location based on location(x′e, y
′
e) and

(x′p, y
′
p)is:

y′ = y′p +
α2(y′e − y′p) + α

√
(x′e − x′p)2 + (y′e − y′p)2

α2 − 1

We want to find the maximumy′ by changing(x′e, y
′
e). The

constraints can be reformulated as:

x′e = xe + r sin θ

y′e = ye + r cos θ

and letFx = xe − x′p,Fy = ye − y′p,then we can get:

y′ = y′p +

α2(Fy + r cos θ) + α
√

(Fx + r sin θ)2 + (Fy + r cos θ)2

α2 − 1

To maximizey′, the partial derivative with respect toθ is:

∂y′

∂θ
=
−α2r sin θ + α

(rFx cos θ−rFy sin θ)√
(Fx+r sin θ)2+(Fy+r cos θ)2

α2 − 1
= 0

To solve this equation, we let:F ′
x = Fx + r sin θ,F ′

y =
Fy + r cos θ. Then the equation can be written as:

α sin θ =
(F ′

x cos θ − F ′
y sin θ)√

(F ′
x)2 + (F ′

y)2

The value ofθ can be solved as:

tan θ =
1

tan γ + α
√

1 + (tan γ)2

where

tan γ =
F ′

y

F ′
x

=
Fy + r cos θ

Fx + r sin θ
=

ye − y′p + r cos θ

xe − x′p + r sin θ

=
y′e − y′p
x′e − x′p



Here, we claim the solution of the equation isθ = θ′. One
important observation is that if

tan γ = tan γ′

then
tan θ = tan θ′

The other important observation is that when evader moves to
(x′e1

, y′e1
) with distancer and pursuer moves to(x′p, y

′
p) with

distanceαr, the following equation holds:

tan γ = tan γ′

since lineAB is parallel to lineCD (AB//CD).
To maximizey′, the value ofr should ber = Max(r) =
ds since the partial derivative ofy′ with respect tor is
nonnegative whenθ ∈ [0, π/2].
To satisfy the condition ofθ ∈ [0, π/2] , we must guarantee:

x′p ≤ xe when 0 = xp ≤ xe

x′p ≥ xe when 0 = xp ≥ xe

Then we can get:

α|ds| <

√
α2x2

r + (αyr +
√

x2
r + y2

r)2

α

which is (α2−1)
α2 of total distance of current pursuer location

to the predicted optimal location (this distance is defined as
dpu).

We extend the previous result to derive the following
scaling property of the sampling periodTsample with respect
to the distancedpe between the pursuer and evader:

Theorem 3: Optimal pursuit-evasion strategies of the per-
fect information game also yield Nash equilibrium of the game
with discrete time updates if:

Tsamp(dpe) ≤
α− 1
αvp

dpe

In other words, the sampling period should decrease propor-
tionally with decreasing distance between evader and pursuer
to guarantee that the evader does not have an incentive to
deviate from its strategy to move directly to the predicted
intercept point.

Proof: If we defineu to be the location of the predicted
intercept point then we have:

(α2 − 1)
α2

dpu

=

√
α2x2

r + (αyr +
√

x2
r + y2

r)2

α

=

√
(α2 + 1)d2

pe + 2αyrdpe

α

∈ [

√
(α2 + 1)d2

pe − 2αd2
pe

α
,

√
(α2 + 1)d2

pe − 2αd2
pe

α
]

⇒ (α2 − 1)
α2

dpu ∈ [
α− 1

α
dpe,

α + 1
α

dpe]

Then we have

vpTsamp ≤
α− 1

α
dpe ⇒ Tsamp ≤

α− 1
αvp

dpe

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350
 α=1.3

Pursuer1
Evader1
Pursuer2
Evader2
Pursuer3
Evader3

Evader

Pursuer

Linear Asset

Fig. 6. The P-E trajectory when using theTsamp update

We illustrate the performance of the reduced sample rate
strategy using a simulation. The results are given in Figure 6.
The solid line shows the pursuer-evader trajectories when
both employ min-max optimal strategies, which is identical
to the continuous update case. The dashed lines show the
case when evader uses non-optimal straight line strategies. We
observe that reduced sample rate pursuit strategy differs from
its continuous information behavior for these cases but still
catches these non-optimal evaders at a larger distance to the
target.

B. Effect of message losses

From the previous sampling rate analysis, to guarantee
the optimum of evader interception, the information must be
updated before the pursuer reaches a critial point on the path to
the predicted location defined in Theorem 2. For perfectly re-
liable communication links,his can be achieved by the pursuer
issuing an evader location query shortly before reaching the
critical point. However, in the presence of message losses, the
pursuer needs to issue multiple querries within one sampling
period and adjust the frequency of its queries according to
the game state. As shown in the previous section the required
sampling period decreases with decreasing distance between
the pursuer and evader. We note that to minimize the frequency
of the queries, the network communication protocol should
scale to provide higher reliability as the distance between the
pursuer and evader decreases.

Theorem 4: Let the relation between message loss prob-
ability and the distance between the pursuer and the evader
be given by the functionpM (dpe). For any initial statex,
the sampling period condition for Nash Equilibrium given in
Equation 2 will be satisfied with probability greater than1− ε



if

fq(dpe) ≥
log(ε)αvp

log(pM (dpe))(α− 1)dpe

wherefq(dpe) is the frequency of the evader location queries
when its distance from the pursuer isdpe.

Proof: Consider a global state update that occurs at
statex. The pursuer can issue up tofqTsamp queries before

it traverses the critical distance(α
2−1)
α2 dpu. The number of

queries has to be chosen such that the probability of getting at
least one succesful update at that period is greater than1− ε:

pM (dpe))fqTsamp ≤ ε

⇒ fq(dpe) ≥
log(ε)

log(pM (dpe))Tsamp
≥ log(ε)αvp

log(pM (dpe))(α− 1)dpe

C. Effect of Packet Delay

The evader location information needs to be routed from the
local fusion center to the pursuer through wireless multiple hop
links. The multiple hop communication imposes considerable
delays on the evader state information. We assume the network
is time synchronized and the packets are time-stamped at
the source so that the pursuer will able to calculate the
delay of the packets it received. To derive a robust pursuit
strategy we design for the worst possible evader motion, by
assuming the evader will have perfect information about the
pursuer location. Therefore at time incrementt evader have
access to state information[xp(t), yp(t), xe(t), ye(t)] and the
pursuer have access to state information[xp(t), yp(t), xe(t −
∆t), ye(t−∆t)]. Then consider the following strategies:
Evader Strategyũe: The evader uses the current location
information for the pursuer to calculate the optimal direction
as given in Theorem 1.
Pursuer Strategỹup: The pursuer estimates the worst case
location (x̂e(t), ŷe(t)) of the evader by considering all the
points that the evader can reach at∆t and choosing the one
that yields the lowest game valueV (x̂p(t), ŷp(t), xe(t), ye(t))

Theorem 5: The strategies̃up and ũe are a Nash equilib-
rium of the pursuer-evader game with packet delays if the
delay at each point is bounded by:

∆t <
α− 1
αvp

dpe(t−∆t)

wheredpe(t−∆t) is the pursuer-evader distance at the time
of packet transmission.

Proof: At time t−∆t, the evader can move to anywhere
on the circle. If the evader chooses the locationB′, the
MaxMin y coordinate at timet is:

y =
α2(y′e + r cos θ′) + α

√
(x′e + r sin θ′)2 + (y′e + r cos θ)2

α2 − 1

To maximizey, the partial derivative with respect toθ′ is:

∂y

∂θ′
=
−α2r sin θ′ + α

(rx′
e cos θ′−ry′

e sin θ′)√
(x′

e+r sin θ′)2+(y′
e+r cos θ′)2

α2 − 1
= 0
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It can be simplified as:

α sin θ′ =
(x′e cos θ′ − y′e sin θ′)√

(x′e + r sin θ′)2 + (y′e + r cos θ′)2

let:X ′
e = x′e + r sin θ′,Y ′

e = y′e + r cos θ′.Then the equation
can be written as:

α sin θ′ =
(X ′

e cos θ′ − Y ′
e sin θ′)√

(X ′
e)2 + (Y ′

e )2

The value ofθ′ can be solved as:

tan θ′ =
1

tan γ + α
√

1 + (tan γ)2

where

tan γ =
Y ′

e

X ′
e

=
y′e + r cos θ′

x′e + r sin θ′

The value ofθ can be solved as:

tan θ =
1

tan γ + α
√

1 + (tan γ)2

So, we haveθ = θ′. In other words,B′BC should be a line.
Inversely, if B′BC is a line andC is the equilibrum when
evader is atB and pursuer is atA, thenC is optimal location
when the pursuer atA receives delayed evader locationB′.
This property leads to the uniqueness of the equilibrium as
following:
In Figure 8, when evader moves fromB1 to B2 with distance
∆T ∗ Ve, the pursuer will move∆T ∗ Ve ∗ α. We have:

A1B1//A2B2

|B′
2B2| = ∆Td ∗ Ve = Rd

So, the new locationA2,B2 decides the same equilibriumC.
In addition, sinceB2B

′
2C is a line, by the previous property,

C is optimal location when the pursuer atA2 receives delayed
evader locationB′

2.
We observe that the predicted intercept point for the pursuer-

evader game with packet delays at state[xp(t), yp(t), xe(t −
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∆t), ye(t−∆t)] coincides with the predicted intercept location
for the perfect information pursuit evader game at state[xp(t−
∆t), yp(t − ∆t), xe(t − ∆t), ye(t − ∆t)]. Therefore, we can
use the results of Section IV-A to bound the packet delay.
Theorem 2 shows that if the packet is received before the
pursuer travels distance ofα−1

α dpe(t − ∆t) the evader does
not have an incentive to deviate from its equilibrium strategy.
Therefore we should have:

vp∆t <
α− 1

α
dpe(t−∆t)

⇒ ∆t <
α− 1
αvp

dpe(t−∆t)
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Fig. 9. The experimental delay and message-loss rate using theTrail
networking service
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V. EXPERIMENTAL RESULTS

The results of Section IV indicates the following require-
ments on the network protocol responsible for communi-
cating evader track information to the pursuer agents: (i)
Pursuer should determine the information refresh rate based
on the requirements of the pursuit strategy, and (ii) Network
delays should scale with the pursuer-evader distance. We
have implemented a communciation protocol calledTrail that
is compatible with these requirements. The overall system
architecture forTrail is described in a companion paper.Trail
offers the following pursuer controlled interface:find evader
i, that returns the state of evaderi to the pursuer agent issuing
the query. The pursuer issuing the query itself could be mobile
in which case the result is returned to the pursuer agent at its
current location. To implement this function,Trail maintains
a tracking data structure for the mobile objects.

The network is divided into clusters with all nodes in a
region within communication range of its clusterhead. The
clusterheads form the communication backbone for the net-
work. Trail assumes the existence of an underlying service for
object detection and association. The node that is closest to the
mobile object at any instant is the agent for that object. When
an object is first detected in the network, a path is created
along the backbone to a fixed clusterhead called the center.
Thus all objects in the network maintain a trail. When an
object moves, the new agent initiates an operation to update
the structure locally. When a client object issues afind, the
agent for the client forwards it to the backbone. If the trail
for the object exists at this backbone, following this trail, the
object state is found or else thefind is propagated towards the
center.

Thus, in Trail object updates are local and for a linear
topology, Trail provides a query time proportional to the
distance from the object. Trail was implemented in a network
of 105 XSM nodes inKanseisensor network testbed at Ohio
State University, where we used a Garcia robot to serve as
the mobile pursuer. The network was divided into 10 clusters



in a linear topology. An implicit acknowledgment mechanism
with upto 3 retransmissions was used for per-hop reliability in
Trail. Upon retransmissions, the latency for a query increases.

There are 2 objects in the system, pursuer client and an
evader object. The average find time and the variance of find
times for an object at different distances, with 20 experiments
at each distance, usingTrail is shown in Figure IV-C. The
object being found is mobile and the update messages due
to this mobility can interfere with the find messages. When
the reply to a find is not received before a threshold, it is
considered to be lost. The fraction of lost messages withδ
equal to1.5 times the round trip network transmission time is
also shown in Figure IV-C. These are used to build the loss
and the reliability model for our pursuit-game application.

We have used the experimental data to test the optimal
pursuit strategy given in Section IV. The results are given in
Figure 10. There are two experiments. In both experiments the
evader is assumed to know the current location of the pursuer
and employ the optimal evading action. The solid lines are for
the pursuit strategy that incorporates delays in to the pursuit
strategy, the dashed lines are for the pursuit strategy that does
not take delay into account and treats the location as if it is
the current evader location. We observe that the delay tolerant
algorithm can intercept even an evader that has information
superiority at minimum possible distance, whereas an evader
information superiority can achieve higher payoff facing an
opponent which does not take delays into account.

VI. EXTENSIONS

A. Non-zero Catch Radius

In practice, the catch condition should not be defined as
distance(P,E) = 0 but asdistance(P,E) ≤ r for some
finite r. For this case, we give the following result for min-
max strategies, without proof [7].

The non-zero catch radius only affects the optimal intercept
locationC(x, y). The optimal min-max strategy is still to go
directly to C(x, y), which can be calculated simply as: The
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Fig. 11. The effect of end game condition

point C(x, y)(see figure 11) can be caculated by optimization.

max
θ∈(0,2π)

y

with constraints:

|C ′C| = r and
|AC ′|
|BC|

= α

B. Multiple Pursuer Evader Problems

Here, we considern pursuer –m evader game withn ≥ m,
where each pursuer is restricted to catch only one evader. For
instance, we can assume that the pursuer is immobilized at
the time of a catch to detain the evader and more than one
pursuer is not assigned to a given evader to reserve pursuer
agents for future evader threats. The aim of the pursuer team
is to maximize a function of the distances to the target at
catch time.J (up, ue, x) = L(y1

p(T1), . . . , yn
p (Tn)). The game

is still zero-sum, so that the evader team tries to minimize the
same cost function. Common examples of cost functions are:

L(y1
p(T1), . . . , yn

p (Tn)) =
1
N

∑
i

yi
p(Ti)

and
L(y1

p(T1), . . . , yn
p (Tn)) = min

i
{yi

p(Ti)}

We give the following result, afain without proof [7], for
this class of multiple pursuer-evader games. LetΣ be the set
of all one-to-one assignment functions with the domain and
range sets given asσ : {1, . . . ,m} → {1, . . . , n}. Then the
value functionV of the n pursuer –m evader game is given
by :

V({xi
e}i=1:m, {xj

p}j=1:n) =

max
σ∈Σ

L(V (x1
e, x

σ(1)
p ), . . . , V (xm

e , xσ(m)
p )) (8)

In essence, then pursuer –m evader game is reduced to first
stage combinatorial optimization of the assignment problem
followed by n two player pursuit games. We note that as
long as both teams stick to min-max optimal strategies, no
reassignment is required. In case the evaders deviate from their
”assigned” pairs they will only achieve a lower score than their
equilibrium strategy.

REFERENCES

[1] A. Arora, R. Ramnath, E. Ertin, S. Bapat, V. Naik, and V. Kulathumani
et al. “ExScal: Elements of an extreme wireless sensor network,” in
Proc. of the 11th International Conference on Embedded and Real-Time
Computing Systems and Applications, 2004.

[2] A. Arora, P. Dutta, S. Bapat, and V. Kulathumaniet al. “A Line in the
Sand: A wireless sensor network for target detection, classification, and
tracking”. Computer Networks, Special Issue on Military Communica-
tions Systems and Technologies, 46(5) 605-634, July 2004.

[3] L. Schenato, S. Oh, and S. Sastry, ”Swarm Coordination for Pursuit
Evasion Games using Sensor Networks,” in Proc. of the International
Conference on Robotics and Automation, Barcelona, Spain, April 2005

[4] S. Oh, S. Russell, and S. Sastry, ”Markov Chain Monte Carlo Data
Association for General Multiple-Target Tracking Problems,” in Proc. of
the IEEE International Conference on Decision and Control, Paradise
Island, Bahamas, Dec. 2004.

[5] T. Basar and G. J. Olsder. Dynamic Noncooperative Game Theory. SIAM,
2nd edition, 1999.

[6] R. Isaacs, ”Differential Games,” Kruger Publishing Company, Huntington,
NY, 1975.

[7] H. Cao, E. Ertin and A. Arora ”PEG game on a sensor network”, OSU
Technical Report, 2005.

[8] J. Nash, “Noncooperative games,”Annals of Mathematics, vol. 54, pp.
286–295, 1951.


