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Abstract— Surveillance systems based on sensor network tech-information. Sensor network measurements are assumed to be
nology have been shown to successfully detect, classify andiused at local base stations to produce track information [4].

track targets of interest over a large area. State information pyaqer assignment and pursuer control strategy is calculated
collected via the sensor network also enables these systems tq

actuate mobile agents so as to achieve surveillance goals sucr"njlt the base station and_ then corr!mu_nlcate_d _to the pursuer
as target capture and asset protection. But satisfying these agents. Network effects in communicating this information to

goals is complicated by the fact that track information in a the pursuer agents and communicating pursuer locations back
sensor network is routed to mobile agents through multi-hop to the base station are not considered. Within this framework,

communication links and is thus subject to delays and losses. In they derived a series of algorithms to coordinate the pursuers

addition, as the sensor network is scaled in size, high throughput S .

rates for all pursuers cannot be sustained at all times, which SO as tp minimize the time-to-capture of all eva_ders. )

necessitates a network communication strategy that adapts to  In this paper, we concentrate on the formulation of optimal

pursuer information requirements. pursuit control strategies despite network effects. We assume
In this paper, we concentrate on the formulation of optimal target track information has been established through local

pursuit control strategies in the presence of network effects, fqion of sensor data. This track information is communi-

assuming that target track information has been established . - .
locally in the sensor network. We adapt ideas from the theory cated through the multi-hop wireless network infrastructure

of differential games to networked games —including ones tO pursuer agent, which calculates optimal pursuit strategy
involving non-periodic track updates, message losses and messag#ased on evader and its own state. We adapt ideas from theory
delays— to derive optimal strategies, bounds on the information of differential games to networked games in the presence of
requirements, and scaling properties of these bounds. Moreover, non-periodic track updates, message loss and delays to derive

we present a specific network communication protocol which has timal strateqi b d their inf i . ¢
the required scalable information characteristics and conclude optmal strategies, bounds on their information requirements

with the results of experimental studies. and the scaling properties of these bounds. In summary, we
show (i) pursuer agents should dictate the information refresh
l. INTRODUCTION rate based on the requirements of the pursuit strategy, and

Sensor network technology has enabled new surveillan@@ network delays and update periods should scale linearly
systems [1], [2], where sensor hodes equipped with processimigh the pursuer-evader distance to guarantee the existence of
and communication capabilities can collaboratively deteaptimal min-max pursuit strategies leading to Nash equilbria.
classify and track targets of interest over a large area. Thes®ifferential games entail the study of dynamic interactions
surveillance systems make it viable to use the state informzetween rational agents with conflicting interests [5]. The the-
tion collected through the sensor network to guide mobilary of differential games combines solution concepts of game
agents to achieve surveillance goals such as target captimeory with control theory formalism to formulate optimal
and asset protection. A sensor network surveillance systé&edback strategies for the players. Pursuit and evasion games
has the advantage of giving the mobile agents access to #ne natural applications of the theory of differential games and
global information so that they can optimize their motion foare extensively studied by Isaacs in his seminal work [6]. In the
pursuit tasks, as opposed to resource-intensive search and htemture, pursuit-evasion games are traditionally modeled as
building tasks. That said, using sensor networks to implemeardntinuous-time perfect information games where the players
“active” surveillance strategies introduces new challenges la@ve access to the global state of the game at all times
well. Target track information obtained by local processing afith no delays. By way of contrast, in this paper, we study
sensor information needs to be routed to mobile agents throubk optimal strategies for pursuit using a communication-
multi-hop communication links, which results in delays, mesonstrained network structure. We restrict our attention to a
sage losses and random arrival times of the packets carrygmgcific pursuit-evasion game called “asset protection game”
track information. In addition, as the network is scaled in sizeshere pursuers try to protect a linear target by intercepting the
high throughput rates for all pursuers cannot be sustained atealhders as far as possible from the target. This game structure
times, which necessitates a network communication stratdugs practical applications in real world applications of border
that adapts to pursuer information requirements. and pipeline protection and the techniques introduced in this

In previous work, Schenatbal [3] studied a pursuit-evasion paper can be generalized to a wide variety of pursuit-evader
game application using sensor networks. They consideredjames.
detailed system model with periodic time updates and pre-The rest of this paper is organized as follows. First, we intro-
sented models of vehicle dynamics and uncertainty in tradkice the game model and review the optimal min-max strate-



gies for the pursuer and the evader for this scenario. Secoizdzero-sum, so the pursuer’s goal is to maximizevhereas
we derive the optimal strategies under network communicatitime evader’s goal is to minimiz&. Min-max optimal feedback
constraints. We study lower bounds on network performansgategiesu; (), u:(z) are defined by the saddle condition:
requirements and derive scaling properties of these bounds. . . a .

Next, we present a specific network communication protocol (up, uc, @0) < T (g, ue, v0) < Ju, (U, e, w0) (1)

with the required scalable information characteristics anffe also note that the min-max optimal strategy pair
conclude with the results of experimental studies. w(z),u(x) is also the Nash equilibrium [8] for this zero-
sum game, where none of the players have an incentive to
change its strategy unilaterally given the rival is maintaining
We first consider a game between two players: a singlg strategy choice.
pursuer and a single evader. (For manpursuer —n evader  For each initial condition: the value of the game is defined
games the min-max solution can be reduced ttwo player as Vv (z,) = J (u, uf, zo). The value function is uniquely
games, by first solving the combinatorial problem of optimajefined irrespective of the number of min-max stratetegy pairs
pairing using the value function of the two player game. Wat satisfy the saddle point property in 1. In this paper, we
discuss this extension to multiple pursuer and evader gamesfit our discussion to initial states, with finite positive value

Section VI-B.) The game state is given by the two dimensiongl(;;,) and to games where the speed of the pursuer is greater
coordinates of the pursuer and evader= {z,,yp, Zc,ye}.  than the speed of the evader.

Each player travels at constant spegdand v, and controls
the direction of its motion, denoted gy and®.. IIl. OPTIMAL PURSUIT UNDER PERFECT INFORMATION

Il. PROBLEM DEFINITION

The value function and the associated optimal strategies for
the game defined in Section Il can be derived using the Isaac
conditions, a form of Hamilton-Jacobi-Bellman equations of

A 01y O) optimality. Here we chose to present geometric solutions to
O Evader’ provide intuition for the pursuit-evasion game under network
effects.
B Oy * Theorem 1: If the ratio of the pursuer speeg to the the
Plrsuer ,‘;wpﬁon Point evader speed, « is larger than 1, then the min-max optimal
] > - strategy for the evader and pursuers is given by:
Y
AU
O.(x) = tan"'(tan~y 4+ ay/1+ (tany)?) (2)
X
_ 1+ (tan~)?2
Linear asset ep(x) - tan 1(tanry + (e ) (3)
— —1 Yr
wherey = tan™" £=.
2 /0,2 2
Fig. 1. The pursuer and evader game V(z) =y, + Y + (; Yr T2 (4)

-1
Proof: Given the current location of the evader and

We assume that there are no obstacles in the enviromgjtg er. the set of points that the evader can reach before the
to constrain the movement of the players. The players emp'BMrsuer is given by the well known Appolonius circle. The

feedback strategie(@,, (z(t)), ue(z(t))) which determine their \nin may optimal strategies for the pursuer and evader is to
direction of motion given the current state. The linear assetdge .y to the boundary point of the circle that is closest to the

assumed to be infinitely long. With this assumption, the stalg et " |n the following we characterize this critical boundary
space can be reduced to three dimensions by defining relatiye

. nt:
coordinatesy, = z, —xp andy, = y. —y,. The state Vector * 1y gyader below pursuerin this case, the evader is in
x evolves according to:

between the pursuer and linear asset. We use the coordinate

5 [ zr v, c08(6,,) — vy, cos(6,) system to simplify the proof (cf. Figure 2). Without loss of
i=— |y | = f(x,0p,0.) = | vesin(b.) — v,sin(6,) generality, we assume the pursuer locatio(0i%)); the evader
ot Yp v, sin(6,) location is (z,,y,). At the locationC(z,y), the evader is

_ ) ) ) _caught by the pursuer. Because the pursuer sppésia times
A catch is said to happen wherf + y7 < r?, wherer iS  of the evader speetl,, thenAC = o BC (Note: this straight

case ofr — 0. The effect of finite catch radius is discussed ifprm, we can rewrite this equation as:

Section VI. Starting from the initial conditiony, if the control
strategiesu, (), u.(z) satisfy the catch condition at tiri& Va?+y?
then the payoff is given by (uy, ue, zo) = y,(T'). The game VE—2.)2+ (y — y,)?
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:>‘T27a2(x7mr) a2(y7yr)27y

Differentiating the right side by, we get:
d(z? — o?(z — 2,)?) Tyt
dx a?—1

Putting this equation into the previous equation, we get

2
=0=z=

2.2

e
(0 = 1)y® — 20°yy, + yla® = ——
o’y +ay/y? + 2}
Y= a? -1

to get the maximal value af. So,

0.(z) = tan™* Y= _ tan™!(tany + ay/1 + (tan~y)?2)

T — x,

_ _ 1+ (tan~y)?2
0,(z) = tan™! % = tan~!(tany + %)
Vig) — oy, + ay/y? +a?
(x) - yp + 0[2 -1
A(P )
(Oyol)Jrsuer X
< 8,09
B(evader)
(x.y,)
Y /ee(x)
C(xy)
Linear Asset
Y

Fig. 2.

2) Evader above pursueiThe proof is similar for this case,
but here we have a negative valueyef and the result is:

d(z? — o2(z — 2,)2 a2
(x* — a*(x x)):0:>a?:xa
dx a? -1
o’yr + an/y? + a3
Y= a? —1

and:

0. (x) = tan*(tany + ay/1 + (tan~)2)
1+ (¢ 2
0,(x) = tan™" (tan + M)
a

o’y +ay/y? + @}

Linear asset protection with evader in between pursuer and asset

B(Evader)
(¥,

A(Pursuer)

0.0
[

C(x.y)

Linear Asset

Fig. 3. Linear asset protection with pursuer in between evader and asset

At each time instant, the pursuer will calculate the best
location («/,y’)) that the evader can reach:

2

PR 7 e

T =5 +zp (5)
,QPy +on/y2 + a2
y = ] + Yp (6)

then it will move towards that location( see Figure 5).

We illustrate the performance of the optimal strategy using
a simulation. The results are given in Figure 4. The solid line
shows the pursuer-evader trajectories when both employ min-
max optimal strategies. The dashed lines show the case when
evader uses non-optimal straight line strategies. We observe
that min-max optimal pursuit strategy catches non-optimal
evaders at a larger distance to the target.

o=1.3
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Fig. 4. The P-E trajectory under perfect information



IV. OPTIMAL PURSUIT UNDER COMMUNICATION ds is the maximum distance the evader can move during that
CONSTRAINTS time interval. Without loss of generality, we assume the initial
A. Sampling rate requirements of the optimal pursuit strategﬁé’/cat'on of pursuer igz,,y,) = (0,0). So the next location

) . . based on the pursuer strategy(is,, y,,), which is decided by
In Section Ill, we assumed that the global state is ava'labé%uation:

to the pursuer at all times. This is an unrealistic assumption for

a sensor network implementation where the information can 4 = o’xods

be provided only at discrete time intervals. In this section, N \/ 9.9 T a2
we derive the sampling rate requirements of the optimal otz + (age + VrZ +y2)
strategy and show that it is inversely proportional to the >
relative distance between the pursuer and evader. The result Y, = (aye + Vze +ye)ads

is particularly important for sensor network implementations \/a%g + (aye + /72 + y2)?

using resource constrained nodes, because it informs how

the information data rate can be reduced based on the stHi¢ evader can move to any location in the circle which is

of the game so as to conserve the energy and bandwi§ftered atz.,y.) and has the radiuds. So, the next move

resources of the network. Again, we use the min-max solutié®f evader must satisfy:

concept to formulate a robust pursuit strategy that will perform

satisfactorily irrespective of evader motion. To design for worst

possible case of evader motion, we assume the pursuer §ag the next optimal location based on locatian, ) and

perfect information about the location of the evader and thg’ ,yb)is:

sampling period. The sampling period is then chosen such tha

th_e e\_/ader_ doe_s not benefit from switching from the optimal o2 (yl — yh) + a\/(fﬂ’e —al)2 + (Yl — y))?

direction given in Theorem. 1, although the evader’s deviation 3" =y + 5

will be detected by the pursuer after the sampling period a®—1

interval. We want to find the maximurg’ by changing(z.,y.). The
Theorem 2: The evader does not deviate from its min-magonstraints can be reformulated as:

equilibrium strategy if and only if the distance moved by the , )

pursuer before getting the next sample of state information Te = e + 7500

satisfies:

(‘rle - we)2 + (yc/z - 96)2 < d82

Y. = Ye + 1 cosb

Vo2 (@2 + (aly,) + /% + (0)2)?

«

v Tsample < @) and letF, = z. — z,,,I;, = y. — y,,,then we can get:

2 y/ — y/ +
Equivalently, the pursuer can move up&%;—l) of the total i P
distance to the predicted evader location before sampling e Fy +rcos6) + ay/(Fe +rsin6)? + (Fy +rcos6)?
global state without loss of optimality. a?—1

To maximizey’, the partial derivative with respect tbis:

(rFy cos0—rF, sin 0)
\/(F1+7"51119)2+(Fy+7'cos9)2 .
00 a? -1 B
To solve this equation, we let;, = F, + rsin6,F, =
F, + rcosf. Then the equation can be written as:

,  —a’rsind +
Evader 8y
BlxY,) =

0

xy) ;D .
) ) (Fy cos — Fy sinf)
asinf =
cix,,) (F7)% + (F)?
The value off can be solved as:
1
tanf = - =
Linear Asset tan v Ta + (tan ’Y)
where
! /
F, 0 . — Yy, +1cosf
Fig. 5. The sampling rate for tracking tany = Y=Y T C?S = Ye ~ Yp -
F! Fy+rsinf  x.— ), +rsinf
Proof: Assume the pursuer moves first. It will move . Ye — Yy

ads toward to the predicted optimal locatiofx,y), where T, — ),



Here, we claim the solution of the equationds= 6’. One Then we have

important observation is that if a—1 a—1
tany = tan~y’ UpTsamp < « dpe = Tsamp < QU dpe
then ]
tanf = tan ¢’
o=1.3

The other important observation is that when evader moves to  sso;
(z¢,,Ye,) With distancer and pursuer moves t@;,, y,,) with
distancear, the following equation holds: 300r

tany = tan~y’ 250|

since lineAB is parallel to lineCD (AB//CD).

To maximizey’, the value ofr should ber = Max(r) =
ds since the partial derivative of/ with respect tor is 150(-
nonnegative whe € [0, 7/2].

To satisfy the condition of € [0,7/2] , we must guarantee:

200 -———
Pursuer

Pursuer1
Evader1
100 F — — — Pursuer2
— — —Evader2

Pursuer3
50 Evader3

z, <z, when 0=z, <z,
x;er when 0=z, >z,

Then we can get: 0 50 100 150 200 250 800 950 400

‘ Linear Asset ‘
Va2 + (ay, + /T T g2)?
«

alds| < Fig. 6. The P-E trajectory when using tf&,., update

. - ( 2_1) . . )
which is *= = of total distance of current pursuer location \ye jjjustrate the performance of the reduced sample rate

to the predicted optimal location (this distance is defined fategy using a simulation. The results are given in Figure 6.
dpu)- The solid line shows the pursuer-evader trajectories when
) ) B poth employ min-max optimal strategies, which is identical
We extend the previous result to derive the following, the continuous update case. The dashed lines show the
scaling property of the sampling peridd..,i.c With respect .,qe \hen evader uses non-optimal straight line strategies. We
to the distancel,. between the pursuer and evader: observe that reduced sample rate pursuit strategy differs from
its continuous information behavior for these cases but still

Theorem 3: Optimal pursuit-evasion strategies of the pefz,iches these non-optimal evaders at a larger distance to the
fect information game also yield Nash equilibrium of the 9amg rget

with discrete time updates if:

a—1

Tsamp (dpe) <

—dpe

Qavp

B. Effect of message losses

From the previous sampling rate analysis, to guarantee

In other words, the sampling period should decrease propgie optimum of evader interception, the information must be
tionally with decreasing distance between evader and pursugtated before the pursuer reaches a critial point on the path to
to guarantee that the evader does not have an incentivettfe predicted location defined in Theorem 2. For perfectly re-
deviate from its strategy to move directly to the predicteghble communication links,his can be achieved by the pursuer
intercept point. issuing an evader location query shortly before reaching the
Proof: If we defineu to be the location of the predictedcritical point. However, in the presence of message losses, the
intercept point then we have: pursuer needs to issue multiple querries within one sampling
(a2 —1) period and adjust the frequency of its queries according to
5 dpu the game state. As shown in the previous section the required
sampling period decreases with decreasing distance between
\/a%% +(oyr + Va7 + 1) the ppurs%epr and evader. We note that to mini?nize the frequency
« of the queries, the network communication protocol should
\/(a2 +1)d2, + 20y,dpe scale to provide higher reliability as the distance between the
= pursuer and evader decreases.

(%

@ Theorem 4: Let the relation between message loss prob-
\/(a2 +1)d2, — 2ad2, \/(a2 + 1)d2, — 2ad3, ability and the distance between the pursuer and the evader
€ | a ) a be given by the functiorpas(d,.). For any initial stater,
(a2 —1) a—1 a+1 the sampling period condition for Nash Equilibrium given in
= T2 dpu € [ o dpe, o pel Equation 2 will be satisfied with probability greater than ¢



log(e)aw,

Jalre) 2 Yo oat (dpe)) o — D
where f,(dp.) is the frequency of the evader location queries
when its distance from the pursuerds..

Proof: Consider a global state update that occurs at
statex. The pursuer can issue up ¥97s.mp queries before
it traverses the critical distanc@i%l)dpu. The number of
gueries has to be chosen such that the probability of getting at
least one succesful update at that period is greater thaa

PM (dpe))f“ Tsamp <e

1Og(€) IOg(e)aUP
= 4 2 o o) Toamp 10831 (dpe)) (@ — e
|

Linear asset

Fig. 7. The delay
C. Effect of Packet Delay

The evader location information needs to be routed from the ., pe simplified as:
local fusion center to the pursuer through wireless multiple hop
links. The multiple hop communication imposes considerable asing —
delays on the evader state information. We assume the network V(@ +rsind)2 + (y, +rcosf)?
is time synchronized and the packets are time-stamped, gt/
the source so that the pursuer will able to calculate ﬂ%eomf)
delay of the packets it received. To derive a robust pursuit

(2! cos —y.sind’)

=2/ + rsinf\Y] = y. + rcos®.Then the equation
e written as:
(X! cost —Y/sinb)

strategy we design for the worst possible evader motion, by asing =
assuming the evader will have perfect information about the (X0)2+ (Y))?
pursuer location. Therefore at time incremeéngvader have The value of¢’ can be solved as:
access to state informatidm,, (t), y,(t), z.(t), ye(t)] and the 1
ursuer have access to state informatiop(t), v, (t), z.(t — tan’ =
p tiop(t), yp(t), ze( tan~y + ay/1 + (tany)2

At), y.(t — At)]. Then consider the following strategies:

Evader Strategyu.: The evader uses the current locatiomwhere

information for the pursuer to calculate the optimal direction Y! 4y +rcosd
as given in Theorem 1. tany = <7 =
Pursuer Strategyi,: The pursuer estimates the worst cas ‘ ]
location (Z.(t),g.(t)) of the evader by considering all the$he value oft can be solved as:

points that the evader can reach/st and choosing the one tanf — 1

that yields the lowest game vald&(z, (), 9,(t), zc(t), ye (t)) tany + ay/1 + (tany)?

_ Theorem 5: The strategiesi,, and ﬂ? are a Nash equili_b- So, we have) = ¢'. In other words,B’BC should be a line.
rium of the purs_uer.-evader game with packet delays if ﬂ]ﬁversely, if B'BC is a line andC is the equilibrum when
delay at each point is bounded by: evader is a3 and pursuer is atl, thenC is optimal location

Ap < &7 1d (t — At) Wh_en the pursuer atl receives_ delayed evader Ioc_a_tid?i.
av, ¢ This property leads to the uniqueness of the equilibrium as

wheredpe(t — At) is the pursuer-evader distance at the tim?rlll?zvi\gﬂ?é 8. when evader moves fraBy to B, with distance

of packet transmssmn. AT %V, the pursuer will moveAT x V, x . We have:
Proof: At time ¢t — At, the evader can move to anywhere

on the circle. If the evader chooses the locatiBf, the A1By//As By
MaxMin y coordinate at time is: ByB| = ATy %V, = Ry

xl +rsing’

So, the new locatiom,, B, decides the same equilibriugi.
In addition, sinceB,B,C' is a line, by the previous property,

2(y, +rcost) + ay/(z, + rsind’)? + (y. + rcos6)?
Y= 5
a® —1

To maximizey, the partial derivative with respect 9 is: C is optimal location when the pursuer 4 receives delayed
CPrsing 4 (rs! cos 6/ —ry. sin 8') evader locationBs,. ' . .
Ay Q7T sin a\/(z,ﬁr Sin6/)2+ (y, 47 cos0')2 We observe that the predicted intercept point for the pursuer-

90 a2 _1 =0 evader game with packet delays at statg(t), y,(t), z.(t —



(x,(0y,(1) 2 (xy)

Linear asset

Fig. 8. The uniqueness of equilibrium when delay

At), y.(t—At)] coincides with the predicted intercept location

for the perfect information pursuit evader game at stajé: —

At), yp(t — At), z.(t — At), ye(t — At)]. Therefore, we can

Pursuer1
Evader1
Pursuer2
Evader2

2501 Evader

200

Pursuer

150

100+

50

0 50 100 150 200 250 300
‘ Linear Asset ‘

Fig. 10. The P-E trajectory in real experiment

V. EXPERIMENTAL RESULTS

The results of Section IV indicates the following require-

use the results of Section IV-A to bound the packet delajénts on the network protocol responsible for communi-

Theorem 2 shows that if the packet is received before tRating evader track information to the pursuer agents: (i)

pursuer travels distance &t1d,.(t — At) the evader does Pursuer should determine the information refresh rate based
@

not have an incentive to deviate from its equilibrium strateggn the requirements of the pursuit strategy, and (ii) Network

Therefore we should have:
v — 1
vpAt < CYpoe(t — At)

a—1

= At < dpe(t — At)

vy

Query Delay (msec)

500

40 &0 e 00 20
Distance (meter)

Message Loss (percentage)
8 82 8 83 ¢

0 20 100 120

60
Distance (meter)

Fig. 9. The experimental delay and message-loss rate usinglrtie
networking service

delays should scale with the pursuer-evader distance. We
have implemented a communciation protocol calledil that

is compatible with these requirements. The overall system
architecture fofTrail is described in a companion papérail
offers the following pursuer controlled interfacind evader

i, that returns the state of evadeto the pursuer agent issuing
the query. The pursuer issuing the query itself could be mobile
in which case the result is returned to the pursuer agent at its
current location. To implement this functiofirail maintains

a tracking data structure for the mobile objects.

The network is divided into clusters with all nodes in a
region within communication range of its clusterhead. The
clusterheads form the communication backbone for the net-
work. Trail assumes the existence of an underlying service for
object detection and association. The node that is closest to the
mobile object at any instant is the agent for that object. When
an object is first detected in the network, a path is created
along the backbone to a fixed clusterhead called the center.
Thus all objects in the network maintain a trail. When an
object moves, the new agent initiates an operation to update
the structure locally. When a client object issuefinal, the
agent for the client forwards it to the backbone. If the trail
for the object exists at this backbone, following this trail, the
object state is found or else tiiad is propagated towards the
center.

Thus, in Trail object updates are local and for a linear
topology, Trail provides a query time proportional to the
distance from the object. Trail was implemented in a network
of 105 XSM nodes irKanseisensor network testbed at Ohio
State University, where we used a Garcia robot to serve as
the mobile pursuer. The network was divided into 10 clusters



in a linear topology. An implicit acknowledgment mechanisrB. Multiple Pursuer Evader Problems

with upto 3 retransmissions was used for per-hop reliability in fere we considen pursuer —m evader game with > m,

Trail. Upon retransmissions, the latency for a query increasggere each pursuer is restricted to catch only one evader. For
There are 2 objects in the system, pursuer client and gRiance, we can assume that the pursuer is immobilized at

evader object. The average find time and the variance of figth time of a catch to detain the evader and more than one

times for an object at different distances, with 20 experimer\@rsuer is not assigned to a given evader to reserve pursuer

at each distance, usingrail is shown in Figure IV-C. The ggents for future evader threats. The aim of the pursuer team

object being found is mobile and the update messages G&o maximize a function of the distances to the target at

to this mobility can _interfere w?th the find messages. W.heéhtch time.7 (up, te, ) = L(yp(T1), ...,y (T,)). The game

the reply to a find is not received before a threshold, it ig stjil zero-sum, so that the evader team tries to minimize the

considered to be lost. The fraction of lost messages Withsame cost function. Common examples of cost functions are:
equal tol.5 times the round trip network transmission time is

also shown in Figure IV-C. These are used to build the loss L(y;(Tl), oy (T)) = %Zy;(Ti)
and the reliability model for our pursuit-game application. i
We have used the experimental data to test the optimg|y
pgrswt strategy given in Secthn IV. The results are given in L(y;(Tl), coy(Ty)) = min{yh (T3)}
Figure 10. There are two experiments. In both experiments the i
evader is assumed to know the current location of the pursueiwe give the following result, afain without proof [7], for
and employ the optimal evading action. The solid lines are fdiis class of multiple pursuer-evader games. Edbe the set
the pursuit strategy that incorporates delays in to the pursgftall one-to-one assignment functions with the domain and
strategy, the dashed lines are for the pursuit strategy that dessge sets given as : {1,...,m} — {1,...,n}. Then the
not take delay into account and treats the location as if it v@lue functionV of the n pursuer —m evader game is given
the current evader location. We observe that the delay tolerigt:
algorithm can intercept even an evader that has information ; .
superiority at minimum possible distance, whereas an evader V{{zetimim: {23} j=1m) =
information superiority can achieve higher payoff facing an max L(V (z}, zg™M),..., V(@ 25™))  (8)
opponent which does not take delays into account. o>
In essence, the pursuer —m evader game is reduced to first
VI. EXTENSIONS stage combinatorial optimization of the assignment problem
A. Non-zero Catch Radius followed by n two player pursuit games. We note that as
In practice, the catch condition should not be defined 49 as both teams stick to min-max optimal strategies, no
distance(P,E) = 0 but asdistance(P,E) < r for some reassignment is required. In case the evaders deviate from their
finite r. For this case, we give the following result for min-"assigned” pairs they will only achieve a lower score than their
max strategies, without proof [7]. equilibrium strategy.
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with constraints:
Act| _
|BC|

|C'C| = r and



