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Connecting the Physical
World with Pervasive
Networks

M
ark Weiser envisioned a world
in which computing is so per-
vasive that everyday devices can
sense their relationship to us
and to each other. They could,

thereby, respond so appropriately to our actions that
the computing aspects would fade into the back-
ground. Underlying this vision is the assumption

that sensing a broad set of phys-
ical phenomena, rather than just
data input, will become a com-
mon aspect of small, embedded
computers and that these devices
will communicate with each
other (as well as to some more
powerful infrastructure) to orga-
nize and coordinate their actions. 

Recall the story of Sal in
Weiser’s article; Sal looked out her window and saw
“tracks” as evidence of her neighbors’ morning
strolls. What sort of system did this seemingly sim-
ple functionality imply? Certainly Weiser did not
envision ubiquitous cameras placed throughout the
neighborhood. Such a solution would be far too
heavy for the application’s relatively casual nature
as well as quite invasive with respect to personal pri-
vacy. Instead, Weiser posited the existence of far less
intrusive instrumentation in neighborhood spaces—
perhaps smart paving stones that could detect local

activity and indicate the walker’s direction based on
exchanges between neighboring nodes. As we have
marched technology forward, we are now in a posi-
tion to translate this aspect of Weiser’s vision to real-
ity and apply it to a wide range of important appli-
cations, both computing and social. 

Other articles in this issue address the user inter-
face-, application-, software-, and device-level design
challenges associated with realizing Weiser’s vision.
Here, we address the challenges and opportunities
of instrumenting the physical world with pervasive
networks of sensor-rich, embedded computation.
Such systems fulfill two of Weiser’s key objectives—
ubiquity, by injecting computation into the physi-
cal world with high spatial density, and invisibility,
by having the nodes and collectives of nodes oper-
ate autonomously. Of particular importance to the
technical community is making such pervasive com-
puting itself pervasive. We need reusable building
blocks that can help us move away from the spe-
cialized instrumentation of each particular envi-
ronment and move toward building reusable tech-
niques for sensing, computing, and manipulating
the physical world. 

The physical world presents an incredibly rich set
of input modalities, including acoustics, image,
motion, vibration, heat, light, moisture, pressure,
ultrasound, radio, magnetic, and many more exotic
modes. Traditionally, sensing and manipulating the

This article addresses the challenges and opportunities of
instrumenting the physical world with pervasive networks of
sensor-rich, embedded computation. The authors present a
taxonomy of emerging systems and outline the enabling
technological developments.
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physical world meant deploying and plac-
ing a highly engineered collection of instru-
ments to obtain particular inputs and
reporting the data over specialized wired
control protocols to data acquisition com-
puters. Ubiquitous computing testbeds
have retained much of this engineered data
acquisition style, although we use them to
observe a variety of unstructured phe-
nomena (such as human gestures and inter-
action). The opportunity ahead lies in the
ability to easily deploy flexible sensing,
computation, and actuation capabilities
into our physical environments such that
the devices themselves are general-purpose
and can organize and adapt to support sev-
eral application types.1

In this article, we describe the challenges
on the road ahead, present a taxonomy of
system types that we expect to emerge dur-
ing this next decade of research and devel-
opment, and summarize technological
developments. 

Challenges
The most serious impediments to per-

vasive computing’s advances are systems
challenges. The immense amount of dis-
tributed system elements, limited physical
access to them, and this regime’s extreme
environmental dynamics, when considered
together, imply that we must fundamen-
tally reexamine familiar layers of abstrac-
tion and the kinds of hardware accelera-
tion employed—even our algorithmic
techniques. 

Immense scale
A vast number of small devices will com-

prise these systems. To achieve dense
instrumentation of complex physical sys-
tems, these devices must scale down to
extremely small volume, with applications
formulated in terms of immense numbers
of them. In five to 10 years, complete sys-
tems with computing, storage, communi-
cation, sensing, and energy storage could
be as small as a cubic millimeter, but each
aspect’s capacity will be limited. Fidelity
and availability will come from the quan-
tity of partially redundant measurements
and their correlation, not the individual
components’ quality and precision.

Limited access
Many devices will be embedded in the

environment in places that are inaccessible
or expensive to connect with wires, mak-
ing the individual system elements largely
untethered, unattended, and resource con-
strained. Much communication will be
wireless, and nodes will have to rely on on-
board and harvested energy (such as from
batteries and solar cells). Inaccessibility, as
well as sheer scale, implies that they must
operate without human attendance; each
piece is such a small part of the whole that
nobody can reasonably lay hands on all of
them. At sufficient levels of efficiency,
energy harvested from the environment
can potentially allow arbitrary lifetimes,
but the available energy bounds the
amount of activity permitted per unit time.
Energy constraints also limit the applica-
tion space considerably; if solar power is
used, nodes must be outdoors, and if bat-
teries cannot be recharged, they will seri-
ously affect maintenance, pollution, and
replacement costs.

Extreme dynamics
By virtue of nodes and the system as a

whole being closely tied to the ever-chang-
ing physical world, these systems will expe-
rience extreme dynamics. By design, they
can sense their environment to provide
inputs to higher-level tasks, and environ-
mental changes directly affect their per-
formance. In particular, environmental fac-
tors dramatically influence propagation
characteristics of low-power radio fre-
quency (RF) and can effectively create
mobility even in stationary configurations.
These devices also experience extreme vari-
ation in demand: Most of the time, they
observe that no relevant change has
occurred and no relevant information has
been communicated. Thus, they must
maintain vigilance while consuming almost
no power. 

However, when important events do
occur, a great deal happens at once. Flows
of high- and low-level data among sensors
and actuators must be efficiently inter-
leaved while meeting real-time demands,
and redundant flows must be managed
effectively. Consequently, passive vigilance

is punctuated by bursts of concurrency-
intensive operation. To cope with resource
limitations in the presence of such dynam-
ics, these systems will be governed by inter-
nal control loops in which components
continuously adapt their individual and
joint behavior to resource and stimulus
availability.

A taxonomy of systems 
Meeting these challenges requires new

frameworks for system design of the sort
that only come from direct, hands-on expe-
rience with the emerging technological
regime. We must apply many small, power-
constrained, connected devices to real
problems where programming, orchestra-
tion, and management of individual devices
are impractical.

The applications of physically embedded
networks are as varied as the physical envi-
ronments in which we live and work. Yet,
even with this heterogeneity, many oppor-
tunities and resources for exploiting com-
monality across them exist. Most impor-
tant is the hope to achieve pervasiveness by
enabling system reuse and evolution.
Within any one environment or system,
more than one type of system or applica-
tion might be active as the system evolves or
from its outset. One step toward identify-
ing common building blocks is to define a
taxonomy of systems and applications so
that we can identify and foster reusable and
paramaterizable features.

We divide the space of physically embed-
ded systems along the critical dimensions
of space and time. Within these dimen-
sions, we are interested in scale, variabil-
ity, and autonomy. We address these
dimensions with respect to the environ-
mental stimuli being captured and the sys-
tem elements. 

Scale
Spatial and temporal scale concerns the

sampling interval, the extent of overall sys-
tem coverage, and the relative number of
sensor nodes to input stimuli. The scale of
spatial and temporal sampling and extent
are important determinants of system
emphasis. The finer grain the sampling, the
more important the innovative collabora-
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tive signal processing techniques such as
those described elsewhere.2–5 However,
systems intended to operate over extended
periods of time and regions of space must
emphasize techniques for self-organization
because as the system extent grows, the
ability to configure and control the envi-
ronment becomes infeasible. High density
provides many opportunities and chal-
lenges for self-configuration that low-den-
sity systems don’t encounter. 

Sampling. The physical phenomena mea-
sured ultimately dictates spatial and tem-
poral sampling scale. High-frequency
waves require higher temporal and spatial
sampling than phenomena such as tem-
perature or light in a room, where spatial
and temporal fluctuations are coarser-
grained. The sampling scale is a function
of both the phenomena and the applica-
tion. If you need the system for event detec-
tion, the requirement could be more lax
than if the goal is event or signal recon-
struction. For example, if a structure is
being monitored to detect structural faults,
signatures of seismic response might be
compared to “healthy” signatures at a rel-
atively coarse grain. However, if data is
being collected to generate profiles of struc-
ture response, fine-grain data is needed.

Extent. The spatial and temporal extent of
systems also varies widely. At the high end
of this continuum are environmental mon-
itoring systems, which can span on the
order of tens of thousands of meters. Most
existing and planned pervasive computing
systems are an order of magnitude, or
smaller, such as is needed to cover a build-
ing or room. Elements of pervasive com-
puting systems also extend to the smaller
end of the continuum such as reconfig-
urable fabric, which a user can wear or that
we can deploy to monitor structure or
machinery surfaces.

Density. System density is a measure of sen-
sor nodes per footprint of input stimuli.
Higher-density systems provide greater
opportunities for exploiting redundancy to
eliminate noise and extend system lifetime.
The higher the density of nodes to stimuli,

the greater the number of independent
measurements possible and thus opportu-
nities to combine measurements to elimi-
nate channel or coupling noise. Similarly,
where density is high enough to allow over-
sampling, nodes can go to sleep for long
periods of time and thereby extend cover-
age over time. 

Variability
Variability is a second differentiating

characteristic of many systems and associ-
ated designs. As with spatial and temporal
scale, it takes on many forms and can apply
to system elements or the phenomena being
sensed. Relatively static systems emphasize
design time optimization whereas more
variable systems must use runtime self-
organization and might be fundamentally
limited in the extent to which they are both
variable and long-lived. 

Structure. Ad hoc versus engineered sys-
tem structure refers to the variability in sys-
tem composition.6 At one extreme is a sys-
tem that monitors a structure such as a
building, bridge, or even an individual air-
plane. At the other end are sensor networks
deployed in remote regions to study bio-
complexity. More traditional pervasive
computing systems embody aspects of both
systems; elements of the systems such as
instrumentation in an aware room or
house might be relatively static, whereas
the larger system that includes humans and
subsystems carried in and out of the space
is clearly ad hoc. 

Task. Variability in system task determines
the extent to which we can optimize the
system for a single mode of operation.
Even a structurally static system might per-
form different tasks over time—for exam-
ple, a structural system that periodically
generates a structure profile could act as
an event monitoring system. Similarly, a
system used regularly to measure an air
conditioning system’s effectiveness might
occasionally have to integrate inputs from
new sensors to detect traces of newly char-
acterized toxins

Space. Variability in space—meaning mo-

bility—applies to both system nodes and
phenomena. In many systems of interest,
most or all the nodes remain fixed in space
once placed. However, many interesting, if
longer-term, systems include elements that
move themselves or that are tied to objects
that move them (such as vehicles or peo-
ple). Similarly, the phenomena these sys-
tems monitor differ in the extent of mobil-
ity. Many systems of interest are intended
for phenomena that move quickly in time.
A system designed to manage the physical
environment for a stationary human user
faces different challenges than one designed
to track humans moving quickly through
that same space. 

Autonomy
The degree of autonomy has some of the

most significant and varied long-term con-
sequences for system design: the higher the
overall system’s autonomy, the less the
human involvement and the greater the
need for extensive and sophisticated pro-
cessing inside the system. Such autonomy
increases the need for multiple sensory
modalities, translation between external
requests and internal processing, and the
internal computational model’s complex-
ity. Detailed characterization systems are
relatively low-autonomy systems, because
their intent is to simply deliver sensory
information to a human user or external
program. Event detection requires far more
autonomy because the definition of inter-
esting events must be programmed into the
system, and the system must execute more
complex queries and computations inter-
nally to process detailed measurements and
identify events. Perhaps more than any
other dimension, autonomy is most signif-
icant in moving us from embedding instru-
ments to embedding computation in our
physical world. 

Modalities. Truly autonomous systems
depend on multiple sensory modalities.
Different modalities provide noise re-
silience to one another and can combine to
eliminate noise and identify anomalous
measurements.

Complexity. Greater system autonomy also
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entails greater complexity in the computa-
tional model. A system that delivers data
for human consumption leaves most of the
computation to the human consumer or to
a centralized program that can operate
based on global information. A system that
executes contingent on system state and
inputs over time must execute a general
programming language that refers to spa-
tially and temporally variable events. 

Where are we now?
Weiser often described the need for a

range of different-sized devices (not just PCs
and laptops, but devices the size of win-
dows or scraps of paper). Surely he imag-
ined them scaling down to the size of a pin
or up to the size of an entire building. This
section describes developments and trends
that are key to realizing his vision of
increasingly pervasive and invisible com-
puting systems. In each of the following
areas, we see a consistent trend from highly
engineered deployments of modest scale
using application-specific devices to ad hoc
deployments of immense scale based on
reusable components intended for system
evolution. We will emphasize the role that
these developments play in supporting sys-
tem scale, variability, and autonomy.

Small packages in the physical world 
A major theme in Weiser’s work was 

the creation of small devices used in a 
larger intelligent environment. The Xerox
ParcTab provided limited display, user
input, and infrared communication in a
palm-sized unit. Small, attachable RF iden-
tification (RFID) tags helped determine the
approximate position and identity of the
tagged object or individual in a space
equipped with specialized readers.7 Today,
we see many consumer devices in the palm
form factor possessing roughly the process-
ing and storage capabilities of early-to-mid
1990s PCs. Personal digital assistants and
pocket PCs have gained wireless connectiv-
ity either as variations of pager networks or
802.11 wireless LANs. However, both
approaches have significant drawbacks—
the former is expensive, has low bandwidth,
and is void of proximity information, and
the latter consumes too much energy and

requires a large battery pack. There is now
a strong push to incorporate Bluetooth
short-range wireless networks into hand-
held devices, and numerous attractive radio
technologies are on the horizon. 

Recently these devices have gained a rich
set of input modes besides user buttons and
knobs. Most have acoustic input and out-
put, and some incorporate accelerometers
to detect gestures, orientation, or video
input. Simultaneously, many cell phones
have gained Internet browsing capability,
and PDAs have gained cell phone capabil-
ities for data and voice access. Soon all cell
phones will know where they are thanks
to GPS, which will bring a degree of loca-
tion awareness into various personal com-
puting devices. 

In most existing ubiquitous computing
environments, the sensing capabilities of
these devices is used to detect human
actions—to recognize gestures or the rela-
tionship between objects.8,9 The network
communicates the occurrence of these
actions to the computers in the infrastruc-
ture that can process them. We can con-
nect rich sensor arrays and sophisticated
motor controllers to these devices as we
would to a PC in a traditional process con-
trol environment (as on a manufacturing
line) or to an embedded controller (as in
an automobile). However, increased minia-
turization raises the possibility of every tiny
sensor and controller having its own pro-
cessing and communication capabilities,
such that the aggregate performs sophisti-
cated functions. A sequence of University
of California, Los Angeles wireless inte-
grated networked sensor nodes demon-
strates early examples of such wireless inte-
grated sensors.10 As these become small
and numerous, we can place them close to
the physical phenomenon of interest to
provide tremendous detail and accuracy.
This ability provides richness to ubiquitous
environments through new modalities (for
example, detecting user frustration by
change in body temperature), but also
enables the instrumentation of physical
sites that humans can’t access, such as the
inside of structures, equipment, or aque-
ous solutions. 

In addition to packing ever more com-

puting and storage capacity onto a chip,
decreasing lithographic feature size squeezes
the same capacity into a progressively
smaller area with an even greater reduction
in power consumption. However, the abil-
ity to implement the radio or optical trans-
ceivers in the same module as the processor
has provided a qualitative advance in size
and power. Sensors and actuators have
undergone a revolution with the emergence
of microelectromechanical systems (MEMS)
technology, in which mechanical devices
such as accelerometers, barometers, and
movable mirrors are constructed at minute
size on a silicon chip using lithographic
processes similar to those for integrated cir-
cuits. Improved equipment and technology
result in smaller MEMS devices, lower
power consumption, and improved device
performance. Although these improvements
are not as predictable or clearly tied to fea-
ture size as processing and storage are, a
strong correlation exists. The node subsys-
tems’ size and performance improvements
reduce power consumption and allow a cor-
responding decrease in the size and cost of
the power supply as well. There have also
been substantial improvements in battery
technology, with improved storage den-
sity, form factor, and recharging, as well
as the emergence of alternative storage
devices, such as fuel cells and energy-
harvesting mechanisms (see the “Energy”
sidebar). 

Several research groups are exploring
how to build intelligent, information-rich
physical environments by deploying many
small, untethered, deeply integrated nodes.
Core challenges involve designing systems
to operate at low power consumption,
storing and obtaining that power, orches-
trating nodes to form larger networks, and
deploying applications over fine-grain net-
works. At the far extreme, researchers have
conducted design studies on the feasibility
of building an entire system, including
power storage, processing, sensing, and
communication, in a cubic millimeter.11–13

This scale should be achievable in practice
five to 10 years out. Researchers have also
made substantial progress in low-power
CMOS radios at several performance
points. The research community now
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widely uses a one-inch scale platform (see
the “University Research” sidebar), which
provides an opportunity to explore the
node system architecture. It must be ex-
tremely energy efficient, especially in the
low duty-cycle vigilance mode, and it must
be extremely facile with event bursts. It
must meet hard real-time constraints, such
as sampling the radio signal within bit win-
dows, while also handling asynchronous
sensor events and supporting localized data
processing algorithms. It also must be
robust and reprogrammable in the field.

During the growth in capability and
complexity of these devices, several distinct
operating systems approaches have
emerged to make application design more
manageable. Real-time operating systems
such as Vxworks (www.windriver.com),
GeoWorks (www.geoworks.com), and

Chorus (www.sun.com/chorusos) have
scaled down their footprints and added
TCP/IP capabilities, whereas Windows CE
has sought to provide a subset of the famil-
iar PC environment. PalmOS successfully
focused on data element exchange with
infrastructure machines, but provided lit-
tle support for the concurrency associated
with interactive communication. As the
devices reach a processing and storage
capability beyond the early workstations,
compact Unix variants, especially Linux,
have gained substantial popularity while
providing real-time support in a multi-
tasking environment with well-developed
networking.

To make the networked embedded node
an effective vehicle for developing algo-
rithms and applications, a modular, struc-
tured runtime environment should provide

the scheduling, device interface, network-
ing, and resource management primitives
on which the programming environments
rest. It must support several concurrent
flows of data from sensors to the network
to controllers. Moreover, microsensor
devices and low-power networks operate
bit by bit (or in a few cases, byte by byte),
so software must do much of the low-level
processing of these flows and events. Often,
operations must be performed within nar-
row jitter windows, such as when sampling
the RF signal. 

The traditional approach to controller
design has been to hand-code scheduling
loops to service the collection of concurrent
flow events, but this yields brittle, single-
use firmware that has poor adaptability. 
A more general-purpose solution is to pro-
vide fine-grain multithreading. Although
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E nergy constraints dominate algorithm and system design

trade-offs for small devices. Energy storage has advanced

substantially, but not at the pace we associate with silicon-based

processing, storage, and sensing. Batteries remain the primary

energy storage devices, although fuel-based alternatives with high

energy density are being actively developed. As a general rule of

thumb, batteries store approximately a joule per mm3, but many

factors influence the choice of technology for a particular appli-

cation. Over the past 20 years, an AA nickel alkaline (NiCd and

NiMH) battery’s capacity has risen from 0.4 to 1.2 Amp hours with

fast recharging (see http://books.nap.edu/books/0309059348/

html/index.html). Lithium batteries offer higher energy density

with fewer memory effects but longer recharge times. The zinc-

based batteries used in hearing aids have high energy density but

high leakage, so they are best for high usage over short duration.

Recent polymer-based batteries have excellent energy density, can

be manufactured in a range of form factors, and are flexible, but

they are also expensive. Numerous investigations have focused on

thin and thick film batteries, and researchers have fabricated tiny,

1-mm3 lead-acid batteries, so we can expect to package energy

storage directly with logic. 

Fuel cells potentially have 10 times the energy density of bat-

teries, considering just the fuel, but the additional volume of the

membrane, storage, and housing lowers this by a factor of two to

five. MEMS approaches are exploring micro heat engines and stor-

ing energy in rotating micromachinery. Solar panels remain the

most common form of energy harvesting, but numerous inves-

tigations are exploring avenues for harvesting the mechanical

energy associated with specific applications, such as flexing shoes,

pushing buttons, window vibration, or airflow in ducts (see

www.media.mit.edu/context, www.media.mit.edu/physics, or

www.media.mit.edu/resenv). With existing technology, a cubic

millimeter of battery space has enough energy to perform roughly

1 billion 32-bit computations, take 100 million sensor samples, or

send and receive 10 million bits of data. As all the system’s layers

become optimized for energy consumed per operation, these

numbers will increase by at least an order of magnitude and some

by several orders.1

Sample battery energy ratings include

• Nonrechargeable lithium: 2,880 J/cm3

• Zinc-air: 3,780 J/cm3 (has very high leakage)

• Alkaline: 1,190 J/cm3

• Rechargeable lithium: 1,080 J/cm3

• Nickel metal hydride (NiMHd): 864 J/cm3

• Fuel cells (based on methanol): 8,900 J/cm3

• Hydrocarbon fuels (for use in micro heat engines): 10,500 J/cm3

Sample scavenging energy ratings include

• Solar (outdoors midday): 15 mW/cm2

• Solar (indoor office lighting): 10 uW/cm2

• Vibrations (from microwave oven casing): 200 uW/cm3

• Temperature gradient: 15 uW/cm3 (from a 10° C temperature

gradient)
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researchers have studied this approach
extensively for general-purpose computa-
tion, we can attack it even more effectively
in the tiny, networked sensor regime,
because the execution threads that must be
interleaved are simple. These requirements
have led to a component-based tiny operat-
ing system environment,14 which provides a
framework for dealing with extensive con-
currency and fine-grain power management
while providing substantial modularity for
robustness and application-specific opti-
mization. The TinyOS framework estab-

lishes the rules for constructing reusable
components that can support extensive con-
currency on limited processing resources. 

Sensing and actuation
Interfacing to the physical world involves

exchanging energy between embedded
nodes and their environments. This takes
two forms: sensing and actuation. What-
ever the sensed quantity (temperature, light
intensity), the sensor transducers a partic-
ular form of energy (heat, light) into infor-
mation. Actuation lets a node convert infor-

mation into action, but its main role is to
enable better sensing. An actuator moves
part of itself, relocates spatially, or moves
other items in the environment. Sensing and
actuation are together the means of physi-
cal interaction between the nodes and the
world around them. 

The 1990s saw MEMS technology trans-
formed from a laboratory curiosity into a
source of widespread commercial products.
Millimeter-scale silicon accelerometers
joined their cousins the silicon pressure sen-
sors under the hoods of most automobiles,
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R esearch conducted through the University of California,

Berkeley’s DARPA project on SenseIT and ubiquitous com-

puting produced a widely-used microsensor node. CrossBow

(www.xbow.com) currently produces it in volume. The core build-

ing block is a 1-inch x 1.5-inch motherboard comprising a low-

power microcontroller, low-power 900-MHz radio, nonvolatile

memory, LEDs, network programming support, and vertical ex-

pansion bus connector. The microcontroller contains Flash pro-

gram and SRAM data storage, analog digital converter, and ex-

ternal I/O (standard and direct ports). A second small microcon-

troller lets the node reprogram itself from network data. The sen-

sors and actuators on the motherboard are associated with its

own operation: battery voltage sensor, radio signal strength sens-

ing and control, and LED display. The microcontroller’s external

interface is exposed in a standardized form on the expansion con-

nector, providing analog, digital, direct I/O, and serial bus inter-

connections. Sensor packs for the specific applications, including

termistors, photo detectors, accelerometers, magnetometers,

humidity, pressure, or actuator connections, are stacked like tiny

PC104 boards (see Figure A). The processor dissipates several

nano-Joules per 8-bit instruction. 

The sensor board for the Berkeley platform consists of five differ-

ent microsensor modules to support several potential applications.

The types of sensors it supports include light, temperature, accel-

eration, magnetic field, and acoustic, each of which is available off

the shelf. All modules in the sensor board power cycle indepen-

dently and are power isolated from the MICA’s processor through

an analog switch. Finally, the gain of the magnetometer and the

microphone amplification is adjustable by tuning the two digital

potentiometers over the I2C bus. 

We recently stacked a motor control board on a microsensor

node and mounted the resulting assembly on a motorized chassis

with two wheels.1 The motor control board regulates wheel

speeds and provides range information from two forward and

one rear-looking infrared emitters. The resulting node (see Figure

B) is essentially a small mobile robot platform with the same net-

work interface as the microsensor nodes.

REFERENCE
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and gyros and flow sensors are now also
becoming common. Projection display sys-
tems with a million moving parts on a sin-
gle chip are commonplace. Internet pack-
ets bounce off submillimeter mirrors that
switch photons between different optical
fibers. MEMS technologies are successful
in the optical applications space because
they provide far superior performance or
the same performance at lower prices; they
are successful in Detroit because they are
reliable and dirt-cheap.

A common problem in both sensing and
actuation is uncertainty. The physical
world is a partially observable, dynamic
system, and the sensors and actuators are
physical devices with inherent accuracy
and precision limitations. Thus sensor-
measured data are necessarily approxima-
tions to actual values. In a large system of
distributed nodes, this implies that we need
some form of filtering at each node before
we can meaningfully use the data. We can
also achieve increased accuracy and fault
tolerance by redundancy, using sensors
with overlapping fields of view. This raises
interesting challenges of sensor placement
and fusion, especially in the context of very
large networks. In addition to uncertainty,
there is the further problem of latency in
actuation. For closed loop control, sto-
chastic latency can cause instability and
unreliable behavior. 

Although not traditionally associated
with ubiquitous computing, robotics and
MEMS developments play a critical role
when it comes to sensing, actuation, and
control. A particularly significant develop-
ment in robotics within the past decade has
been the move away from disembodied,
traditional AI to real-time embedded deci-
sion making in physical environments. For
nearly two decades, the dominant para-
digm in mobile robotics research involved
the offline design of control algorithms
based on deliberation. These planner-based
algorithms relied on logic and models of the
robots and their environments, but the sys-
tems were unresponsive and slow to adapt
to dynamic environments. Their dysfunc-
tionality in physical domains spurred the
development of control techniques that
closely coupled perception and action with

remarkable success. The earliest examples
of these stateless, reactive systems were
responsive but lacked generality and the
ability to store representation. Modern,
behavior-based control15 generalizes reac-
tive control by introducing the notion of
behavior as an encapsulated, time-extended
sequence of actions. Perception and action
are still coupled tightly as in reactive sys-
tems, with the added benefits of represen-
tation and adaptation without any cen-
tralized control. An alternative modern
approach is to hybridize control,16 where
a planner and a reactive system communi-
cate through a third software layer designed
explicitly for that purpose.

Localization 
For a system to operate on input from

the physical world, nodes must know their
location in three spaces to provide context-
aware services to other system elements. A
static or mobile node could answer the
question “Where am I?” in several ways:
the answer might be relative to a map, rel-
ative to other nodes, or in a global coordi-
nate system. For a sensor network, this is
particularly relevant, because we must
often tag the queries to which it will pro-
vide answers based on sensor measure-
ments with location information. 

Localization is a main part of registra-
tion between the virtual and physical
worlds. In a sensor network, this can take
a variety of forms. Nodes in a network
might report data tagged with relative loca-
tion information, but from time to time,
some nodes in the network might have to
reference their data to an external anchor
frame. Another example involves aggre-
gation. Imagine two cameras with over-
lapping fields of view. A node aggregating
data from these two cameras might per-
form the equivalent of stereo processing,
but to do so, it must know the baseline

between the two nodes—the location of
one relative to the other. 

Scale and autonomy play an important
role in location computation. Several early
large-scale systems relied on careful offline
calibration and surveying before node
deployment to ensure reliable localization.
Examples include the Active Badge and
Active Bat systems (see the “Sensing Loca-
tion and Movement of People and
Devices” sidebar). In robotics, however,
the focus was on techniques for localizing
small numbers of robots autonomously—
without relying on presurveyed maps, bea-
cons, or receivers.17 A recent trend has
been to investigate algorithms that suc-

cessfully localize large-scale networks of
nodes autonomously. 

We can taxonomize localization tech-
niques for embedded devices in several
ways: the sensors used, whether the local-
ization is with reference to a map, and
whether the localization is done using exter-
nal beacons and such.18 Broadly speaking,
we can view localization as a sensor-fusion
problem. Given disparate sources of infor-
mation about different aspects of node loca-
tion and position, the problem is to design
algorithms that can rationally combine the
data from these sources to maintain an esti-
mate of node location. In many interesting
applications (with large numbers of small
nodes), nodes cannot be placed with great
care. In some systems, nodes might be
mobile because they are robotic or because
other entities in the environment can move
them. Thus in-network, autonomous local-
ization is a must for many real-world appli-
cations. This is a departure from most exist-
ing and planned ubiquitous computing
systems for traditional office environments
in which significant effort was expended
upfront to instrument the environment for
localization. 
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The physical world is a partially observable,

dynamic system, and the sensors and actuators

are physical devices with inherent accuracy and

precision limitations. 



Several algorithms exist for localizing
both fixed and mobile network nodes. One
example recently demonstrated coarse
localization of networks of mobile nodes
by letting them build a map of their envi-
ronment.19 Significantly, the system local-
izes the nodes adaptively by updating an
internal sparse representation of a chang-
ing environment. The algorithm uses the
nodes themselves as landmarks, and could
thereby allow the robot to determine each
node’s location without reference to envi-
ronmental features or to a map.20 The algo-

rithm constructs a mesh in which nodes are
represented by point masses, and springs
represent observed relationships between
nodes.20 A relaxation algorithm determines
the lowest energy state of the mesh and
thereby the most probable location of the
nodes.

A distributed system architecture
Looking forward, the distributed sys-

tem architecture will make or break our
ability to effectively instrument the phys-
ical world. Moreover, the same character-

istics that enable these systems (miniatur-
ization and wireless communication)
impose constraints that require significant
changes in the overall architecture to
achieve the desired functionalities and
properties.

First and foremost are the constraints
imposed by having to operate within the
limits on finite or slowly charging batter-
ies. Remember that this energy’s primary
consumer in the context of low-power
communication in physically complex set-
tings is wireless communication.10 Con-
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M any of the earliest ubiquitous computing systems focused

on providing localization services using physically embed-

ded, networked systems. These systems exhibited the characteris-

tics of several nodes (scale), but otherwise differed significantly

from current trends in that they had a relatively fixed—not ad hoc

or variable—system structure. The application emphasis was on

providing context and location to human applications with simple

forms of autonomy relative to those anticipated in future systems. 

Researchers took the first steps in the direction of interacting

with the physical world as a general computing concept at the

Xerox Parc and Olivetti (now AT&T) Research Lab in Cambridge.

That work’s emphasis was on building a range of different sized

devices that could occupy distinct niches in the ecosystem of

interactions with information. Much of the work focused on

understanding how people might interact with such devices and

how user interfaces could use contextual information about the

collection of devices. Thus, the primary connection with the physi-

cal world involved determining each device’s location and thereby

its geometric relationship to others. 

The Active Badge system, developed between 1989 and 1992,

used an IR beacon that carried identity information from small

mobile devices to IR sensors in the environment. Given a map of the

physical space with sensors as landmarks, its short range and inabil-

ity to pass through solid objects provided a convenient means of

determining approximate location by proximity. A low-bandwidth

wired network connected the sensors to a centralized processing

capability, which could maintain a representation of all the tagged

objects and their interrelationships to direct actions of various sorts.

Typical examples were telephone connections and computing envi-

ronments tracking the movement of individuals through a space.

Passive RFID tags provide a similar capability in small, low-cost

packages.1

More recently, the Active Bat system used trilateration of ultra-

sonic beacons to provide accurate position determination in a

physical space.2 Receivers are placed in a regular grid in the ceiling

tiles. An RF beacon informs a particular mobile device to emit an

ultrasonic beacon and start a time-of-flight measurement at the

receivers. Arrival times of the pulse’s edge are conveyed over a

wired network from the receivers to a central PC, which can calcu-

late the specific device’s position. The largest system deployed

uses 720 receivers to cover an area of 1,000 m2 on three floors

and can determine the positions of up to 75 objects each second

to within a few centimeters. Thus, we see in the localization tech-

nology’s advancement the use of a richer set of sensor modes and

the integration of communication with the sensing and control

process.

The Massachusetts Institute of Technology Media Lab and the

Georgia Institute of Technology Aware Home projects have devel-

oped more direct means of sensing the interaction of people with

their environment. These efforts include floor sensors to determine

individuals’ positions and movement (with the hope of determin-

ing identity from step patterns), weight and acoustic sensors in

doorways, tag readers embedded in tables to determine the pat-

tern of tagged objects, and numerous physical objects with vari-

ous sensors, display capabilities, and tags. A representation of all

this information is projected into a higher tier, which deals with

proxies of the physical objects as widgets. Hewlett Packard’s

Cooltown seeks to provide an infrastructure for building applica-

tions using many such instrumented devices interfacing to vari-

ous PDAs and mobile computers.
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sequently, we cannot realize long-lived
autonomous systems by simply streaming
all the sensory data out of the nodes for
processing by traditional computing ele-
ments. Rather, computation must reside
alongside the sensors, so that we can
process time-series data locally. Instead of
building a network of sensors that all out-
put high-bandwidth bit streams, we must
construct distributed systems whose out-
puts are at a higher semantic level—com-
pact detection, identification, tracking,
pattern matching, and so forth.

To support such an architecture, impor-
tant systems-oriented trends are emerging.
Two important examples are self-config-
uring networks and data-centric systems.
One objective of self-configuration is to
let systems exploit node redundancy (den-
sity) to achieve longer unattended life-
times. Techniques for coordinating and
adapting node sleep schedules to support
a range of trade-offs between fidelity,
latency, and efficiency are also emerg-
ing.21–24 Ad hoc routing techniques repre-
sent an even earlier example of self-con-
figuration in the presence of wireless links
and node mobility,25 but they still support
the traditional IP model of shipping data
from one edge of the network to another.
Small form factor wireless sensor nodes
cannot afford to ship all data to the edges
for outside processing, and fortunately do

not need to operate according to the same
layering restrictions as IP networks when
it comes to application-layer data pro-
cessing at intermediate hops. Directed dif-
fusion promotes in-network processing by
building on a data-centric instead of
address-centric architecture for the dis-
tributed system or network. Using data
naming as the lowest level of system orga-
nization supports flexible and efficient in-
network processing (see the “Directed Dif-
fusion” sidebar).26

A second trend is the increased reliance
on tiered architectures in which fewer
higher-end elements complement the more
limited capabilities of widely and densely
dispersed nodes. Very small devices will
inevitably possess limited storage and com-
puting resources as well as limited band-
width with which to interact with the out-
side world. Introducing tiered architectures,
where some system elements have greater
capacity, is desirable. In a tiered architec-
ture, the smallest system elements help
achieve spatial diversity and short-range
sensing, whereas the computationally pow-
erful elements implement more sophisti-
cated and performance intensive processing
functions, such as digital signal processing,
localization, and long-term storage. These
higher-tier resources could include robotic
elements that traverse the sensor field, deliv-
ering energy to depleted batteries, or that

compute localization coordinates for ad hoc
collections of smaller nodes. 

Where are we headed?
As we embark on Weiser’s vision, we are

discovering that the ability to form net-
works of devices interacting with the phys-
ical world opens broad avenues for infor-
mation technology beyond the highly
connected responsive home or workspace.
We foresee thousands of devices embedded
in the civil infrastructure (buildings,
bridges, water ways, highways, and pro-
tected regions) to monitor structural health
and detect crucial events. Eventually, such
devices might be tiny enough to pass
through bodily systems or be usable in
large enough numbers to instrument major
air or water flows. In the nearer term,
embedded sensor networks can funda-
mentally change the practice of numerous
scientific endeavors, such as studies of
complex ecosystems, by providing in situ
monitoring and measurement at unprece-
dented levels of temporal and spatial den-
sity without disturbing the complex sys-
tems under study.27

The tremendous progress toward minia-
turization means that we can put instru-
ments into the experiment, rather than con-
ducting the experiment within an
instrument. For the laboratory, this means
wireless sensors for measurement and log-
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D irected Diffusion was designed to promote adaptive, in-net-

work processing in wireless sensor networks. In Directed Dif-

fusion, sensors publish and clients subscribe to data. Both identify

data by attributes such as “the southwest” or “acoustic sensors.”

Diffusion divorces data identity from node identity. To do this, it

uses a simple typing mechanism and encoding of attribute-based

naming with simple matching rules. Names are sets of attributes,

each a tuple, including keys, values, and operations.

As an example, the query, “sensor EQ seismic, latitude GT 100,

latitude LT 101” would trigger a sensor with data tagged, “sensor

IS seismic, latitude IS 100.5.” Matching is not meant to be a gen-

eral-purpose language. User-provided code or filters can be dis-

tributed to the sensor network to perform application-specific, in-

network processing tasks such as data aggregation, caching, and

collaborative signal processing.1

Directed Diffusion was designed and implemented by researchers

at the University of Southern California’s Information Sciences Insti-

tute and is now used by multiple research projects to support col-

laborative signal processing applications as part of the DARPA

SenseIT program. Directed Diffusion is supported under Linux

and runs on off-the-shelf embedded PC devices. A constrained

subset of Diffusion runs under TinyOS on the University of Califor-

nia, Berkeley’s motes described earlier in this article.These imple-

mentations support a common API, which has been used by Cor-

nell, BAE Systems, Xerox PARC, and Pennsylvania State University

collaborative processing applications run in experimental field tri-

als. Diffusion is also supported in the widely used ns-2 network

simulator and supports APIs identical to the Linux

implementations.
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ging every test tube and beaker. For the ubiq-
uitous computing environment, it means
sprinkling sensing capabilities through a
space appropriate to the activities of inter-
est, rather than conducting studies in a spe-
cially designed testbed environment. Real-
izing this dimension of Weiser’s long-term
vision will require more than dramatic
developments in hardware miniaturization.
It will require system-level advances includ-
ing the programming model, closed loop
control, predictability, and environmental-
compatibility. 

We first need a system-wide architecture
that supports interrogating, programming,
and manipulating the physical world.
Some of these systems will require exten-
sive in-network compression and collabo-
rative processing to exploit the spatial and
temporal density of emerging systems. One
emerging characteristic of such an archi-
tecture is the shift to naming data in terms

of the relevant properties of the physical
system instrumented—naming data instead
of nodes.26,28 Many systems will be orga-
nized around spatial and temporal coordi-
nates. Given a tuple-space for the instru-
mented environment, we’ll need a pro-
gramming model for the computations dis-
tributed in time and space. Various models
are under consideration and alternatively
view the system as a distributed database
or a loosely coupled parallel computing
structure.29

Increasingly, physically embedded sys-
tems will need to self-organize. Self-orga-
nization, particularly spatial reconfigura-
tion, is needed to address variability at
multiple scales. An interesting (and unique)
aspect of the interaction with the physical
world is the ability to manipulate it.
Although today’s systems are built with self-
configuration in mind, in the longer term,
these systems must integrate manipulation

and reconfigure themselves and the world
in which they are embedded. Closed-loop
control will be contained in the distributed
system and is a formidable challenge due
to the inherent stochastic communication
delays in such systems. 

As the systems become increasingly
autonomous and grow to include actua-
tion, the need for predictability and diag-
nosability will be a critical stumbling block.
Weiser’s vision requires these systems ulti-
mately to disappear into the environment,
but they must do so while operating cor-
rectly. Users will not rely on them if they
do not degrade with predictable behaviors
or if they do not lend themselves to intu-
itive diagnosis, which comes with the abil-
ity to develop mental models.6

There is the potential for damage or
intrusion on the spaces instrumented. Two
examples whose risks are evident today 
are the violation of personal privacy through

lack of anonymity in instrumented spaces
and the generation of “space garbage” by
leaving behind depleted nodes in the envi-
ronment. Techniques for anonymity-pre-
serving systems and for harvesting energy
from the environment are enabling tech-
nologies, but such issues ultimately require
social and legal policy.

Moving into a ubiquitous
computing world calls for
the computing community
to embrace interdiscipli-

nary approaches and to transform the edu-
cational process to enable deep interdisci-
plinary advances. Interfacing to the physical
world is arguably the single most impor-
tant challenge in computer science today.
The frontier of almost any traditional CS
subdiscipline is in this area. Examples of
the disciplines involved include network-

ing, operating system, databases, artificial
intelligence, virtual reality, and signal pro-
cessing.3 An implication of this area’s inter-
disciplinary nature is the need for upgrad-
ing training of our students at both the
undergraduate and graduate levels. Stu-
dents need skills that extend beyond con-
structing complex programs to manipulate
virtual objects. They need the ability to
understand and model physical world
processes that they will have to measure
and with which they will have to cope.6
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As the systems become increasingly 

autonomous and grow to include actuation, the

need for predictability and diagnosability will be

a critical stumbling block.
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