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Abstract

In this paper, we focus on a control based surveillance application using a wireless sensor network

in which information from the network is used to actively guide a mobile agent leading to eventual

pursuit of one or more evaders in a large region. We adopt a co-design approach in which the application

strategy for pursuit control is designed hand-in-hand withthe network protocols resulting in guaranteed

system performance. We exploit distance sensitivity as a locality concept in designing a scalable pursuit

control system. Specifically, we show that eventual pursuitis satisfied if information about an evader

is available to the pursuing agent with error, latency and frequency that decrease linearly with distance

from the evader. Then, we design network algorithms for delivering snapshots of the system that satisfy

these distance sensitivity properties. Finally, we close the loop by showing how the network snapshot

service can be instantiated to satisfy the requirements of the pursuit control application.

I. INTRODUCTION

Over the past decade, wireless sensor networks have been used in many surveillance applica-
tions for collaboratively tracking objects of interest in alarge secured area [1]–[4]. Most of

these surveillance applications have been monitoring based, where information conveyed by the

network is used to observe the activities of tracked objectsand classify them into different
types. In this paper we focus on a control based surveillanceapplication in which information

from the network is used to actively guide a mobile agent leading to eventual pursuit [5]–[8].

Specifically, we consider a distributed tracking application where one or more pursuer agents
are required toeventuallycatch one or more evaders in a large region. An underlying sensor

network is deployed in the region to detect and track the pursuers and evaders in the network.

The tracking application executes on the pursuer object anduses the sensor network to get the
desired information about the evader objects.

Designing pursuit control applications using a sensor network is a challenging task because the
target track information has to be acquired and communicated over multiple hops on an unreliable

wireless medium prone to collision and fading effects. Therefore information can be error-prone,

can have unpredictable delays or even be lost. To address this challenge, we adopt a co-design
approach in which the application strategy for pursuit control is designed hand-in-hand with

the network protocols resulting in guaranteed system performance. Such a co-design is needed

because there exists a tension between the application requirements and what the network can
supply. In case of the eventual pursuit application, if the pursuer agents have perfect information
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about the entire network instantaneously, designing the control strategy becomes simple. However
imposing such a requirement on the wireless network will result in a lot of contention and

therefore end up decreasing the overall system performance. Therefore, the application needs to

identify weaker network requirements that still result in provable convergence properties. These
conditions impose a specification for the network layer in terms of network abstractions and

these abstractions have to be implemented using appropriate middleware services. In this paper

we follow this co-design approach for the eventual pursuit tracking application and make the
following contributions.

Contributions: (1) Given that obtaining perfect information about all objects is infeasible using
a wireless sensor network, we first determine sufficient conditions on the error, latency and rate

of information about the evader being tracked in order to satisfy eventualcatch. Specifically, we

show thateventualcatch is satisfied if the error in the estimate of distance to the evader decreases
linearly with distance between pursuer and the evader, if the rate at which this information is

supplied to the evader decreases linearly with distance andif the staleness in the information

supplied decreases linearly with distance, where the constants of proportionality depend on the
relative speeds of the pursuer and the evader. (2) We capture the requirements on latency, rate and

error imposed by the application on the network as three different network abstractions namely

distance sensitive -latency, -rate and -error respectively. In order to implement these abstractions,
we design a middleware service that periodically delivers the global snapshot of the system to

all nodes in the network where the snapshots satisfy the required distance sensitivityproperties.

(3) We complete our co-design by showing how system performance can be maximized by
adapting the network snapshot service to changing application requirements.

(a) (b)

Fig. 1. (a)The objective of the pursuit control system is for the pursuer object tocatchone or more evader objects
in the system. The pursuer object is guided towards the evader using information provided by a multi-hop wireless
sensor network. (b) The pursuit control application runs onthe pursuer object and is co-designed with the wireless
sensor network. Sufficient conditions for information delivery by the wireless sensor network are determined that
satisfy pursuit control requirements. These conditions are represented by a network abstraction, namely distance
sensitivity. A wireless sensor network service is then designed to implement this abstraction.

Related work: The mathematical theory of differential games has been applied to pursuit-

evasion games and have been extensively studied over the past several decades [9]–[13], starting
with a seminal work by Issac [14]. Pursuit-evasion games have been traditionally modeled as
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continuous state perfect information systems in which the global state of the game is available
to the players with no delays. By way of contrast, in this paper we study pursuit control in a

network with communication constraints.

In [15] and [16], pursuit-evasion game applications using sensor networks have been explored

and a series of algorithms are devised to coordinate the pursuers so as to minimize the time-to-

capture of all evaders. Sensor network measurements are assumed to be fused at local stations
to produce track information [17]. Evader assignment and pursuer control strategy are calculated

at the base station and then communicated to the pursuer agents. However network effects such

as latency and loss in communicating this information to thepursuer agents are not considered.

Caoet al [6], [7] have characterized the conditions on network latency and information update

periods required to achieve an optimal tracking by modelingthe application as a differential
game and obtaining Nash equilibrium conditions for pursuerobjects tocatch evaders as far

away from an asset as possible. In this paper, apart from latency and update periods, we also

take into account the impact of error or loss in resolution ofthe information on pursuit control.

There has been a lot of interest in Graph Laplacian based techniques for distributed estimation

and tracking using sensor networks [18], [19]. The focus of these papers has been on designing
distributed Kalman filters for estimation in sensor networks by local exchange of messages. The

building blocks for these Kalman filters are consensus filters that calculate the average sensor

measurement after every iteration which is then fed into theKalman filter [18]. A significant
difference in our model for tracking objects is that we do notseek consensus. In our model for

tracking, pursuer objects use the global state to make theirdecision and execute their next step;

however they do not wait for a synchronized, unique global state. Each pursuer receives a global
snapshot of the system in which the staleness (and error) in the state of each node is different.

Yet we obtain sufficient conditions for the tracking application to meet its requirements.

Communicating periodic global state snapshots is a well studied problem in distributed systems

[20] and consistency, timeliness and reliability have beenthe main design considerations in

those studies. But efficiency becomes essential when considering periodic snapshots for resource
constrained wireless sensor networks. To the best of our knowledge algorithms for delivering

periodic snapshots across a wireless sensor network have not been studied before. Recently,

fractional cascading has been used for sensor networks as anefficient storage mechanism [21],
[22]. Data is first stored at multiple resolutions across thenetwork, which is then used to

efficiently answer aggregate queries about a range of locations without exploring the entire area.

In contrast, we have considered a model where information isgenerated and consumed on an
ongoing basis. Accordingly we describe push based servicesthat regularly deliver to subscribers

snapshots of the network in a pipelined manner. By providingsnapshots with not just distance

sensitive -error but also -latency and -rate, we achieve compression and thereby efficiency.

Outline of the paper: In Section 2, we derive the sufficient conditions for successful pursuit (that

result in eventual catch) and translate these to network abstractions. In Section 3, we describe
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a snapshot service for wireless sensor networks that implements these network abstractions. In
Section 4, we show how the snapshot service can be adapted to pursuit control requirements.

In Section 5, we highlight the robustness of our snapshot service using simulations in JProwler.

We conclude in Section 6 and point directions for future work.

II. PURSUIT CONTROL DESIGN

Application model: One or more pursuer objects are required toeventuallycatch all evader
objects spread over a bounded region. The pursuer objects are assisted by a wireless sensor

network that provides the state (location) of evader objects to the pursuer objects. We assume

that every pursuer is assigned to track at most one evader at atime. The pursuit controller
resides in each pursuer object and uses the evader location provided by the sensor network to

converge on the evader’s location. In our analysis, we consider the case where one pursuerp has

been assigned to an evadere and this assignment holds until the evader is caught. Note that an
eventual catch in this scenario is sufficient to show that allevaders will be eventually caught. A

catch is said to occur when when the distancedpe between a pursuerp and an evadere assigned

to p is smaller than a constantε.

We assume the existence of a reliable object detection and association service that assigns a

unique identifier to every object in the network. The problemof detecting objects in the network
and uniquely associating them with previous detections is orthogonal to the problem of supplying

this information in a timely and reliable manner for pursuitcontrol and guaranteed convergence,

which is the focus of this paper. Detection and association services can be implemented in a
centralized [5] or distributed [23] fashion; the latter approach would suit integration with the

distributed pursuit control strategy that we discuss in this paper.

System dynamics: Let the pursuer and evader speeds be constant, denoted byvp and ve

respectively. LetXp(t) denote the location[xp(t), yp(t)]
T of a pursuer at any timet. Let up(t)

denote the control action executed by a pursuer at timet that dictates the direction of motion
at time t (since speed is constant). Thus, we have

Ẋp(t) = up(t) (1)

Similarly let Xe(t) denote the location[xe(t), ye(t)]
T of a pursuer at any timet. Let yp(t) denote

the state of the evader that is supplied to the pursuer at timet by the underlying sensor network

service. In our model, these updates are provided only at certain instants of time and let{Tk}

denote the set of times when a new update is available to a pursuer. At all times that an update

is available, note thatyp provides an estimate of the evader’s location at that time because the

network delivers the state with certain latency and error. At other times,yp reflects the evader’s
location at the last time that an update was available. Thus,we have,

yp(tk) = X̂e(tk) (∀tk ∈ {Tk}) (2)

yp(tj) = X̂e(tj−) (∀tj /∈ {Tk}) (3)
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In Eq. 3,tj−, corresponds to the largest timestamp, less than or equal totj, that belongs to{Tk}.

The pursuit control strategy (up(t)) is simply to move along a straight line towards the most

recent available location of the evader with a speedvp. At all times tk ∈ {Tk}, the pursuer

changes its trajectory towards ˆXe(tk) and at other times continues on the straight line towards
the previous estimate. Let<

−−→
P, Q > denote the unit vector in the direction from pointP to

point Q. Thus, we have:

up(tk) = vp(<
−−−−−−−−−→
Xp(tk), X̂e(tk) >) (∀tk ∈ {Tk}) (4)

up(tj) = vp(<
−−−−−−−−−−→
Xp(tj), X̂e(tj−) >) (∀tj /∈ {Tk}) (5)

Let dpe(t) denote the distance between the pursuer and evader at timet. Let δ(t) denote the
staleness in the state ofe supplied top at time t. Let I(t) denote the maximum interval after

time t at which location ofe can be provided top. Let α = vp

ve
, whereα > 1.

Theorem II.1. Evadere will be eventually caught by pursuerp if there exists constantk > α+1
α−1

and timeTo such that the following conditions hold at allt > To:

G1 : |Xe(t) − X̂e(t)| < dpe(t)
k

G2 : δ(t) < (dpe(t)

ve
)(1 − α+k+1

kα
)

G3 : I(t) < dpe(t)(
k+1
kvp

)

Proof:

Consider timet > To, such thatt ∈ {Tk}. If the maximum error in the location of the evader is

denoted asdpe

k
(where conditions onk are yet to be derived), the actual locationXe of evadere

at timet is within a ball of radiusdpe(t)
k

around ˆXe(t). Therefore, the maximum distance between
Xp(t) and ˆXe(t) is bounded by the following inequality.

dist(Xp(t), X̂e(t)) < dpe(t)(
k + 1

k
) (6)

At time t, the action of the pursuer is to move towardŝXe(t). Let us assume that next information
about the evader is available top only after reaching ˆXe(t). It follows using Eq. 6 that this interval

(I(t)) is equal to the maximum time taken to travel fromXp(t) to ˆXe(t) and is bounded by the

following inequality.

I(t) < dpe(t)(
k + 1

kvp

) (7)

Note that there is a staleness ofδ(t) in the information about the evader available at timet.

Additionally, a timeI(t) is taken to travel towards the estimated location. During these times, the
evader can change its location with a speed ofve. Using Eq. 7, we have the following inequality.

dpe(t + I(t)) < vedpe(t)(
k + 1

kvp

) +
dpe(t)

k
+ veδ(t) (8)

In order for eventual catch, we require thatdpe(t+I(t)) < dpe(t). Using this, we get the following

inequality.
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δ(t) < (
dpe(t)

ve

)(1 −
α + k + 1

kα
) (9)

Note that forδ(t) > 0, we require thatα+k+1 > kα. Using this we get the following equation:

k >
α + 1

α − 1
(10)

Thus, we have shown that conditionsG1, G2 andG3 of Theorem II.1 and Eq. 10 are sufficient
for the distances between pursuer and evader to monotonically decrease at each successive time

instant belonging to set{Tk} and to eventually reachε. We now determine the time required for

eventualcatch.

Lemma II.2. Let D0 denote the initial distance between the pursuer and evader at time t0 :

to ∈ {Tk}. If conditions for eventualcatchspecified in Theorem II.1 are satisfied, then the time,

τc, required by a pursuer to eventually catch an evader is bounded by the following inequality.

τc <
D0(k + 1)

kvp

logθ(
D0

ε
) (11)

Proof: Let θ denote the ratio of distance between pursuer and evader in two successive time

instants that belong to set{Tk}. Using Eq. 8 and Eq. 9, we have:

θ =
dpe(t)

dpe(t + I(t))
>

1
k+1
kα

+ 1
k

+ 1
ve

− α+k+1
αkve

(12)

Recall that acatch is said to occur when when the distance between pursuer and evader reduces

to ε. Hencelogθ(
D0

ε
) such update intervals will be needed to reduceD0 to ε. Noting from Eq. 7

that I(t0) < D0(k+1)
kvp

, we get Eq. 11.

III. D ISTANCE SENSITIVE SNAPSHOT SERVICE

In this section, we design a network middleware service thatcan be used for supplying informa-
tion about evader objects to pursuer objects while meeting the sufficient conditions for pursuit

control stated in Theorem II.1.

A. Distance sensitive snapshots
Definition III.1 (SnapshotSV ). A snapshotSV : V → <×< of a set of nodesV is a mapping

from each nodei ∈ V to a state value (X ∈ <) and a timestamp (t ∈ <) associated with that

state value.

Let Xi(S
V ) denote the state of nodei ∈ V in snapshotSV and letti(SV ) denote the timestamp

of the state of nodei ∈ V in snapshotSV . A consistent snapshot [20] is one where the

timestamps associated with the state of each node in the network are the same. In order to be

feasible to implement in a resource constrained wireless sensor network, we relax the consistency
requirement for a snapshotSV along the dimensions of latency, error and periodicity of delivery.

June 13, 2011 DRAFT



7

Let τ denote the current time. Thestaleness(γi(S
V )) of the state of nodei in snapshotSV is

defined as:γi(S
V ) = τ − ti(S

V ), wherei ∈ V . We now consider a generalization where state

values do not necessarily correspond to the same instant of time but their staleness enjoys a

distance sensitive property. Letd(i, j) denote the distance between nodesi andj in the network.

Definition III.2 (Snapshots with distance sensitive latency). A snapshotSV received by a node

j hasdistance sensitive latencyif γi(S
V ) = O(d(i, j)) ∀i : i ∈ V

Definition III.3 (Snapshots with distance sensitive error). A snapshotSV received by a nodej

has distance sensitive errorif ei(S
V ) = O(d(i, j)) ∀i : i ∈ V , where (ei(S

V )) is the error of

the state of nodei in snapshotSV .

Definition III.4 (Snapshots with distance sensitive rate). A nodej receives a snapshotSV with

distance sensitive rateif ζi = O(d(i, j)) ∀i : i ∈ V whereζi is the rate at which state of node

i is updated in the snapshotSV is received byj.

Note that the concept of distance sensitive rate is orthogonal to that of distance sensitive latency.

In the latter staleness in the state received decreases withdistance but fresh information arrives

at the same rate at all nodes, where as in the former, the stateof nearby nodes is reported more
often than farther nodes. For reasons of exposition, in thispaper we present a version of the

algorithm (hereby referred to asDSS) that provides snapshots which are distance sensitive in

latency and error, and then updates these snapshots at the highest rate for all nodes. We note
that, in order to meet the requirements of the pursuit control application, it would have been

sufficient to progressively decrease the update rates at larger distances. The refinement to DSS

that adds distance sensitivity in rate can be found in [24].

B. Network model

We consider a sensor network consisting ofN nodes that induce a connected network where
each node can communicate atW bits per second. Nodes are assumed to know their geographic

location. Let V denote the set of nodes in the network. The nodes may have an irregular

communication range and may be arbitrarily deployed in a bounded region. Nodes are assumed
to be synchronized in time. Letm denote the number of bits allocated to represent the state of

each node in the network.

DSSdepends on an underlying hierarchical partitioning of the nodes into clusters of increasing

sizes and the implementation of a tree data structure for routing on those clusters. We partition

the network into a hierarchical one with a number of levelsLmax = O(log(N)) with the clusters
at level0 representing the individual nodes in the network. In order to provide this clustering, we

use a clustering serviceFLOC [25]. The algorithm starts by first creating a1 level clustering [25]

which is then iterated with clusterheads at each new level resulting in a hierarchical clustering
[26]. The algorithm for clustering is distributed, local and finishes inO(1) time. More specifically,

the properties provided by the clustering service are listed below.
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(a) (b)
Fig. 2. (a) Hierarchical clustering for a regular grid network. Allclusters at a given level are of same size (given by
propertyC2). (b) Hierarchical clustering in a network withholes, non-uniform density and irregular communication
range. All clusters at a given level have a minimum size (given by C2), but nodes beyond that minimum distance
and up to a maximum distance (specified byC3) from the clusterhead can belong to the same cluster in orderto be
locally self-stabilizing. All distances correspond to communicationhop distances as radio range may not be same
for all nodes. Level1 clusterheadA and its7 neighboring level1 clusterheads are shown in the Figure. All nodes
with 1 hop of the clusterhead belong to the cluster and nodes that are 2 hops from the clusterhead may belong to
the cluster.

C1 : A unique node is designated as clusterhead at each level.

C2 : All nodes within distance3
r−1
2

from a levelr clusterhead belong to that cluster.

C3 : The maximum distance of a node from its levelr clusterhead is3r − 1.

C4 : There exists a path from each clusterhead to all nodes in thatcluster containing only nodes

belonging to that cluster.

C5 : At all levels r : 1 ≤ r < Lmax, there is at least one and at mostηb neighboring level

r clusters for each levelr clusterhead and there exists a path between any two neighboring

clusterheads.

We note that such a clustering can tolerate the addition and deletion of nodes in the network in

O(1) time and in alocally self-stabilizingmanner by which the changes to the clustering are
contained within a constant distance from the location of the added or deleted node and do not

propagate network-wide causing a global reassignment of clusters and clusterheads. In order to

maintain the local self-stabilizing properties in the presence of node additions and deletions, it is
shown in [25] that we cannot impose a requirement on cluster sizes at given level to be exactly

the same. A factor of2 in the allowable cluster size is necessary to ensure that anychanges

in topology are resolved in a local manner. This is reflected in propertyC3 of the clustering
service. Thus all nodes within distance3r−1

2
from a levelr clusterhead are required to belong

to that cluster but the maximum distance of a node from its level r clusterhead can be3r − 1.

Let η0 denote the maximum number of level0 nodes within a level1 cluster. By default, the

distances stated in propertiesC1 − C5 denote communication hop distances. In Fig. 2(a), we
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show an example of the clustering for the scenario where the network contains uniformly spaced
nodes with equal communication range and separated by a one hop communication range (which

we hereby refer to as a regular grid network). In this scenario, all clusters belonging to the same

level are of the same size, each cluster at a given level has exactly 8 neighbors at that level,
and the distances in propertiesC1 − C5 reduce to geometric distances. In Fig. 2(b), we show

an example of the clustering within a single level when the network radio range is irregular and

may contain regions of higher and lower density. In this case, FLOC does not yield clusters
of the same size any more. Instead there is a minimum and maximum size for each cluster as

indicated by propertiesC2 and C3. Moreover, the distances stated in propertiesC1 − C5 are

now hop distance (as radio ranges may be non-uniform and nodes are not equi-distant) and not
necessarily geometric distance.

Fig. 3. Illustrating level1 tree rooted atj. The level1 tree at

j spans all level0 members inj’s level 1 cluster and all its

neighboring level1 clusters.

Let j.L denote the highest level for which
j is clusterhead. Lethr

j denote the clus-

terhead for nodej at levelr. Thushr
j =

j(∀r : 0 ≤ r ≤ j.L). Let {N r
j } denote

the set of neighbors for nodej at level

r. Note that by propertyC5, there are

at most ηb neighbors at each level for
each node in the network. We implement

virtual trees on the clusters at each level.

Let tree(r, j) denote a levelr tree formed
with j as root and spanning all nodes in

the levelr cluster ofj and all levelr clusters that are its neighbors. Letj.in(r, y) denotej’s

parent towards rooty on tree(r, y). Let j.out(r, y) denote the set ofj’s descendants ontree(r, y).
Let M(r, j) denote the levelr summary computed by a levelr clusterheadj. In Fig. 3, a level

1 tree rooted atj is shown as an illustration for a grid network.

C. Algorithm for distance sensitive snapshots

We present the algorithm for distance sensitive snapshots by first describing three building blocks

for DSS: (1) aggregation, (2) scheduling and (3) storage. We then use these building blocks to
present the actions executed at each node.

1) Aggregation: In this subsection, we describe how the location of objects being tracked is
encoded in the state of individual nodes in the network and how this information is aggregated

at higher levels in the hierarchy. Letne denote the number of objects in the network, numbered

from 1, .., ne.

An objecte is said to reside at nodei if object e is closest to nodei compared to all other nodes

in the network and nodei is then responsible for encoding the location ofe. Accordingly, the area
over which the network is deployed is divided into Voronoi cells with each node responsible for
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encoding the location of objects within its own cell. LetΨi denote the Voronoi cell corresponding
to nodei. Each nodei then dividesΨi into g equi-sized regions. If an objecte lies within Ψi,

then nodei marks the location ofe as one of theg regions anddlog2(g)e bits are used to encode

the location. Thus, the state of each nodei in the network at a given time consists ofdlog2(g)e

bits per object in the network and contains the location of anobject if the object resides at

i. A total of m = ne(dlog2(g)e) bits are allocated to represent the state of each node at any

instant. The number of regions (g) used to represent the location of an object within a cluster
corresponds to the granularity of an object’s location within a cluster. For instance, ifg = 1,

then only the presence or absence of each object within a cluster will be known by this encoding

strategy, but the error in the location of the object provided by a levell clusterhead will be equal
to the maximum radius of a levell clusterhead as the object can be anywhere in the cluster.

Fig. 4. Aggregation: The evader (shown as star) is located in

one ofg = 9 regions in areaAl,j by levell clusterheadj. At the

next level in the hierarchy, clusterheadk marks the location of

the evader as one ofg = 9 larger regions insideAl+1,k, giving

rise to an error in location that is proportional to cluster size.

At higher levels in the hierarchy, a clus-
terheadj at each levelr : 0 < r ≤ Lmax

is responsible for aggregating the location

of all objects that lie within the area
enclosed by the Voronoi cells of all level

0 nodes in its cluster at levelr, and we

denote this area asAr,j . To perform this
aggregation, each clusterheadj divides

Ar,j into the same number of regions

g. The aggregation function at a level
l clusterhead then maps the location of

an object from one of theηbg regions

provided by theηb neighboring levelr−1

clusterheads into one of theg regions of

the levelr cluster.

Computing M(r,j) at node j : j.L > 0, where 0 < r ≤ j.L

for each y such thaty ∈ {Nr−1

j }
for each object e such thatMe(r − 1, y) 6=⊥

Me(r, j) = Ar,j / Me(r − 1, y)
end for

end for
for each object e such thatMe(r − 1, j) 6=⊥

Me(r, j) = Ar,j / Me(r − 1, j)
end for

Fig. 5. Aggregation functionAF .

Let Me(r, j) denote the location of an object

e in a level r summaryM(r, j) computed by

nodej. Let Me(r, j) =⊥ if e does not lie within

Ar,j. Note thatMe(r, j) will correspond to one
of g regions withinAr,j if Me(r, j) 6=⊥. Now

consider areaAr+1,k corresponding to a cluster-

headk at levelr+1 such thatAr,j ⊂ Ar+1,k. Let
Ar+1,k / Me(r, j), denote one of theg regions

within Ar+1,k that contains the centroid of the regionMe(r, j). In Fig. 5, we state the aggegation

function AF , that computes the next higher level aggregateM(r, j) using the summaries
M(r − 1, y) computed by the levelr − 1 neighbors of nodej, and the levelr − 1 summary

M(r − 1, j) that is computed by nodej itself.
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Fig. 6. Transmission in each round is divided into 3 phases. At the end of each round, information is exchanged
between neighboring level1 clusterheads. (a) Phase 0 corresponds to slot 0. Nodes withj.L > 0 compute the
summaries of clusters for which they are leaders and transmit these to descendants on the respective trees. They
also forward information received in previous round on trees that they belong to but are not the root, and forward this
information to descendants on the respective trees. (b) In phase1 all level 0 nodes take turns to transmit information
heard in phase0 to descendants on all trees that they belong to. This resultsin information propagating outwards
from the level1 cluster that they belong to. (c) In phase2 all level 0 nodes take turns to transmit information
heard in phase1 to descendants on all trees that they belong to. This resultsin information coming inwards to their
respective level1 clusterheads.

We note that at higher levels of the hierarchy, information is aggregated into the same number

of bits m, and error in the location of an object being tracked increases (proportional to the

maximum size of a cluster). We now state the following proposition.

Proposition III.1. The error in the state of a nodei in a level r summary corresponds to the

maximum error in encoding the location of any object residing at i in a levelr summary and is

bounded byO(3r).

2) Schedule: We schedule the nodes to transmit in rounds. Around is defined as a unit of time
in which information is exchanged between a level1 clusterhead and all of itsηb neighboring

level 1 clusterheads. Each round is divided into multiple slots in3 phases (illustrated in Fig. 6).

In the first slot (phase0), all nodes withj.L > 0 transmit. In the remaining slots, all level0

nodes in each cluster transmit twice, once in each phase. Thesecond transmission by a node

within a round (phase2) takes place after all its neighbors have transmitted at least once. The

messages that are transmitted during these slots are statedin Fig. 7. A simple non-interference
schedule that satisfies these constraints in a grid network (with 8 neighbors per node) is one

where all level0 nodes take turns. In general, each round will consist of a constant number of

slots,ηs that depends on the schedule chosen.

3) Local storage: The snapshot received by a nodej at the end of each round consists of

M(x, y) received by nodej in that round for eachx, y such thatj ∈ tree(x, y). Each node
stores only the most recent snapshot. Thus each nodej’s local storage contains the following

summaries:

• M(x, hx
j ) (∀x : 0 ≤ x ≤ Lmax)

• M(x, y) (∀x, y : (0 ≤ x ≤ Lmax) ∧ (y ∈ Nx
j ))
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4) Actions at each node:

In this subsection, we describe the actions executing at each node. These actions are stated in

Fig. 7. In slot0 of each round nodes withj.L > 0 compute the aggregateM(r, j) for each level
r that they are a clusterhead of based on the levelr−1 aggregate received in the previous round,

using the aggregation function described previously. The computed aggregate at each levelr is

then transmitted to the descendants on the respective tree rooted atj, i.e.,j.out(r, j). In addition,
for eachtree(x, y) that j belongs to but is not a root of,M(x, y) heard in previous round from

j.in(x, y) is transmitted toj.out(x, y). In their respective phase1 and phase2 slots, nodes at

level 0 simply transmitM(x, y) as heard in the previous phase of that round fromj.in(x, y) to
j.out(x, y).

Actions for node j : j.L > 0
In slot 0 of each round:

∀r : 1 ≤ r ≤ j.L
Compute:M(r, j) usingAF
Send:M(r, j) → j.out(r, j)

∀x, y : j ∈ tree(x, y)
Send:M(x, y) → j.out(x, y)

Actions for node j : j.L = 0
In each transmission slot forj determined by the scheduling block:

∀x, y : j ∈ tree(x, y)
Send:M(x, y) → j.out(x, y)

Receive Actions at nodej
Upon receivingM(x, y) from nodei

StoreM(x, y) if i = j.in(x, y)

Fig. 7. Actions at each node inDSS for distance sensitive snapshots.

Thus, aggregates computed at each level
are transmitted outwards to descendants

along a tree. This is sufficient for a level

r node to compute aggregates from level
r − 1 nodes, because a tree at levelr − 1

extends up to all level0 nodes in neigh-

boring levelr−1 clusters. And one of the
neighboring levelr − 1 node is a levelr

node. Thus, when a computed aggregate

by any node is being dispersed to nodes
in its own cluster and the neighboring clusters, it is also being sentin to a higher level node to

compute an aggregate. In Fig. 3, nodesp and q are level2 clusterheads. Note that the level1

tree rooted atj reaches the level2 clusterheadq that j belongs to. We now analyze the latency
and error in the snapshots provided byDSS.

D. Analysis

Let sw denote the duration of each transmission slot in algorithm DSS. Let j.γi denote the

staleness in the state of a nodei in the snapshot delivered by algorithm DSS at nodej.

Theorem III.1. In DSS, j.γi = O(d) whered = dist(i, j).

Proof: Consider a nodep at levelr. To compute a summary at levelr, level r− 1 summaries
are needed. The maximum distance betweenp and its neighboring levelr−1 clusters is2(3r−1)

(From propertyC3). Thus, a levelr summary is computed based on a levelr− 1 summary that

was generated2ηssw3r−1 time ago, since latency between each pair of level1 nodes (length of
a round) is ηs slots. A levelr − 1 summary is computed based a levelr − 2 summary, and so

on until level0. Upon summation, we see that the staleness of a level0 (individual node) state

information in a levelr summary bounded byηssw3r. Now, the maximum distance traveled by
a level r summary is3r+1 and the latency is bounded byηssw3r+1. Therefore, the maximum
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total staleness in the state of any nodei in a level r summary is bounded by4ηssw3r. Now,
the minimum distanced betweenj and i for which a levelr summary is the smallest level

that contains information abouti is 3r−1. Expressing the maximum staleness in terms of the

minimum distanced, we get the following equation:

j.γi = 12ηsswd = O(d) (13)

Theorem III.2. In DSS, the error of state of a nodei in a snapshot received at nodej is O(d)

whered = dist(i, j).

Proof: Recall from propositionIII.1 that the maximum error in the state of a nodei provided

by a levelr clusterhead is bounded byO(3r). The minimum distance betweeni andj at which
j gets a levelr summary ofi but not a levelr − 1 summary ofi is 3r−1. Thus, the error in the

state ofi in a snapshot received atj is O(d), whered = dist(i, j).

Thus DSSprovides snapshots at each node that satisfy properties of distance sensitive latency

and error. These snapshots are updated at each node for all levels at a regular rate with an

interval of oneround length (ηssw).

Theorem III.3. In DSS, the average communication cost in the network to deliver a snapshot

of one sample from each node to all nodes isO(N ∗ log(N) ∗ m).

Proof: Consider a nodej at any levelr, where0 ≤ r ≤ Lmax. FromC5, we note that at most

ηb trees at levels1..Lmax can pass through each node whereLmax = O(log(N)). There are at
most η0 neighbors forj at level 0 and so at mostη0 level 0 trees can pass throughj. Hence,

the maximum message length needed per slot in algorithmDSS is O(mlog(N)) bits.

To deliver a snapshot with a sample from each node, every nodethus communicatesO(m ∗

log(N)) bits N times. And to deliver a snapshot withy samples from each node, every node

communicatesO((N + y) ∗ (m ∗ log(N))) bits, since all they samples are pipelined. Hence, if
y is large andy = Ω(N), the average communication cost at each node to deliver a snapshot of

a sample from each node to all nodes isO(m ∗ log(N)). The average communication cost over

N nodes isO(N ∗ (m ∗ log(N)).

Note that if y is small, for instance, if there is only one sample from each node, then the

communication cost isO(N ∗n∗ (m+ log(n/m)). Pipelining the delivery of snapshots improves
the average communication cost toO(N ∗ (m ∗ log(n)).

Theorem III.4. In DSS, the memory requirement per node isO(log(N) ∗ m) bits.

Proof: Recall that the data structure maintained at each node is themost recent value of

M(x, y) received byi for eachtree(x, y) that i belongs to. Nodes do not buffer information
to be forwarded over multiple rounds. The maximum number of trees through any node is
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O(log(N)), with m bits of information flowing along each tree. The result follows.

E. Adding distance sensitivity in rate

In order to add distance sensitivity in rate, we make the following refinement to algorithmDSS

(which we denote as algorithmDSSR). Consider a level0 node withj.L = r. A level r summary

is computed by this node once every3r rounds based on the most recent levelr − 1 summaries

it receives. Instead of transmitting this summaryM(r, j) in one round, it is now transmitted
in slot 0 of each round withmax(1, m

3r ) bits per round. Thus, a levelr summary is sent over

min(3r, m) rounds. The actions for forwarding nodes remain the same except for the change

that each node now only receives a fraction ofM(x, y) in every round for eachtree(x, y) that
it belongs to, and it forwards only that fraction in the next round. This refinement (Algorithm

DSSR) improves the energy efficiency of the snapshot servicewhile decreasing the periodicity

of updates linearly with distance. Below, we state results on latency and rate when using this
refinement.

Let j.νi denote the interval between two successive updates received by nodej from nodei.

Theorem III.5. In DSSR, j.νi is O(d), whered = dist(i, j).

Proof: Consider levels0 ≤ r ≤ log(m). Note that a complete levelr snapshot is sent every

3r rounds in a pipelined manner. Thus every3r rounds, a levelr snapshot is received by a node.

The time corresponding to3r rounds is3rηssw.

Recall that in order to update the local data structure ofj, the state of a nodei is updated

using summaryM(x′, y′) wherex′ is the lowest level which contains information aboutk. Now
the minimum distance betweenj and i for which a levelr summary is the smallest level that

contains information aboutj is 3r−1.

The maximum interval between when a nodej receives the state of nodei is given by the

following equation:

j.νi =
3rηssw

3r−1
× 3r−1 (14)

= O(ηs ∗ sw ∗ d) (15)

= O(d) (16)

Note that for levelsr > log(m), 1 bit is allocated per round. Thus, for all these levels, a summary
can be sent out in less than3r rounds. The maximum interval between receiving two successive

state information for those nodes whose state is obtained using summaries greater than levelr is

less than that derived in the above equation. The maximum interval between when aj receives
the state ofi is thusO(d).

Theorem III.6. In DSSR, j.γi is O(d) whered = dist(i, j).
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Proof: Consider a nodep at levelr wherer ≤ log(m). To compute a summary at levelr, level
r − 1 summaries are needed. The maximum distance betweenp and its neighboring levelr − 1

clusters is2(3r−1) (From propertyC3). Thus, the latency to travel from levelr−1 node to level

r node is given by2ηssw3r−1 time ago, since latency between each pair of level1 nodes (length
of a round) is ηs slots. Note that in this algorithm, a levelr−1 summary is actually transmitted

in 3(r− 1) rounds by dividing it into3r−1 parts. Thus, a levelr summary is computed based on

level r−1 summary that was generated3ηssw3r−1 time ago. A levelr−1 summary is computed
based a levelr−2 summary and so on until level0. Upon summation, we see that the staleness

of a level0 state information in a levelr summary is1.5ηssw3r−1.

Note that a complete levelr− 1 snapshot is sent every3r−1 rounds in a pipelined manner. Thus

every 3r−1 rounds, a levelr − 1 snapshot is received by a node. On the other hand a levelr

snapshot is computed only every3r rounds. Thus a fresher levelr−1 snapshot is always available
to compute a new levelr snapshot. Now, the maximum distance traveled by a levelr summary

is 3r+1 and the latency is bounded byηssw3r+1. Therefore, the maximum total staleness in the

state of any nodei in a levelr summary is bounded by4ηssw3r.

Recall that in order to update the local data structure ofj, the state of a nodei is updated

using summaryM(x′, y′) wherex′ is the lowest level which contains information aboutk. Now
the minimum distance betweenj and i for which a levelr summary is the smallest level that

contains information aboutj is 3r−1.

The maximum staleness in the state of a nodei at nodej is then given by the following equation:

j.γi = O(ηsswd) (17)

= O(d) (18)

Note that at levelsr > log(m), 1 bit is allocated per round. Thus, for all these levels, a summary

can be sent out in less than3r rounds. The maximum staleness for those nodes whose state is

obtained using summaries greater than levellog(m) is less than that derived in the above equation.

F. Distance sensitivity in an irregular network

In a network with non-uniform density such as the one in Fig. 2(b), the tree structure between

clusters may not yield a path between nodes that is proportional to the geometric distance
between them. However, the clustering propertiesC1 − C5 ensure that the path between two

nodes is proportional to thehopdistance or the shortest path available between the two nodes in

the network graph. This ensures that the distance sensitivity properties of the snapshot service
are preserved in terms of thehop distance as opposed to the geometric distance.
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IV. A DAPTING SNAPSHOT SERVICE TO CONTROL APPLICATION PARAMETERS

In this section, we illustrate the co-design aspect of our approach by describing how the overall
system performance can be optimized by adapting network parameters to specific application

requirements. We first provide an example of how the application parameters (specifically the

relative speeds of the pursuer and evader) can be used to decide on allowable network latency,

thus affecting the system communication cost. We then provide an example of how the application
parameters (specifically the relative speeds of the pursuerand evader) can be used to decide on

allowable network error, thereby affecting the system communication cost.

A. Adjusting slot width to match control requirements

Recall from Theorem II.1 that the allowable latency at any instant is given by Eq. 9. InDSS, the

maximum staleness in the state of an object at any instant is given by Eq. 13. Using these, the
allowable slot width forDSScan be determined as a function of the pursuer and evader speeds,

as stated in the following Lemma.

Lemma IV.1. In order for DSS to satisfy the requirements of eventual pursuit control stated in

TheoremII.1, the duration of each transmission slotsw must be smaller than 1
12ηsve

(1− α+k+1
kα

).

As evader speed decreases, we note that the requirement on the network service is relaxed and

the allowable slot width increases which consequently reduces the cost of communication. Thus

we are able to select network parameters that minimally satisfy the conditions for successful
pursuit control, enabling us to optimize overall system performance.

B. Adjusting message size at each level

Recall that inDSS, information at each level is aggregated intom = ne(log2(p) + 1) bits. The

number of regions (p) used to represent the location of an object within a clustercorresponds

to the granularity of an object’s location within a cluster.For instance, ifp = 1, then only the
presence or absence of each object within a cluster will be known by this encoding strategy,

but the error in the location of the object provided by a levell clusterhead will be equal to the

maximum radius of a levell clusterhead as the object can be anywhere in the cluster. Thesize
of m thus depends on the granularity at which an object location is represented in each cluster.

Specifically, depending on the relative speed of the pursuerand the evader, we can adjust the

number of regionsp that each cluster is divided into and meet the requirement onerror imposed
by Theorem II.1. This relation is summarized by the following Lemma for a grid network.

Lemma IV.2. In order for the DSS algorithm to satisfy the requirements ofeventual pursuit

control stated in Theorem II.1, the number of regionsp that each cluster is divided into in a

grid network must be greater than
9( α+1

α−1
)2

4
.

Proof: Since each cluster is divided in top regions and each clusterhead marks the location

of the evader as one of thep regions, if a levell information is available to the pursuer about
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evadere, then the maximum error in location is3
l

2
√

p
. If the smallest level at which information

about an evadere is available to pursuerp is l, then it must be the case thatdpe is at least3l−1.

Thus for any given distancedpe, the maximum error in location is bounded by3dpe

2
√

p
.

Recall from Theorem II.1 that ifdpe is the distance between pursuer and evader at any instant,

then the maximum error in location allowed at the pursuer isdpe

k
wherek > α+1

α−1
. Thus, we

require thatp >
9( α+1

α−1
)
2

4
.

As the ratio of pursuer to evader speed decreases, the numberof regionsp required within a

cluster at any level increases and thereforem increases. Thus, depending upon the application
parameter of relative speed, we can optimize the system communication cost.

V. SIMULATION RESULTS

In this section, we evaluate the performance of our distancesensitive snapshot services using

simulations in JProwler. The goals of our simulation are: (1) to verify the distance sensitivity

properties of information transfer in terms of latency and resolution and (2) to analyze the impact
of node failures on the latency and resolution of snapshots.

Fig. 8. Latency of information transfer measured in terms of numberof transmission slots, plotted against geometric
distance between nodes

Specifically, we consider an81 by 81 wireless sensor network, arranged on a regularly spaced
grid. A clustering service is assumed to provide each node with knowledge of its respective tree

neighbors at each level in the hierarchy. A collision free schedule is assigned to nodes by which

they take turns in transmitting. Each node is allotted a slotto transmit in every round and in
other slots it listens to messages from its neighbors. In every round, a node generates8 bits of

information that is exchanged with other nodes in the network using the snapshot algorithm.

In order to measure the latency of information exchange we pick randomly selected source

destination pairs across the network for a given distance. We measure the number of rounds for

data generated at a given instant at the source to reach the destination node at the corresponding
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(a) (b)

Fig. 9. (a)The figure shows a15 by 9 section of nodes in the network that are failed. The latency of information
transfer is measured between the node marked as source and nodes at different distances in the region marked
as destination nodes. (b) The graph shows the latency of information transfer measured in terms of number of
transmission slots in the presence of a 15 by 9 section of failed nodes shown in Fig. (a), plotted against the
geometric distance between nodes

resolution (depending on the distance). We average these measurements and repeat the experiment

for multiple distances. The results are shown in Fig. 8. The figure shows a linear increase in
number of rounds as distance increases.

Fig. 10. Latency of information transfer measured in terms of numberof transmission slots in the presence of
a 15 by 9 section of failed nodes, plotted against the hop distance between nodes. This is compared with the
latency in the presence of no failures at different geometric distances and the graphs closely match. This shows the
preservation of distance sensitivity in terms of the hop distance in the presence of failed nodes.

In order to understand the impact of failures, we simulate a contiguous set of135 failed nodes on

a grid of15 by 9 as shown in Fig. 9. We keep the source at one side of thishole in the network

and consider destinations at different distances on the other side of the failed region, that are
likely to be impacted by the failed nodes. The measured latency at different distances is shown
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in Fig. 9. In Fig. 10, we plot these measurements against thehop distances between the nodes
in the presence of failures. Alongside this graph, we plot the latencies measured without failures

against the geometric distance obtained from Fig. 8 (show byblue dotted lines). These numbers

closely match the latencies measured between nodes at corresponding geometric distance without
failures. This illustrates that the snapshot algorithm preserves the distance sensitivity in terms

of hop distance.

Fig. 11. The minimum resolution at which information is obtained at anode, plotted against the distance between
nodes. The resolution is measured in terms of the level at which the aggregated summary is available.

In Fig. 11, we plot the minimum resolution at which information is obtained at a node, against

the distance between nodes. We consider nodes at different distances across the network. For
each pair of nodes, we determine the highest resolution at which information can be exchanged

measured in terms of the aggregated summary level. For different pairs of nodes at the same

distance, we consider the lowest resolution of informationexchange at that distance and use that
to plot the graph in Fig. 11.

In Fig. 12, we show the impact of failures on the resolution ofreceived information. The two
nodes shown in the figure, separated by a green arrow, are neighbors at level1 without the failed

region. In the presence of failures, the network is clustered in such a way that the nodes are

now level 2 neighbors. In the presence of the failed nodes, the shortesthop distance between
the nodes is increased to9. Hence it is guaranteed by the properties of the clustering algorithm

that the two nodes will be neighbors at level2 or smaller. Since the two nodes are neighbors at

level 2, they are able to exchange level2 summaries and thus the error is now proportional to
the hop distance between the nodes.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we adopted a co-design approach to operate a distributed control application on

top of a wireless sensor network. Specifically, we exploiteddistance sensitivity as a locality

concept to enable the pursuit control application to be successfully run on top of a wireless
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(a) (b)

Fig. 12. (a) The two nodes represented by thick circles and separatedby green arrows are neighbors at level 1. (b)
In the presence of the failed nodes, they are neighbors at level 2 and exchange summaries at level 2.

sensor network. It is infeasible to ensure instantaneous, lossless delivery of information about

evaders to mobile agents distributed across a network. Instead we showed that information that
degrades linearly with distance in terms of latency, error and rate of delivery is sufficient to

guarantee pursuit of evaders. We then designed algorithms that periodically deliverdistance

sensitivesnapshots of the system to pursuing agents. We quantified themaximum rate at which
information can be generated at each node so that snapshots are periodically delivered across the

network and we showed how network parameters can be tuned to match application requirements.

The snapshot service designed in this paper can be additionally optimized for efficiency in the

following ways: (1) Firstly compression in the temporal domain can be achievedby transmitting

only the state of nodes that have changed from the previousround. (2) Secondly, the snapshot
service can be specialized to transmit information only to asubset of nodes. With knowledge

of future pursuer locations, the algorithm can be tuned at run-time to supply only aggregated

information in specific directions and thereby realize savings in communication cost.

In this paper, we have ignored errors in the underlying object detection service with respect to

object localization, track association, false alarms and missed detections. Consideration of these
errors for reliable pursuit control is feasible and is an interesting avenue for further research.

In future, we also plan to explore the possibility of applying distance sensitive information in the
context of control applications such as control of distributed parameter systems [27]–[29] as well

as environmental and process control systems [30], [31]. Webelieve that distance sensitivity in

information transfer is naturally applicable to many such distributed systems in which the impact
of control or perturbation diminishes gradually with distance.
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