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Abstract

In this paper, we focus on a control based surveillance egiphn using a wireless sensor network
in which information from the network is used to actively delia mobile agent leading to eventual
pursuit of one or more evaders in a large region. We adoptdesign approach in which the application
strategy for pursuit control is designed hand-in-hand whth network protocols resulting in guaranteed
system performance. We exploit distance sensitivity acaliky concept in designing a scalable pursuit
control system. Specifically, we show that eventual pursugatisfied if information about an evader
is available to the pursuing agent with error, latency aedydiency that decrease linearly with distance
from the evader. Then, we design network algorithms fonveeilng snapshots of the system that satisfy
these distance sensitivity properties. Finally, we cldselbop by showing how the network snapshot
service can be instantiated to satisfy the requirementeeptirsuit control application.

. INTRODUCTION

Over the past decade, wireless sensor networks have bednrugsgany surveillance applica-
tions for collaboratively tracking objects of interest inlaage secured area [1]-[4]. Most of
these surveillance applications have been monitoringdyasgleere information conveyed by the
network is used to observe the activities of tracked objects classify them into different
types. In this paper we focus on a control based surveillapgdication in which information
from the network is used to actively guide a mobile agentileado eventual pursuit [5]-[8].
Specifically, we consider a distributed tracking applicativhere one or more pursuer agents
are required tceventuallycatch one or more evaders in a large region. An underlyingmsen
network is deployed in the region to detect and track theymrssand evaders in the network.
The tracking application executes on the pursuer objectused the sensor network to get the
desired information about the evader objects.

Designing pursuit control applications using a sensor agktvis a challenging task because the
target track information has to be acquired and commurdaater multiple hops on an unreliable
wireless medium prone to collision and fading effects. €fae information can be error-prone,
can have unpredictable delays or even be lost. To addresstibllenge, we adopt a co-design
approach in which the application strategy for pursuit oanis designed hand-in-hand with
the network protocols resulting in guaranteed system pmdace. Such a co-design is needed
because there exists a tension between the applicatiomreswnts and what the network can
supply. In case of the eventual pursuit application, if thesper agents have perfect information
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about the entire network instantaneously, designing th&abstrategy becomes simple. However
imposing such a requirement on the wireless network williltes a lot of contention and
therefore end up decreasing the overall system performdinerefore, the application needs to
identify weaker network requirements that still result noyable convergence properties. These
conditions impose a specification for the network layer inmte of network abstractions and
these abstractions have to be implemented using apprepniaidleware services. In this paper
we follow this co-design approach for the eventual purswitking application and make the
following contributions.

Contributions: (1) Given that obtaining perfect information about all obgeistinfeasible using

a wireless sensor network, we first determine sufficient itimms$ on the error, latency and rate
of information about the evader being tracked in order tsBaeventualcatch. Specifically, we
show thateventualkatch is satisfied if the error in the estimate of distancéeoevader decreases
linearly with distance between pursuer and the evader,efréite at which this information is
supplied to the evader decreases linearly with distanceifatid staleness in the information
supplied decreases linearly with distance, where the aotsbf proportionality depend on the
relative speeds of the pursuer and the evadgrn\We capture the requirements on latency, rate and
error imposed by the application on the network as threewdifft network abstractions namely
distance sensitive -latency, -rate and -error respegtielorder to implement these abstractions,
we design a middleware service that periodically delivees global snapshot of the system to
all nodes in the network where the snapshots satisfy tharezfidistance sensitivitproperties.
(3) We complete our co-design by showing how system performaran be maximized by
adapting the network snapshot service to changing applicatquirements.

Pursuit control
O O O
© 00 00 application
o O o 0O 0 0 AN
O 00 O O 0O 0o sensor Network abstraction
Distance sensitivity
o O o o O 0 O | * Evader
© 000 © O Ofe pursuer Wireless sensor
O 0o 000 0o network
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Fig. 1. (a)The objective of the pursuit control system is for thespigr object tacatchone or more evader objects

in the system. The pursuer object is guided towards the eussieg information provided by a multi-hop wireless
sensor network. (b) The pursuit control application runghenpursuer object and is co-designed with the wireless
sensor network. Sufficient conditions for information detly by the wireless sensor network are determined that
satisfy pursuit control requirements. These conditiores represented by a network abstraction, namely distance
sensitivity. A wireless sensor network service is then giesil to implement this abstraction.

Related work: The mathematical theory of differential games has beeniegppb pursuit-
evasion games and have been extensively studied over thegvasal decades [9]-[13], starting
with a seminal work by Issac [14]. Pursuit-evasion gamesHhasen traditionally modeled as
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continuous state perfect information systems in which tloba state of the game is available
to the players with no delays. By way of contrast, in this pape study pursuit control in a
network with communication constraints.

In [15] and [16], pursuit-evasion game applications usiags®r networks have been explored
and a series of algorithms are devised to coordinate theiprtgso as to minimize the time-to-
capture of all evaders. Sensor network measurements armeddo be fused at local stations
to produce track information [17]. Evader assignment arrdyser control strategy are calculated
at the base station and then communicated to the pursuetsagiawever network effects such
as latency and loss in communicating this information toghesuer agents are not considered.

Caoet al [6], [7] have characterized the conditions on network layeand information update
periods required to achieve an optimal tracking by modetimg application as a differential
game and obtaining Nash equilibrium conditions for pursolgjects tocatch evaders as far
away from an asset as possible. In this paper, apart fromdgatand update periods, we also
take into account the impact of error or loss in resolutionhaf information on pursuit control.

There has been a lot of interest in Graph Laplacian baseaditpeds for distributed estimation
and tracking using sensor networks [18], [19]. The focusheke papers has been on designing
distributed Kalman filters for estimation in sensor netvgobly local exchange of messages. The
building blocks for these Kalman filters are consensus $ilteat calculate the average sensor
measurement after every iteration which is then fed intoKhaénan filter [18]. A significant
difference in our model for tracking objects is that we do seék consensus. In our model for
tracking, pursuer objects use the global state to make tlagision and execute their next step;
however they do not wait for a synchronized, unique globatiestEach pursuer receives a global
snapshot of the system in which the staleness (and erroheistate of each node is different.
Yet we obtain sufficient conditions for the tracking appiica to meet its requirements.

Communicating periodic global state snapshots is a wetlistuproblem in distributed systems
[20] and consistency, timeliness and reliability have b#s®m main design considerations in
those studies. But efficiency becomes essential when canrsgdperiodic shapshots for resource
constrained wireless sensor networks. To the best of ouwledge algorithms for delivering
periodic snapshots across a wireless sensor network havbeeo studied before. Recently,
fractional cascading has been used for sensor networks affi@ent storage mechanism [21],
[22]. Data is first stored at multiple resolutions across tiework, which is then used to
efficiently answer aggregate queries about a range of tatvithout exploring the entire area.
In contrast, we have considered a model where informatiayererated and consumed on an
ongoing basis. Accordingly we describe push based sertheggegularly deliver to subscribers
snapshots of the network in a pipelined manner. By providingpshots with not just distance
sensitive -error but also -latency and -rate, we achievepcession and thereby efficiency.

Outline of the paper: In Section 2, we derive the sufficient conditions for suctidgsirsuit (that
result in eventual catch) and translate these to networkat®ns. In Section 3, we describe
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a snapshot service for wireless sensor networks that inglesrthese network abstractions. In
Section 4, we show how the snapshot service can be adaptedrgoitpcontrol requirements.
In Section 5, we highlight the robustness of our snapsheiceusing simulations in JProwler.
We conclude in Section 6 and point directions for future work

[I. PURSUIT CONTROL DESIGN

Application model: One or more pursuer objects are requirecet@ntuallycatch all evader
objects spread over a bounded region. The pursuer objeetassisted by a wireless sensor
network that provides the state (location) of evader objéatthe pursuer objects. We assume
that every pursuer is assigned to track at most one evadertiaiea The pursuit controller
resides in each pursuer object and uses the evader locatwidged by the sensor network to
converge on the evader’s location. In our analysis, we demghe case where one purspdras
been assigned to an evadeand this assignment holds until the evader is caught. Nateath
eventual catch in this scenario is sufficient to show thaeedlders will be eventually caught. A
catchis said to occur when when the distantg between a pursuerand an evadet assigned

to p is smaller than a constanat

We assume the existence of a reliable object detection aswtiasion service that assigns a
unique identifier to every object in the network. The probleihdetecting objects in the network
and uniquely associating them with previous detectionstisogonal to the problem of supplying
this information in a timely and reliable manner for purstontrol and guaranteed convergence,
which is the focus of this paper. Detection and associatemicges can be implemented in a
centralized [5] or distributed [23] fashion; the latter apgoch would suit integration with the
distributed pursuit control strategy that we discuss i fhaper.

System dynamics: Let the pursuer and evader speeds be constant, denoted agd v,
respectively. LetX,(¢) denote the locatioz,(t), y,(t)]” of a pursuer at any time Let w,(t)
denote the control action executed by a pursuer at tirttet dictates the direction of motion
at timet (since speed is constant). Thus, we have

X:n (t) = uy(?) (1)

Similarly let X.(¢) denote the locatiofr.(t), y.(t)]” of a pursuer at any time Let y,(¢) denote
the state of the evader that is supplied to the pursuer atttinyethe underlying sensor network
service. In our model, these updates are provided only #&ineinstants of time and let7}}
denote the set of times when a new update is available to aigrurat all times that an update
is available, note thay, provides an estimate of the evader’s location at that tintaubse the
network delivers the state with certain latency and errdrother timesy, reflects the evader’s
location at the last time that an update was available. Theshave,

~

Yp(te) = Xe(tr) (Vtr € {T}}) (2)
up(t;) = Xe(t;o) (Vt; ¢ {Tx}) 3)
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In Eq. 3,¢,_, corresponds to the largest timestamp, less than or equalttwat belongs td 7}, }.

The pursuit control strategyuf(t)) is simply to move along a straight line towards the most
recent available location of the evader with a spegdAt all times ¢, € {1}, the pursuer
changes its trajectory toward’éeZtk) and at other times continues on the straight line towards
the previous estimate. Let ]% > denote the unit vector in the direction from poiftto

point Q. Thus, we have:
up(tr) = vy(< Xp(t), Xe(t) >) (Vtr € {1k }) (4)
up(t;) = vp(< X (t5), Xe(tj—) >) (Vt; & {Tk}) (5)

Let d,.(t) denote the distance between the pursuer and evader at tire¢ §(¢) denote the
staleness in the state efsupplied top at timet. Let I(¢) denote the maximum interval after
time ¢ at which location ofe can be provided tp. Let o = f}—f’ wherea > 1.

Theorem 11.1. Evadere will be eventually caught by pursuerif there exists constarit > g—j
and timeT, such that the following conditions hold at &> 7,:

Gl: [X(t) = Xo(t)] < 518
G2: (1) < (%=l)(1 — azhtl)

ka
G3: (1) < dye(t)(E2)

kvp

Proof:

Consider time > T, such that € {7}}. If the maximum error in the location of the evader is
denoted aéi% (where conditions ot are yet to be derived), the actual locatidin of evadere
at timet is within a ball of radius%ﬁ aroundX,(t). Therefore, the maximum distance between

~

X,(t) and X,.(t) is bounded by the following inequality.
: 5 kE+1
dist(Xp(t), Xe(t)) < dpe(t)(——) (6)
At time t, the action of the pursuer is to move towaﬁdé(t). Let us assume that next information
about the evader is availableg@nly after reachingX.(¢). It follows using Eq. 6 that this interval
(I(t)) is equal to the maximum time taken to travel froxp(t) to X.(¢) and is bounded by the
following inequality.
k+1
I(t) < dpe(t 7
(6) < (), ) (7)
Note that there is a staleness d@f) in the information about the evader available at time
Additionally, a time!(¢) is taken to travel towards the estimated location. Durirggéitimes, the
evader can change its location with a speed.otJsing Eq. 7, we have the following inequality.
kE+1,  dy(t
dpe(t 4+ 1(t)) < vedpe(t)( )+ -2 ®) + v.0(t) (8)
kv, k
In order for eventual catch, we require thigt(t+1(t)) < d,.(t). Using this, we get the following
inequality.
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dpe(t) at+k+1
t P 1—
o(t) < ( o ) o 9)
Note that forj(¢) > 0, we require thatv+ &+ 1 > ka. Using this we get the following equation:
g ol (10)
a—1
u

Thus, we have shown that conditio64, G2 and G3 of Theorem 1.1 and Eq. 10 are sufficient
for the distances between pursuer and evader to monotyni=adrease at each successive time
instant belonging to s€ft7,.} and to eventually reach We now determine the time required for
eventualcatch

Lemma II.2. Let D, denote the initial distance between the pursuer and evati¢ime ¢, :
t, € {T}}. If conditions for eventuatatchspecified in Theorem 1.1 are satisfied, then the time,
T., required by a pursuer to eventually catch an evader is bednaly the following inequality.
Dok +1 D
Te < Mlogg(—o) (12)
kv, €
Proof: Let 6 denote the ratio of distance between pursuer and evaderoirstacessive time
instants that belong to s¢f}.}. Using Eqg. 8 and Eq. 9, we have:
de(t 1
0 = zel!) S S SR Y )
dpe(t + 1(t)) Fa TRt T Tk

akve

(12)

Recall that ecatchis said to occur when when the distance between pursuer auereduces
to e. Hencelogy(22) such update intervals will be needed to rediigeto e. Noting from Eq. 7
that I (t) < 225D we get Eq. 11. m

kvp

IIl. DISTANCE SENSITIVE SNAPSHOT SERVICE

In this section, we design a network middleware service ¢hatbe used for supplying informa-
tion about evader objects to pursuer objects while meetegstufficient conditions for pursuit
control stated in Theorem I1.1.

A. Distance sensitive snapshots

Definition 111.1 (SnapshotS"). A snapshotSs" : V — R x R of a set of node§ is a mapping
from each nodeé € V to a state value X € R) and a timestampt(c ) associated with that
state value.

Let X;(S") denote the state of nodes V' in snapshotS" and lett;(S") denote the timestamp
of the state of node € V in snapshotSY. A consistent snapshot [20] is one where the
timestamps associated with the state of each node in theorletwve the same. In order to be
feasible to implement in a resource constrained wireless@senetwork, we relax the consistency
requirement for a snapshst” along the dimensions of latency, error and periodicity diveey.
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Let 7 denote the current time. Thaalenesg;(S")) of the state of node in snapshotSV is
defined asz;(SV) = 7 — t;(SV), wherei € V. We now consider a generalization where state
values do not necessarily correspond to the same instanitnef hut their staleness enjoys a
distance sensitive property. Lét:, j) denote the distance between nodesd; in the network.

Definition 111.2 (Snapshots with distance sensitive latendy)snapshotS" received by a node
J hasdistance sensitive latendf/~;(SV) = O(d(i,j)) Vi:i€eV

Definition I11.3 (Snapshots with distance sensitive err@)snapshotS" received by a nodg
hasdistance sensitive erraf ¢;(SV) = O(d(i,5)) Vi:i € V, where ¢;(S")) is the error of
the state of node in snapshotS".

Definition 111.4 (Snapshots with distance sensitive rat®)node; receives a snapshat” with
distance sensitive raié ¢; = O(d(4,j)) Vi:i € V where( is the rate at which state of node
i is updated in the snapshst” is received byj.

Note that the concept of distance sensitive rate is orthalgornthat of distance sensitive latency.
In the latter staleness in the state received decreasedistdnce but fresh information arrives
at the same rate at all nodes, where as in the former, thedtatarby nodes is reported more
often than farther nodes. For reasons of exposition, in phizer we present a version of the
algorithm (hereby referred to d3SS that provides snapshots which are distance sensitive in
latency and error, and then updates these snapshots atgthestirate for all nodes. We note
that, in order to meet the requirements of the pursuit corapplication, it would have been
sufficient to progressively decrease the update rates gerlalistances. The refinement to DSS
that adds distance sensitivity in rate can be found in [24].

B. Network model

We consider a sensor network consisting/dfnodes that induce a connected network where
each node can communicatel&t bits per second. Nodes are assumed to know their geographic
location. LetV denote the set of nodes in the network. The nodes may haveregular
communication range and may be arbitrarily deployed in anded region. Nodes are assumed
to be synchronized in time. Let denote the number of bits allocated to represent the state of
each node in the network.

DSSdepends on an underlying hierarchical partitioning of tbees into clusters of increasing
sizes and the implementation of a tree data structure fdmguwn those clusters. We partition
the network into a hierarchical one with a number of levels, = O(log(V)) with the clusters
at levelO representing the individual nodes in the network. In ordgurovide this clustering, we
use a clustering servideLOC [25]. The algorithm starts by first creatingldevel clustering [25]
which is then iterated with clusterheads at each new lewlltiag in a hierarchical clustering
[26]. The algorithm for clustering is distributed, localdfinishes inO(1) time. More specifically,
the properties provided by the clustering service aredistelow.
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propertyC?2). (b) Hierarchical clustering in a network witioles non-uniform density and irregular communication
range. All clusters at a given level have a minimum size iy C2), but nodes beyond that minimum distance
and up to a maximum distance (specified®y) from the clusterhead can belong to the same cluster in ¢odee
locally self-stabilizing. All distances correspond to aommicationhop distances as radio range may not be same
for all nodes. Levell clusterheadd and its7 neighboring levell clusterheads are shown in the Figure. All nodes
with 1 hop of the clusterhead belong to the cluster and nodes tb& laops from the clusterhead may belong to
the cluster.

C'1: A unique node is designated as clusterhead at each level.
C2 : All nodes within distance*% from a levelr clusterhead belong to that cluster.
C3 : The maximum distance of a node from its levetlusterhead i$" — 1.

C4 : There exists a path from each clusterhead to all nodes irchhstier containing only nodes
belonging to that cluster.

C5: Atalllevelsr : 1 <r < L., there is at least one and at magtneighboring level
r clusters for each levet clusterhead and there exists a path between any two neiggbor
clusterheads.

We note that such a clustering can tolerate the addition atetidn of nodes in the network in
O(1) time and in alocally self-stabilizingmanner by which the changes to the clustering are
contained within a constant distance from the location efddded or deleted node and do not
propagate network-wide causing a global reassignmentustens and clusterheads. In order to
maintain the local self-stabilizing properties in the prese of node additions and deletions, it is
shown in [25] that we cannot impose a requirement on clustessat given level to be exactly
the same. A factor o in the allowable cluster size is necessary to ensure thatchapges

in topology are resolved in a local manner. This is reflecteghriopertyC3 of the clustering
service. Thus all nodes within distané—*?g1 from a levelr clusterhead are required to belong
to that cluster but the maximum distance of a node from itellewclusterhead can b& — 1.

Let 9 denote the maximum number of levgélnodes within a level cluster. By default, the
distances stated in properti€sl — C'5 denote communication hop distances. In Fig. 2(a), we
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show an example of the clustering for the scenario where ¢h&ark contains uniformly spaced
nodes with equal communication range and separated by aggnedmmunication range (which
we hereby refer to as a regular grid network). In this scenall clusters belonging to the same
level are of the same size, each cluster at a given level hastlg)X8 neighbors at that level,
and the distances in properti€sl — C'5 reduce to geometric distances. In Fig. 2(b), we show
an example of the clustering within a single level when thevoek radio range is irregular and
may contain regions of higher and lower density. In this c&4e€C does not yield clusters
of the same size any more. Instead there is a minimum and roaxisize for each cluster as
indicated by properties’2 and C'3. Moreover, the distances stated in properti&s— C5 are
now hop distance (as radio ranges may be non-uniform andsrergenot equi-distant) and not
necessarily geometric distance.

Let 5. L denote the highest level for which
o 0000000 00IROCOO000OCO0
J is clusterhead. Let’ denote the clus- o o000 S o000 00
: r_ oY ¥oIoX Yo Ce0C 8o
terhead for nodg at levelr. Thush} = 88 80 88%% 8888 oo
: : : r 00
j(VT.OST.Sj.L). Let {N} denote el .O%_ %oooooo
the set of neighbors for nodg at level 000000 009000
CO0000 coolooo
r. Note that by propertyC’5, there are of } oooo%%%oooo ' Xo)
at mostrn, neighbors at each level for 88%88%0 5000000 0838883

each node in the network. We implement
virtual trees on the clusters at each levetiy 3 jjiustrating levell tree rooted aj. The levell tree at
Lettree(r, j) denote a level tree formed ; spans all leveD members inj’s level 1 cluster and all its
with ;5 as root and spanning all nodes imeighboring levell clusters.

the levelr cluster ofj and all levelr clusters that are its neighbors. Lgtn(r, y) denotej’s

parent towards roaf ontree(r, y). Let j.out(r,y) denote the set ofs descendants ofree(r, y).

Let M (r, j) denote the level summary computed by a levelclusterhead. In Fig. 3, a level
1 tree rooted ay is shown as an illustration for a grid network.

C. Algorithm for distance sensitive snapshots

We present the algorithm for distance sensitive snapslydissb describing three building blocks
for DSS (1) aggregation,%) scheduling and3) storage. We then use these building blocks to
present the actions executed at each node.

1) Aggregation: In this subsection, we describe how the location of objeelisid tracked is
encoded in the state of individual nodes in the network and tids information is aggregated
at higher levels in the hierarchy. Let denote the number of objects in the network, numbered
from 1, .., n..

An objecte is said to reside at nodef object e is closest to nodé compared to all other nodes
in the network and nodeis then responsible for encoding the locatioreoAccordingly, the area
over which the network is deployed is divided into Voronoligsvith each node responsible for
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encoding the location of objects within its own cell. ket denote the Voronoi cell corresponding
to nodei. Each node then dividesV; into ¢ equi-sized regions. If an objeetlies within U;,
then node marks the location of as one of they regions andlog,(g)] bits are used to encode
the location. Thus, the state of each nade the network at a given time consists [dbg2(g)|

bits per object in the network and contains the location ofobject if the object resides at

i. A total of m = n.([log2(g)]) bits are allocated to represent the state of each node at any
instant. The number of regiong)(used to represent the location of an object within a cluster
corresponds to the granularity of an object’s location wita cluster. For instance, i = 1,
then only the presence or absence of each object within gechwill be known by this encoding
strategy, but the error in the location of the object proditg a levell clusterhead will be equal

to the maximum radius of a levélclusterhead as the object can be anywhere in the cluster.

At higher levels in the hierarchy, a clus-
terhead; at each levet : 0 < r < Ly /*
is responsible for aggregating the location /
of all objects that lie within the area X
enclosed by the Voronoi cells of all level
0 nodes in its cluster at level, and we
denote this area a4, ;. To perform this
aggregation, each clusterhegddivides

A,; into the same number of regions
g. The aggregation function at a levefig: 4. Aggregation: The evader (shown as star) is located in

| clusterhead then maps the location Sne ofg = 9 regions in areal; ; by levell clusterhead. At the
an object from one of thay,g regions next level in the hierarchy, clusterheadnarks the location of
bg

_ i ) the evader as one gf= 9 larger regions insidel;; 5, giving
provided by they, neighboring levet —1 rise to an error in location that is proportional to clustzes
clusterheads into one of theregions of

the levelr cluster.

Let M.(r,j) denote the location of an objec : :
. . Computing M(r,j) at node j:j.L > 0, where0 < r < j.L
e in a levelr summaryM(r,j) computed by | for each y such thay € {N7 '}

. ) ) o for each object e such’thief, (r — 1, ) %L
nodej. Let M, (r, j) =L if e does not lie within ) = Ans 4 Me(r(_ Ly)y) #
A,;. Note that).(r, j) will correspond to one | __ e for

of g regions withinA4, ; if M.(r,j) #L. Now for eaCh]\?Ej(i% fSUXTj%fZJfﬂ}fl
consider areal, . , corresponding to a cluster{ end for

headk at levelr+-1 suchthatd, ; C A, k. Let Fig 5. Aggregation functiomF.

A1 < M.(r,7), denote one of the regions

within A, ., ; that contains the centroid of the regiof.(r, 7). In Fig. 5, we state the aggegation
function AF, that computes the next higher level aggregatér, ;) using the summaries
M(r — 1,y) computed by the levet — 1 neighbors of nodg, and the level — 1 summary
M(r —1,4) that is computed by nodg itself.
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Fig. 6. Transmission in each round is divided into 3 phases. At tlteafreach round, information is exchanged
between neighboring levdl clusterheads. (a) Phase 0 corresponds to slot 0. Nodesjvlith- 0 compute the
summaries of clusters for which they are leaders and trarbese to descendants on the respective trees. They
also forward information received in previous round ongréat they belong to but are not the root, and forward this
information to descendants on the respective trees. (bhdisgl all level 0 nodes take turns to transmit information
heard in phas@ to descendants on all trees that they belong to. This resultformation propagating outwards
from the levell cluster that they belong to. (c) In pha8eall level 0 nodes take turns to transmit information
heard in phasé to descendants on all trees that they belong to. This resuit§ormation coming inwards to their
respective level clusterheads.

%
+

We note that at higher levels of the hierarchy, informatisraggregated into the same number
of bits m, and error in the location of an object being tracked in@eagroportional to the
maximum size of a cluster). We now state the following prajas.

Proposition 1ll.1. The error in the state of a nodein a levelr summary corresponds to the
maximum error in encoding the location of any object regidat i in a levelr summary and is
bounded byO(3").

2) Schedule: We schedule the nodes to transmit in roundsodndis defined as a unit of time
in which information is exchanged between a levatlusterhead and all of itg, neighboring
level 1 clusterheads. Each round is divided into multiple slot8 phases (illustrated in Fig. 6).
In the first slot (phas®), all nodes withj.L > 0 transmit. In the remaining slots, all level
nodes in each cluster transmit twice, once in each phases@&tend transmission by a node
within a round (phase) takes place after all its neighbors have transmitted at leace. The
messages that are transmitted during these slots are stafégl. 7. A simple non-interference
schedule that satisfies these constraints in a grid netweitk 8 neighbors per node) is one
where all leveld nodes take turns. In general, each round will consist of ateoh number of
slots, n, that depends on the schedule chosen.

3) Local storage: The snapshot received by a nogeat the end of each round consists of
M (z,y) received by nodeg in that round for eachr,y such thatj € tree(z,y). Each node
stores only the most recent snapshot. Thus each risdecal storage contains the following
summaries:

. M(JI, h;{:) (VCL’ 10 <z< Lmam)
« M(z,y) (Vz,y: (0 <@ < Lias) A (y € NY))
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4) Actions at each node:

In this subsection, we describe the actions executing dt eade. These actions are stated in

Fig. 7. In slot0 of each round nodes with L > 0 compute the aggregat¥ (r, j) for each level

r that they are a clusterhead of based on the level aggregate received in the previous round,

using the aggregation function described previously. Toraputed aggregate at each levek

then transmitted to the descendants on the respectivecmgedraty, i.e., j.out(r, j). In addition,

for eachtree(z, y) thatj belongs to but is not a root of\/(z,y) heard in previous round from

jan(x,y) is transmitted toj.out(z,y). In their respective phase and phase slots, nodes at

level 0 simply transmitM (z, y) as heard in the previous phase of that round from(z,y) to

j.out(z,y).

Thus, aggregates computed at each leyvel— —

. Actions for node 5 : 5.L > 0

are transmitted outwards to descendants in sioto of each round:

.. _ Vr:1<r<j.L

along a tree. This is sufficient for a leve cOﬁqpu?e:]M(r, j) using AF
Send:M (r, j) — j.out(r,7)

r node to compute aggregates from leve Yo,y j ¢ tree(s,y)

r — 1 nodes, because a tree at level 1

Send: M (z,y) — j.out(z,y)
Actions for node 5 : 5.L =0

extends up to all leved nodes in neigh- In each transmission slot fgr determined by the scheduling block:
) Va,y : j € tree(x,y)

boring levelr —1 clusters. And one of the ~ Send:M(z,y) — j.out(z,y)
. . . Receive Actions at nodej

neighboring level- — 1 node is a levelk Upon receivingM (z,y) from nodei

Store M (z,y) if i = j.in(x,y)

node. Thus, when a computed aggregate
by any node is being dispersed to nodé:ég. 7. Actions at each node iRSS for distance sensitive snapshots.
in its own cluster and the neighboring clusters, it is alsmdpe&entin to a higher level node to
compute an aggregate. In Fig. 3, nogdeand ¢ are level2 clusterheads. Note that the leviel
tree rooted ajj reaches the level clusterhead; that j; belongs to. We now analyze the latency
and error in the snapshots provided D$S

D. Analysis

Let s, denote the duration of each transmission slot in algorithBSDLet j.~; denote the
staleness in the state of a noden the snapshot delivered by algorithm DSS at ngde

Theorem 1ll.1. In DSS, j.v; = O(d) whered = dist(i, j).

Proof: Consider a node at levelr. To compute a summary at levellevel r — 1 summaries
are needed. The maximum distance betwgamnd its neighboring level — 1 clusters i2(3"1)
(From propertyC'3). Thus, a level- summary is computed based on a lewvel 1 summary that
was generatedr,s,, 3" ! time ago, since latency between each pair of lévabdes (length of
around is 7, slots. A levelr — 1 summary is computed based a level 2 summary, and so
on until level0. Upon summation, we see that the staleness of a [eeldividual node) state
information in a levelr summary bounded by,s,,3". Now, the maximum distance traveled by
a levelr summary is3"! and the latency is bounded hys, 3" . Therefore, the maximum
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total staleness in the state of any nadm a levelr summary is bounded b¥r,s,,3". Now,

the minimum distancel between; and: for which a levelr summary is the smallest level
that contains information abotitis 3"~!. Expressing the maximum staleness in terms of the
minimum distancel, we get the following equation:

7% = 12n,8,d = O(d) (13)
m

Theorem II1.2. In DSS, the error of state of a nodein a snapshot received at nogds O(d)
whered = dist(i, j).

Proof: Recall from propositionf /7.1 that the maximum error in the state of a nadeovided
by a levelr clusterhead is bounded liy(3"). The minimum distance betweerand; at which
j gets a levelr summary ofi but not a level — 1 summary ofi is 37~. Thus, the error in the
state ofi in a snapshot received gtis O(d), whered = dist(i, j). u

Thus DSSprovides snapshots at each node that satisfy propertiessainde sensitive latency
and error. These snapshots are updated at each node fovel8 B a regular rate with an
interval of oneround length ss.,).

Theorem II1.3. In DSS, the average communication cost in the network to delivenapshot
of one sample from each node to all node®igV * log(N) x m).

Proof: Consider a nodeg at any levelr, where0 < r < L,,... FromC5, we note that at most
n, trees at leveld..L,,,, can pass through each node whérg,., = O(log(N)). There are at
mostr, neighbors for; at level0 and so at most), level 0 trees can pass through Hence,
the maximum message length needed per slot in algorfths' is O(mlog(N)) bits.

To deliver a snapshot with a sample from each node, every ttage communicate® (m x
log(N)) bits N times. And to deliver a snapshot withsamples from each node, every node
communicate®) ((N + y) x (m x log(N))) bits, since all they samples are pipelined. Hence, if
y is large andy = Q(V), the average communication cost at each node to delivergsisotof

a sample from each node to all nodes)&n x log(N)). The average communication cost over
N nodes isO(N * (m * log(N)).

Note that if y is small, for instance, if there is only one sample from eaodey then the
communication cost i® (N xnx* (m+log(n/m)). Pipelining the delivery of snapshots improves
the average communication cost@N x* (m x log(n)). u

Theorem 111.4. In DSS, the memory requirement per node(glog(N) x m) bits.

Proof. Recall that the data structure maintained at each node isnttet recent value of
M (z,y) received byi for eachtree(z,y) thati belongs to. Nodes do not buffer information
to be forwarded over multiple rounds. The maximum numberreég through any node is
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O(log(N)), with m bits of information flowing along each tree. The result falf [ |
E. Adding distance sensitivity in rate

In order to add distance sensitivity in rate, we make thetalhg refinement to algorithnS'S
(which we denote as algorithi.SS R). Consider a leved node withj.L = r. A levelr summary
is computed by this node once eveX¥yrounds based on the most recent level 1 summaries
it receives. Instead of transmitting this summavi(r, j) in one round, it is now transmitted
in slot 0 of each round withnax(1, 3;) bits per round. Thus, a level summary is sent over
min(3",m) rounds. The actions for forwarding nodes remain the samepeXor the change
that each node now only receives a fraction\éfz, y) in every round for eachree(x,y) that

it belongs to, and it forwards only that fraction in the neatind. This refinement (Algorithm
DSSR) improves the energy efficiency of the snapshot sewlike decreasing the periodicity
of updates linearly with distance. Below, we state resuttdatency and rate when using this

refinement.
Let 5.1; denote the interval between two successive updates recbiva@ode; from nodes.

Theorem II.5. In DSSR, j.v; is O(d), whered = dist(i, j).

Proof: Consider level®) < r < log(m). Note that a complete level snapshot is sent every
3" rounds in a pipelined manner. Thus ev8fyrounds, a level snapshot is received by a node.
The time corresponding t& rounds iS3"75.,.

Recall that in order to update the local data structure,ofhe state of a node is updated
using summanV/ (z’,y') wherex’ is the lowest level which contains information ab@utNow
the minimum distance betwegnhand: for which a levelr summary is the smallest level that
contains information about is 37,

The maximum interval between when a nogleeceives the state of nodeis given by the
following equation:

: 3"MsSw  or

YRZEE 313_1 x 31 (14)
= O(ns * Sy *d) (15)
= 0(d) (16)

Note that for levels: > log(m), 1 bit is allocated per round. Thus, for all these levels, a sanym
can be sent out in less th&h rounds. The maximum interval between receiving two suceess
state information for those nodes whose state is obtained ssimmaries greater than leveis
less than that derived in the above equation. The maximuenvialt between when @ receives
the state ofi is thusO(d). u

Theorem 111.6. In DSSR, j.y; is O(d) whered = dist(i, j).
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Proof: Consider a node at levelr wherer < log(m). To compute a summary at levellevel
r — 1 summaries are needed. The maximum distance betyweem its neighboring levet — 1
clusters i2(37~1) (From propertyC3). Thus, the latency to travel from level- 1 node to level
r node is given byn,s,3"~! time ago, since latency between each pair of lavebdes (length
of around is 7, slots. Note that in this algorithm, a level- 1 summary is actually transmitted
in 34 — 1) rounds by dividing it inta3"~! parts. Thus, a level summary is computed based on
level r — 1 summary that was generatg,s,,3"~* time ago. A level — 1 summary is computed
based a level — 2 summary and so on until level Upon summation, we see that the staleness
of a level0 state information in a levet summary isl.57,s,,3"*.

Note that a complete level— 1 snapshot is sent evefj~! rounds in a pipelined manner. Thus
every 3! rounds, a level — 1 snapshot is received by a node. On the other hand a tevel
snapshot is computed only evel¥yrounds. Thus a fresher level-1 snapshot is always available
to compute a new level snapshot. Now, the maximum distance traveled by a lewlmmary

is 3" and the latency is bounded bys, 3" . Therefore, the maximum total staleness in the
state of any node in a levelr summary is bounded b¥,s,,3".

Recall that in order to update the local data structure,ofhe state of a node is updated
using summaniV/(x’,y') wherex’ is the lowest level which contains information ab@utNow
the minimum distance betweegnhand: for which a levelr summary is the smallest level that
contains information about is 37,

The maximum staleness in the state of a nbdenodej is then given by the following equation:

JYi = O(nsswd) (17)
= 0O(d) (18)

Note that at levels > log(m), 1 bit is allocated per round. Thus, for all these levels, a sanym
can be sent out in less thaf rounds. The maximum staleness for those nodes whose state is
obtained using summaries greater than léwglm ) is less than that derived in the above equation.

[ |
F. Distance sensitivity in an irregular network

In a network with non-uniform density such as the one in Fi@p)2the tree structure between
clusters may not yield a path between nodes that is propaitito the geometric distance
between them. However, the clustering propertiis— C5 ensure that the path between two
nodes is proportional to theop distance or the shortest path available between the twosnade
the network graph. This ensures that the distance semgipvoperties of the snapshot service
are preserved in terms of thwp distance as opposed to the geometric distance.
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IV. ADAPTING SNAPSHOT SERVICE TO CONTROL APPLICATION PARAMETER

In this section, we illustrate the co-design aspect of oyregch by describing how the overall
system performance can be optimized by adapting networanpaters to specific application
requirements. We first provide an example of how the apptingbarameters (specifically the
relative speeds of the pursuer and evader) can be used wedatiallowable network latency,
thus affecting the system communication cost. We then gdeoan example of how the application
parameters (specifically the relative speeds of the pursuerevader) can be used to decide on
allowable network error, thereby affecting the system camication cost.

A. Adjusting slot width to match control requirements

Recall from Theorem II.1 that the allowable latency at arstant is given by Eq. 9. IDSS the
maximum staleness in the state of an object at any instanvés dpy Eq. 13. Using these, the
allowable slot width forDSScan be determined as a function of the pursuer and evadedsspee
as stated in the following Lemma.

Lemma IV.1. In order for DSSto satisfy the requirements of eventual pursuit controtestan

Theorem/ .1, the duration of each transmission skgt must be smaller thaq%lsve (1—athtl),

As evader speed decreases, we note that the requiremeng ortiiork service is relaxed and
the allowable slot width increases which consequently ceduhe cost of communication. Thus
we are able to select network parameters that minimallysfyathe conditions for successful
pursuit control, enabling us to optimize overall systemfqrenance.

B. Adjusting message size at each level

Recall that inDSS information at each level is aggregated imto= n.(logs(p) + 1) bits. The
number of regionsy) used to represent the location of an object within a clusteresponds
to the granularity of an object’s location within a clustar instance, ifp = 1, then only the
presence or absence of each object within a cluster will b@vknby this encoding strategy,
but the error in the location of the object provided by a ldvelusterhead will be equal to the
maximum radius of a levdl clusterhead as the object can be anywhere in the clustersizbe
of m thus depends on the granularity at which an object locasaepresented in each cluster.
Specifically, depending on the relative speed of the puraundrthe evader, we can adjust the
number of region® that each cluster is divided into and meet the requiremerrmr imposed
by Theorem Il.1. This relation is summarized by the follogvibemma for a grid network.

Lemma IV.2. In order for the DSS algorithm to satisfy the requirementsweéntual pursuit

control stated in Theorem 1.1, the +nlumber of regignghat each cluster is divided into in a
atly2

grid network must be greater tha?ﬁ‘*;—l).

Proof: Since each cluster is divided in joregions and each clusterhead marks the location
of the evader as one of theregions, if a level information is available to the pursuer about
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evadere, then the maximum error in location % If the smallest level at which information
about an evader is available to pursuey is [, then it must be the case thdj, is at least3'~*.

Thus for any given distancé,., the maximum error in location is bounded %

Recall from Theorem I1.1 that ifl,. is the distance between pursuer and evader at any instant,

then the maximum error in location allowed at the pursueﬁ;iswherek: > g—ﬂ Thus, we
. g(atl 2
require thatp > % [ |

As the ratio of pursuer to evader speed decreases, the nwhiegionspy required within a
cluster at any level increases and thereforencreases. Thus, depending upon the application
parameter of relative speed, we can optimize the system concation cost.

V. SIMULATION RESULTS

In this section, we evaluate the performance of our distasresitive snapshot services using
simulations in JProwler. The goals of our simulation arg:tp verify the distance sensitivity
properties of information transfer in terms of latency aeslution and2) to analyze the impact
of node failures on the latency and resolution of snapshots.

Latency vs Distance

/

Latency (time slots)

‘/

a 5 10 15 20 25 30 35 40

Geometric Distance

Fig. 8. Latency of information transfer measured in terms of nundféransmission slots, plotted against geometric
distance between nodes

Specifically, we consider a8l by 81 wireless sensor network, arranged on a regularly spaced
grid. A clustering service is assumed to provide each nodle kviowledge of its respective tree
neighbors at each level in the hierarchy. A collision frebestule is assigned to nodes by which
they take turns in transmitting. Each node is allotted a &ofransmit in every round and in
other slots it listens to messages from its neighbors. Imyenaind, a node generat8sbits of
information that is exchanged with other nodes in the nétwming the snapshot algorithm.

In order to measure the latency of information exchange ve& pandomly selected source
destination pairs across the network for a given distanaen&asure the number of rounds for
data generated at a given instant at the source to reach stimad®n node at the corresponding
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Fig. 9. (a)The figure shows &5 by 9 section of nodes in the network that are failed. The laterfapformation
transfer is measured between the node marked as source ded abdifferent distances in the region marked
as destination nodes. (b) The graph shows the latency ofniaftion transfer measured in terms of number of
transmission slots in the presence of a 15 by 9 section oédailodes shown in Fig. (a), plotted against the
geometric distance between nodes

resolution (depending on the distance). We average theasurements and repeat the experiment
for multiple distances. The results are shown in Fig. 8. Tharé shows a linear increase in
number of rounds as distance increases.
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Fig. 10. Latency of information transfer measured in terms of numifetransmission slots in the presence of
a 15 by 9 section of failed nodes, plotted against the homnligt between nodes. This is compared with the
latency in the presence of no failures at different geomelistances and the graphs closely match. This shows the
preservation of distance sensitivity in terms of the hopadise in the presence of failed nodes.

In order to understand the impact of failures, we simulatergiguous set of 35 failed nodes on
a grid of 15 by 9 as shown in Fig. 9. We keep the source at one side otiblisin the network
and consider destinations at different distances on ther atille of the failed region, that are
likely to be impacted by the failed nodes. The measured ¢gten different distances is shown
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in Fig. 9. In Fig. 10, we plot these measurements againshépedistances between the nodes
in the presence of failures. Alongside this graph, we pletlgtencies measured without failures
against the geometric distance obtained from Fig. 8 (shoblbg dotted lines). These numbers
closely match the latencies measured between nodes asjgonding geometric distance without
failures. This illustrates that the snapshot algorithmsprees the distance sensitivity in terms
of hop distance.

Distance vs Worst case resolution

4.5
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= 35
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. |
& 25
g =1
£ 15 I = Minimum level of
g 1 -, data summary

D ’- T T T T 1

a 10 20 30 40 50
Distance

Fig. 11. The minimum resolution at which information is obtained ataale, plotted against the distance between
nodes. The resolution is measured in terms of the level attwthie aggregated summary is available.

In Fig. 11, we plot the minimum resolution at which inforntatiis obtained at a node, against
the distance between nodes. We consider nodes at diffeiglandes across the network. For
each pair of nodes, we determine the highest resolution athwhformation can be exchanged
measured in terms of the aggregated summary level. Forreliffeairs of nodes at the same
distance, we consider the lowest resolution of informa#@gohange at that distance and use that
to plot the graph in Fig. 11.

In Fig. 12, we show the impact of failures on the resolutiorraxfeived information. The two
nodes shown in the figure, separated by a green arrow, arehoegyat levell without the failed
region. In the presence of failures, the network is clusteresuch a way that the nodes are
now level 2 neighbors. In the presence of the failed nodes, the shdrtgstdistance between
the nodes is increased o Hence it is guaranteed by the properties of the clusteriggrighm
that the two nodes will be neighbors at le2ebr smaller. Since the two nodes are neighbors at
level 2, they are able to exchange leeksummaries and thus the error is now proportional to
the hop distance between the nodes.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we adopted a co-design approach to operatstrébdied control application on
top of a wireless sensor network. Specifically, we exploitéstance sensitivity as a locality
concept to enable the pursuit control application to be essfclly run on top of a wireless
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Fig. 12. (a) The two nodes represented by thick circles and sepabgtgdeen arrows are neighbors at level 1. (b)
In the presence of the failed nodes, they are neighbors akt 2and exchange summaries at level 2.

sensor network. It is infeasible to ensure instantanemss|dss delivery of information about
evaders to mobile agents distributed across a networkeddsive showed that information that
degrades linearly with distance in terms of latency, ernod sate of delivery is sufficient to
guarantee pursuit of evaders. We then designed algorithatsperiodically deliverdistance
sensitivesnapshots of the system to pursuing agents. We quantifiechaxénum rate at which
information can be generated at each node so that snapsbqisraodically delivered across the
network and we showed how network parameters can be tunedttirapplication requirements.

The snapshot service designed in this paper can be addiyiapimized for efficiency in the
following ways: (1) Firstly compression in the temporal domain can be achiéyetlansmitting
only the state of nodes that have changed from the previmwsd (2) Secondly, the snapshot
service can be specialized to transmit information only subset of nodes. With knowledge
of future pursuer locations, the algorithm can be tuned attime to supply only aggregated
information in specific directions and thereby realize 8g8iin communication cost.

In this paper, we have ignored errors in the underlying dhjetection service with respect to
object localization, track association, false alarms aimgbeud detections. Consideration of these
errors for reliable pursuit control is feasible and is areasting avenue for further research.

In future, we also plan to explore the possibility of apptygistance sensitive information in the
context of control applications such as control of disttéaslparameter systems [27]-[29] as well
as environmental and process control systems [30], [31]b@eve that distance sensitivity in
information transfer is naturally applicable to many suditrtbuted systems in which the impact
of control or perturbation diminishes gradually with dista.
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