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Pursuit Control over Wireless Sensor Networks
using Distance Sensitivity Properties

Vinod Kulathumani, Anish Arora, and Sricharan Ramagiri

Abstract—In this paper, we focus on a control based surveillance
application using a wireless sensor network in which information
from the network is used to actively guide a mobile agent leading
to eventual pursuit of one or more evaders in a large region.
We exploit distance sensitivity as a locality concept in designing
a scalable pursuit control system. Specifically, we show that
eventual pursuit is satisfied if information about an evader is
available to the pursuing agent with error, latency and frequency
that decrease linearly with distance from the evader. Then,we
design network algorithms for delivering snapshots of the system
that satisfy these distance sensitivity properties.

I. I NTRODUCTION

In this paper we describe a control based surveillance ap-
plication in which information from the network is used to
actively guide a mobile agent leading to eventual pursuit [1]–
[3]. Specifically, we consider a distributed tracking application
where one or more pursuer agents are required toeventually
catch one or more evaders in a large region. An underlying
sensor network is deployed in the region to detect and track the
pursuers and evaders in the network. The tracking application
executes on the pursuer object and uses the sensor network to
get the desired information about the evader objects.
Designing pursuit control applications using a sensor network
is a challenging task because the target track information
has to be acquired and communicated over multiple hops on
an unreliable wireless medium prone to collision and fading
effects. Therefore information can be error-prone, can have
unpredictable delays or even be lost. To address this challenge,
we adopt a co-design approach in which the application
strategy for pursuit control is designed hand-in-hand withthe
network protocols resulting in guaranteed system performance.
Such a co-design is needed because there exists a tension
between the application requirements and what the network
can supply. In case of the eventual pursuit application, if the
pursuer agents have perfect information about the entire net-
work instantaneously, designing the control strategy becomes
simple. However imposing such a requirement on the wireless
network will result in a lot of contention and therefore end
up decreasing the overall system performance. Therefore, the
application needs to identify weaker network requirements
that still result in provable convergence properties. These
conditions impose a specification for the network layer in
terms of network abstractions and these abstractions have
to be implemented using appropriate middleware services.
In this paper we follow this co-design approach for the
eventual pursuit tracking application and make the following
contributions.
Contributions: (1) Given that obtaining perfect information
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about all objects is infeasible using a wireless sensor network,
we first determine sufficient conditions on the error, latency
and rate of information about the evader being tracked in
order to satisfyeventualcatch. We show thateventualcatch
is satisfied if the error in the estimate of distance to the
evader decreases linearly with distance between pursuer and
the evader, if the rate at which this information is supplied
to the evader decreases linearly with distance and if the
staleness in the information supplied decreases linearly with
distance, where the constants of proportionality depend on
the relative speeds of the pursuer and the evader. (2) We
capture the requirements on latency, rate and error imposed
by the application on the network as three different network
abstractions namely distance sensitive -latency, -rate and -
error respectively. In order to implement these abstractions,
we design a middleware service that periodically delivers the
global snapshot of the system to all nodes in the network
where the snapshots satisfy the requireddistance sensitivity
properties. (3) We complete our co-design by showing how
system performance can be maximized by adapting the net-
work snapshot service to changing application requirements.

(a) (b)

Fig. 1. (a) The objective of the pursuit control system is forthe pursuer
object tocatch one or more evader objects in the system using information
provided by a multi-hop wireless sensor network. (b) Sufficient conditions
for information delivery by the wireless sensor network aredetermined that
satisfy pursuit control requirements. These conditions are represented by a
network abstraction, namely distance sensitivity.

Related work: The mathematical theory of differential games
has been applied to pursuit-evasion games and have been
extensively studied over the past several decades [4]–[8],
starting with a seminal work by Issac [9]. In these papers,
pursuit-evasion games have been modeled as continuous state
perfect information systems in which the global state of the
game is available to the players with no delays. By way of
contrast, in this paper we study pursuit control in a network
with communication constraints. We characterize the allowed
error in the knowledge of evader state at the pursuers as a
function of distance between the pursuer and the evader and
their relative speeds. This in turn allows the network to provide
the information to the controller at rates just sufficient for
convergence.
In [10] and [11], pursuit-evasion game applications using
sensor networks have been explored and a series of algorithms
are devised to coordinate the pursuers so as to minimize the
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time-to-capture of all evaders. Sensor network measurements
are assumed to be fused at local stations to produce track
information. Evader assignment and pursuer control strategy
are calculated at the base station and then communicated to the
pursuer agents. However network effects such as latency and
loss in communicating this information to the pursuer agents
are not considered.
Cao et al [2] have characterized the conditions on network
latency and information update periods required to achievean
optimal tracking by modeling the application as a differential
game and obtaining Nash equilibrium conditions for pursuer
objects tocatchevaders as far away from an asset as possible.
In this paper, apart from latency and update periods, we also
take into account the impact of error or loss in resolution of
the information on pursuit control.
There has been a lot of interest in Graph Laplacian based
techniques for distributed estimation and tracking using sensor
networks [12] by designing consensus filters. A significant
difference in our model for tracking objects is that we do
not seek consensus - the pursuer objects do not wait for a
synchronized, unique global state. Each pursuer receives a
global snapshot of the system in which the staleness (and
error) in the state of each node is different. Yet we obtain
sufficient conditions for the tracking application to meet its
requirements.
Communicating periodic global state snapshots is a well
studied problem in distributed systems [13] and consistency,
timeliness and reliability have been the main design consid-
erations in those studies. But efficiency becomes essential
when considering periodic snapshots for resource constrained
wireless sensor networks. To the best of our knowledge
algorithms for delivering periodic snapshots across a wireless
sensor network with distance sensitivity properties have not
been studied before.
Outline of the paper: In Section 2, we derive the sufficient
conditions for successful pursuit (that result in eventualcatch)
and translate these to network abstractions. In Section 3, we
describe a snapshot service for wireless sensor networks that
implements these network abstractions and show how the
snapshot service can be adapted to pursuit control require-
ments. We conclude in Section 4.

II. PURSUIT CONTROL DESIGN

Application model: One or more pursuer objects are required
to eventuallycatch all evader objects spread over a bounded
region. The pursuer objects are assisted by a wireless sensor
network that provides the state (location) of evader objects to
the pursuer objects. We assume that every pursuer is assigned
to track at most one evader at a time. The pursuit controller
resides in each pursuer object and uses the evader location
provided by the sensor network to converge on the evader’s
location. In our analysis, we consider the case where one
pursuerp has been assigned to an evadere and this assignment
holds until the evader is caught. Note that an eventual catch
in this scenario is sufficient to show that all evaders will be
eventually caught. Acatch is said to occur when when the
distancedpe between a pursuerp and an evadere assigned to
p is smaller than a constantε.
We assume the existence of a reliable object detection and
association service that assigns a unique identifier to every
object in the network. The problem of detecting objects in
the network and uniquely associating them with previous
detections is orthogonal to the problem of supplying this

information in a timely and reliable manner for pursuit control
and guaranteed convergence, which is the focus of this paper.
Detection and association services can be implemented in a
centralized [1] or distributed [14] fashion; the latter approach
would suit integration with the distributed pursuit control
strategy that we discuss in this paper.
System dynamics: Let the pursuer and evader speeds be
constant, denoted byvp andve respectively. LetXp(t) denote
the location[xp(t), yp(t)]

T of a pursuer at any timet. Let
up(t) denote the control action executed by a pursuer at time
t that dictates the direction of motion at timet (since speed
is constant). Thus, we have

Ẋp(t) = up(t) (1)

Similarly let Xe(t) denote the location[xe(t), ye(t)]
T of a

pursuer at any timet. Let yp(t) denote the state of the evader
that is supplied to the pursuer at timet by the underlying
sensor network service. In our model, these updates are
provided only at certain instants of time and let{Tk} denote
the set of times when a new update is available to a pursuer.
At all times that an update is available, note thatyp provides
an estimate of the evader’s location at that time because the
network delivers the state with certain latency and error. At
other times,yp reflects the evader’s location at the last time
that an update was available. Thus, we have,

yp(tk) = X̂e(tk) (∀tk ∈ {Tk}) (2)

yp(tj) = X̂e(tj−) (∀tj /∈ {Tk}) (3)

In Eq. 3, tj−, corresponds to the largest timestamp, less than
or equal totj, that belongs to{Tk}.
The pursuit control strategy (up(t)) is simply to move along
a straight line towards the most recent available location of
the evader with a speedvp. At all times tk ∈ {Tk}, the
pursuer changes its trajectory towardsˆXe(tk) and at other
times continues on the straight line towards the previous
estimate. Let<

−−→
P, Q > denote the unit vector in the direction

from point P to point Q. Thus, we have:

up(tk) = vp(<
−−−−−−−−−−→
Xp(tk), X̂e(tk) >) (∀tk ∈ {Tk}) (4)

up(tj) = vp(<
−−−−−−−−−−−→
Xp(tj), X̂e(tj−) >) (∀tj /∈ {Tk}) (5)

Let dpe(t) denote the distance between the pursuer and evader
at timet. Let δ(t) denote the staleness in the state ofe supplied
to p at timet. Let I(t) denote the maximum interval after time
t at which location ofe can be provided top. Let α =

vp

ve
,

whereα > 1.

Theorem II.1. Evadere will be eventually caught by pursuer
p if there exists constantk > α+1

α−1 and timeTo such that the
following conditions hold at allt > To:

G1 : |Xe(t) − X̂e(t)| <
dpe(t)

k

G2 : δ(t) < (
dpe(t)

ve
)(1 − α+k+1

kα
)

G3 : I(t) < dpe(t)(
k+1
kvp

)

Proof:
Consider timet > To, such thatt ∈ {Tk}. If the maximum
error in the location of the evader is denoted asdpe

k
(where

conditions onk are yet to be derived), the actual locationXe
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of evadere at time t is within a ball of radiusdpe(t)
k

around
ˆXe(t). Therefore, the maximum distance betweenXp(t) and
ˆXe(t) is bounded by the following inequality.

dist(Xp(t), X̂e(t)) < dpe(t)(
k + 1

k
) (6)

At time t, the action of the pursuer is to move towards
ˆXe(t). Let us assume that next information about the evader

is available top only after reaching ˆXe(t). It follows using
Eq. 6 that this interval (I(t)) is equal to the maximum time
taken to travel fromXp(t) to ˆXe(t) and is bounded by the
following inequality.

I(t) < dpe(t)(
k + 1

kvp

) (7)

Note that there is a staleness ofδ(t) in the information about
the evader available at timet. Additionally, a timeI(t) is taken
to travel towards the estimated location. During these times,
the evader can change its location with a speed ofve. Using
Eq. 7, we have the following inequality.

dpe(t + I(t)) < vedpe(t)(
k + 1

kvp

) +
dpe(t)

k
+ veδ(t) (8)

In order for eventual catch, we require thatdpe(t + I(t)) <
dpe(t). Using this, we get the following inequality.

δ(t) < (
dpe(t)

ve

)(1 −
α + k + 1

kα
) (9)

Note that forδ(t) > 0, we require thatα+k+1 > kα. Using
this we get the following equation:

k >
α + 1

α − 1
(10)

Thus, we have shown that conditionsG1, G2 and G3 of
Theorem II.1 and Eq. 10 are sufficient for the distances
between pursuer and evader to monotonically decrease at each
successive time instant belonging to set{Tk} and to eventually
reachε.

Lemma II.2. Let D0 denote the initial distance between the
pursuer and evader at timet0 : to ∈ {Tk}. If conditions for
eventualcatchspecified in Theorem II.1 are satisfied, then the
time, τc, required by a pursuer to eventually catch an evader
is bounded by the following inequality.

τc <
D0(k + 1)

kvp

logθ(
D0

ε
) (11)

Proof: Let θ denote the ratio of distance between pursuer
and evader in two successive time instants that belong to set
{Tk}. Using Eq. 8 and Eq. 9, we have:

θ =
dpe(t)

dpe(t + I(t))
>

1
k+1
kα

+ 1
k

+ 1
ve

− α+k+1
αkve

(12)

Recall that acatch is said to occur when when the distance
between pursuer and evader reduces toε. Hencelogθ(

D0

ε
) such

update intervals will be needed to reduceD0 to ε. Noting from
Eq. 7 thatI(t0) < D0(k+1)

kvp
, we get Eq. 11.

III. D ISTANCE SENSITIVE SNAPSHOT SERVICE

In this section, we design a network middleware service that
can be used for supplying information about evader objects
to pursuer objects while meeting the sufficient conditions for

pursuit control stated in Theorem II.1.

A. Distance sensitive snapshots
Definition III.1 (SnapshotSV ). A snapshotSV : V → <×<
of a set of nodesV is a mapping from each nodei ∈ V to a
state value (X ∈ <) and a timestamp (t ∈ <) associated with
that state value.

Let Xi(S
V ) denote the state of nodei ∈ V in snapshot

SV and let ti(S
V ) denote the timestamp of the state of

node i ∈ V in snapshotSV . A consistent snapshot [13] is
one where the timestamps associated with the state of each
node in the network are the same. In order to be feasible to
implement in a resource constrained wireless sensor network,
we relax the consistency requirement for a snapshotSV along
the dimensions of latency, error and periodicity of delivery.
Let τ denote the current time. Letd(i, j) denote the distance
between nodesi andj in the network.
Definition III.2 (Snapshots with distance sensitive latency).
A snapshotSV received by a nodej has distance sensitive
latency if γi(S

V ) = O(d(i, j)) ∀i : i ∈ V , whereγi(S
V ) is

the staleness of the state of nodei in snapshotSV .

Definition III.3 (Snapshots with distance sensitive error). A
snapshotSV received by a nodej hasdistance sensitive error
if ei(S

V ) = O(d(i, j)) ∀i : i ∈ V , where (ei(S
V )) is the

error of the state of nodei in snapshotSV .

Definition III.4 (Snapshots with distance sensitive rate). A
nodej receives a snapshotSV with distance sensitive rateif
ζi = O(d(i, j)) ∀i : i ∈ V whereζi is the rate at which state
of nodei is updated in the snapshotSV is received byj.

Note that the concept of distance sensitive rate is orthogonal
to that of distance sensitive latency. In the latter staleness in
the state received decreases with distance but fresh information
arrives at the same rate at all nodes, where as in the former, the
state of nearby nodes is reported more often than farther nodes.
For reasons of exposition, in this paper we present a version
of the algorithm (hereby referred to asDSS) that provides
snapshots which are distance sensitive in latency and error,
and then updates these snapshots at the highest rate for all
nodes. We note that, in order to meet the requirements of
the pursuit control application, it would have been sufficient
to progressively decrease the update rates at larger distances.
The refinement to DSS that adds distance sensitivity in rate
can be found in [15].

B. Network model

We consider a sensor network consisting ofN nodes that
induce a connected network where each node can commu-
nicate atW bits per second. The nodes may have an irregular
communication range and may be arbitrarily deployed in a
bounded region. Nodes are assumed to know their geographic
location and assumed to be synchronized in time.
DSSdepends on an underlying hierarchical partitioning of the
nodes into clusters of increasing sizes and the implementation
of a tree data structure for routing on those clusters. We
partition the network into a hierarchical one with a number
of levels Lmax = O(log(N)) with the clusters at level0
representing the individual nodes in the network. In order
to provide this clustering, we use a clustering serviceFLOC
[16]. The algorithm starts by first creating a1 level clustering
[16] which is then iterated with clusterheads at each new level
resulting in a hierarchical clustering [17]. The algorithmfor
clustering is distributed, local and finishes inO(1) time. More



4

specifically, the properties provided by the clustering service
are listed below.

(a) (b)

Fig. 2. (a) Hierarchical clustering for a regular grid network. All clusters
at a given level are of same size (given by propertyC2). (b) Hierarchical
clustering in a network withholes, non-uniform density and irregular com-
munication range. All clusters at a given level have a minimum size (given by
C2), but nodes beyond that minimum distance and up to a maximum distance
(specified byC3) from the clusterhead can belong to the same cluster in order
to be locally self-stabilizing. Level1 clusterheadA and its7 neighboring level
1 clusterheads are shown.

C1 : A unique node is designated as clusterhead at each level.

C2 : All nodes within distance3
r−1
2 from a levelr clusterhead

belong to that cluster.
C3 : The maximum distance of a node from its levelr
clusterhead is3r − 1.
C4 : There exists a path from each clusterhead to all nodes in
that cluster containing only nodes belonging to that cluster.
C5 : At all levels r : 1 ≤ r < Lmax, there is at least
one and at mostηb neighboring levelr clusters for each
level r clusterhead and there exists a path between any two
neighboring clusterheads.
We note that such a clustering can tolerate the addition and
deletion of nodes in the network inO(1) time and in alocally
self-stabilizingmanner by which the changes to the clustering
are contained within a constant distance from the location of
the added or deleted node and do not propagate network-wide
causing a global reassignment of clusters and clusterheads. In
order to maintain the local self-stabilizing properties inthe
presence of node additions and deletions, it is shown in [16]
that we cannot impose a requirement on cluster sizes at given
level to be exactly the same. A factor of2 in the allowable
cluster size is necessary to ensure that any changes in topology
are resolved in a local manner. This is reflected in property
C3 of the clustering service. Thus all nodes within distance
3r−1

2 from a levelr clusterhead are required to belong to that
cluster but the maximum distance of a node from its levelr
clusterhead can be3r − 1.
By default, the distances stated in propertiesC1−C5 denote
communication hop distances. In Fig. 2(a), we show an
example of the clustering for the scenario where the network
contains uniformly spaced nodes with equal communication
range and separated by a one hop communication range (which
we hereby refer to as a regular grid network). In this scenario,
all clusters belonging to the same level are of the same size,
each cluster at a given level has exactly8 neighbors at that
level, and the distances in propertiesC1 − C5 reduce to
geometric distances. In Fig. 2(b), we show an example of the
clustering within a single level when the network radio range is
irregular and may contain regions of higher and lower density.

In this case,FLOCdoes not yield clusters of the same size any
more. Instead there is a minimum and maximum size for each
cluster as indicated by propertiesC2 andC3. Moreover, the
distances stated in propertiesC1 − C5 are now hop distance
(as radio ranges may be non-uniform and nodes are not equi-
distant) and not necessarily geometric distance.
Let j.L denote the highest level for whichj is clusterhead.
Let hr

j denote the clusterhead for nodej at level r. Thus
hr

j = j(∀r : 0 ≤ r ≤ j.L). Let {N r
j } denote the set of

neighbors for nodej at level r. Note that by propertyC5,
there are at mostηb neighbors at each level for each node
in the network. We implement virtual trees on the clusters at
each level. Lettree(r, j) denote a levelr tree formed withj
as root and spanning all nodes in the levelr cluster ofj and
all level r clusters that are its neighbors. Letj.in(r, y) denote
j’s parent towards rooty on tree(r, y). Let j.out(r, y) denote
the set ofj’s descendants ontree(r, y). Let M(r, j) denote
the levelr summary computed by a levelr clusterheadj.

C. Algorithm for distance sensitive snapshots

We present the algorithm for distance sensitive snapshots by
first describing three building blocks forDSS: (1) aggregation,
(2) scheduling and (3) storage. We then use these building
blocks to present the actions executed at each node.
1) Aggregation: In this subsection, we describe how the
location of objects being tracked is encoded in the state of
individual nodes in the network and how this information is
aggregated at higher levels in the hierarchy. Letne denote the
number of objects in the network, numbered from1, .., ne.
An object e is said to reside at nodei if object e is closest
to node i compared to all other nodes in the network and
node i is then responsible for encoding the location ofe.
Accordingly, the area over which the network is deployed
is divided into Voronoi cells with each node responsible for
encoding the location of objects within its own cell. LetΨi

denote the Voronoi cell corresponding to nodei. Each node
i then dividesΨi into g equi-sized regions. If an objecte
lies within Ψi, then nodei marks the location ofe as one
of the g regions anddlog2(g)e bits are used to encode the
location. Thus, the state of each nodei in the network at a
given time consists ofdlog2(g)e bits per object in the network
and contains the location of an object if the object resides at
i. A total of m = ne(dlog2(g)e) bits are allocated to represent
the state of each node at any instant. The number of regions
(g) used to represent the location of an object within a cluster
corresponds to the granularity of an object’s location within
a cluster. For instance, ifg = 1, then only the presence or
absence of each object within a cluster will be known by this
encoding strategy, but the error in the location of the object
provided by a levell clusterhead will be equal to the maximum
radius of a levell clusterhead as the object can be anywhere
in the cluster.
At higher levels in the hierarchy, a clusterheadj at each level
r : 0 < r ≤ Lmax is responsible for aggregating the location
of all objects that lie within the area enclosed by the Voronoi
cells of all level 0 nodes in its cluster at levelr, and we
denote this area asAr,j . To perform this aggregation, each
clusterheadj dividesAr,j into the same number of regionsg.
The aggregation function at a levell clusterhead then maps
the location of an object from one of theηbg regions provided
by theηb neighboring levelr− 1 clusterheads into one of the
g regions of the levelr cluster.
Let Me(r, j) denote the location of an objecte in a level r
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for each y such thaty ∈ {N
r−1

j
}

for each object e such thatMe(r − 1, y) 6=⊥
Me(r, j) = Ar,j / Me(r − 1, y)

end for
end for
for each object e such thatMe(r − 1, j) 6=⊥

Me(r, j) = Ar,j / Me(r − 1, j)
end for

Fig. 3. Aggregation functionAF to computeM(r, j) at nodej : j.L > 0.

Fig. 4. Transmission in each round is divided into 3 phases. At the end of each
round, information is exchanged between neighboring level1 clusterheads. (a)
Phase 0 corresponds to slot 0. Nodes withj.L > 0 compute the summaries
of clusters for which they are leaders and transmit these to descendants on the
respective trees. They also forward information received in previous round on
trees that they belong to but are not the root, and forward this information to
descendants on the respective trees. (b) In phase1 all level 0 nodes take turns
to transmit information heard in phase0 to descendants on all trees that they
belong to. This results in information propagating outwards from the level
1 cluster that they belong to. (c) In phase2 all level 0 nodes take turns to
transmit information heard in phase1 to descendants on all trees that they
belong to. This results in information coming inwards to their respective level
1 clusterheads.

summaryM(r, j) computed by nodej. Let Me(r, j) =⊥ if e
does not lie withinAr,j . Note thatMe(r, j) will correspond
to one ofg regions withinAr,j if Me(r, j) 6=⊥. Now consider
areaAr+1,k corresponding to a clusterheadk at levelr+1 such
thatAr,j ⊂ Ar+1,k. Let Ar+1,k/Me(r, j), denote one of theg
regions withinAr+1,k that contains the centroid of the region
Me(r, j). In Fig. 3, we state the aggegation functionAF , that
computes the next higher level aggregateM(r, j) using the
summariesM(r−1, y) computed by the levelr−1 neighbors
of nodej, and the levelr − 1 summaryM(r − 1, j) that is
computed by nodej itself. We note that at higher levels of
the hierarchy, information is aggregated into the same number
of bits m, and error in the location of an object being tracked
increases (proportional to the maximum size of a cluster). We
now state the following proposition.

Proposition III.1. The error in the state of a nodei in a level
r summary corresponds to the maximum error in encoding the
location of any object residing ati in a levelr summary and
is bounded byO(3r).

2) Schedule: We schedule the nodes to transmit in rounds.
A round is defined as a unit of time in which information
is exchanged between a level1 clusterhead and all of itsηb

neighboring level1 clusterheads. Each round is divided into
multiple slots in3 phases (illustrated in Fig. 4). In the first slot
(phase0), all nodes withj.L > 0 transmit. In the remaining
slots, all level0 nodes in each cluster transmit twice, once in
each phase. The second transmission by a node within a round
(phase2) takes place after all its neighbors have transmitted at
least once. The messages that are transmitted during these slots
are stated in Fig. 5. A simple non-interference schedule that
satisfies these constraints in a grid network (with8 neighbors
per node) is one where all level0 nodes take turns. In general,
each round will consist of a constant number of slots,ηs that
depends on the schedule chosen. Letsw denote the duration

Actions for node j : j.L > 0
In slot 0 of each round:

∀r : 1 ≤ r ≤ j.L
Compute:M(r, j) usingAF
Send:M(r, j) → j.out(r, j)

∀x, y : j ∈ tree(x, y)
Send:M(x, y) → j.out(x, y)

Actions for node j : j.L = 0
In each transmission slot forj determined by the scheduling block:

∀x, y : j ∈ tree(x, y)
Send:M(x, y) → j.out(x, y)

Receive Actions at nodej
Upon receivingM(x, y) from nodei

StoreM(x, y) if i = j.in(x, y)

Fig. 5. Actions at each node inDSS for distance sensitive snapshots.

of each transmission slot.

3) Local storage: The snapshot received by a nodej at the
end of each round consists ofM(x, y) received by nodej in
that round for eachx, y such thatj ∈ tree(x, y). Each node
stores only the most recent snapshot. Thus each nodej’s local
storage contains the following summaries:

• M(x, hx
j ) (∀x : 0 ≤ x ≤ Lmax)

• M(x, y) (∀x, y : (0 ≤ x ≤ Lmax) ∧ (y ∈ Nx
j ))

4) Actions at each node: In this subsection, we describe
the actions executing at each node. These actions are stated
in Fig. 5. In slot 0 of each round nodes withj.L > 0
compute the aggregateM(r, j) for each levelr that they are
a clusterhead of based on the levelr−1 aggregate received in
the previous round, using the aggregation function described
previously. The computed aggregate at each levelr is then
transmitted to the descendants on the respective tree rooted
at j, i.e., j.out(r, j). In addition, for eachtree(x, y) that j
belongs to but is not a root of,M(x, y) heard in previous
round from j.in(x, y) is transmitted toj.out(x, y). In their
respective phase1 and phase2 slots, nodes at level0 simply
transmitM(x, y) as heard in the previous phase of that round
from j.in(x, y) to j.out(x, y).
Thus, aggregates computed at each level are transmitted out-
wards to descendants along a tree. This is sufficient for a level
r node to compute aggregates from levelr−1 nodes, because a
tree at levelr−1 extends up to all level0 nodes in neighboring
level r − 1 clusters. And one of the neighboring levelr − 1
node is a levelr node. Thus, when a computed aggregate by
any node is being dispersed to nodes in its own cluster and
the neighboring clusters, it is also being sentin to a higher
level node to compute an aggregate.

D. Analysis

Theorem III.1. In DSS, the staleness in the state of a node
i in the snapshot delivered at nodej is O(d) where d =
dist(i, j).

Proof: Consider a node at levelr. To compute a summary
at level r, level r − 1 summaries are needed. The maximum
distance betweenp and its neighboring levelr − 1 clusters
is 2(3r−1) (From propertyC3). Thus, a levelr summary is
computed based on a levelr− 1 summary that was generated
2ηssw3r−1 time ago, since latency between each pair of level
1 nodes (length of around) is ηs slots. A levelr−1 summary
is computed based a levelr − 2 summary, and so on until
level 0. Upon summation, we see that the staleness of a level
0 (individual node) state information in a levelr summary
bounded byηssw3r. Now, the maximum distance traveled by
a level r summary is3r+1 and the latency is bounded by
ηssw3r+1. Therefore, the maximum total staleness in the state
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of any nodei in a levelr summary is bounded by4ηssw3r.
Also, the minimum distanced betweenj and i for which a
level r summary is the smallest level that contains information
abouti is 3r−1. Expressing the maximum staleness in terms
of the minimum distanced, we get the result.

Theorem III.2. In DSS, the error of state of a nodei in a
snapshot received at nodej is O(d) whered = dist(i, j).

Proof: Recall from propositionIII.1 that the maximum
error in the state of a nodei provided by a levelr clusterhead
is bounded byO(3r). The minimum distance betweeni and
j at whichj gets a levelr summary ofi but not a levelr− 1
summary ofi is 3r−1. Thus, the error in the state ofi in a
snapshot received atj is O(d), whered = dist(i, j).
ThusDSSprovides snapshots at each node that satisfy prop-
erties of distance sensitive latency and error. These snapshots
are updated at each node for all levels at a regular rate with an
interval of oneround length (ηssw). Extensions toDSS that
incorporate distance sensitivity in rate can be found in [15].

E. Distance sensitivity in an irregular network

In a network with non-uniform density such as the one in
Fig. 2(b), the tree structure between clusters may not yield
a path between nodes that is proportional to the geometric
distance between them. However, the clustering properties
C1 − C5 ensure that the path between two nodes is pro-
portional to thehop distance or the shortest path available
between the two nodes in the network graph. This ensures
that the distance sensitivity properties of the snapshot service
are preserved in terms of thehop distance as opposed to the
geometric distance.

F. Adapting snapshot service to application parameters

We now illustrate the co-design aspect of our approach by
providing an example of how the application parameters
(specifically the relative speeds of the pursuer and evader)can
be used to decide on allowable network latency, thus affecting
the system communication cost. Recall from Theorem II.1 that
the allowable latency at any instant is given by Eq. 9. InDSS,
the maximum staleness in the state of an object at any instant
is given by Eq. 13. Using these, the allowable slot width for
DSScan be determined as a function of the pursuer and evader
speeds, as stated in the following Lemma.

Lemma III.3. In order for DSS to satisfy the requirements of
eventual pursuit control stated in TheoremII.1, the duration
of each transmission slotsw must be smaller than 1

12ηsve
(1−

α+k+1
kα

).

As evader speed decreases, we note that the requirement
on the network service is relaxed and the allowable slot
width increases which consequently reduces the cost of com-
munication. Thus we are able to select network parameters
that minimally satisfy the conditions for successful pursuit
control, enabling us to optimize overall system performance.
A similar analysis can be performed with respect to adjusting
the communication cost based on allowable rates and error,
which for reasons of space have not been presented here.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we adopted a co-design approach to operate
a distributed control application on top of a wireless sensor
network by exploiting distance sensitivity as a locality concept.
We showed that information that degrades linearly with dis-

tance in terms of latency, error and rate of delivery is sufficient
to guarantee pursuit of evaders and then designed algorithms
that periodically deliverdistance sensitivesnapshots of the
system to pursuing agents.
The snapshot service designed in this paper can be addi-
tionally optimized for efficiency in the following ways: (1)
Firstly compression in the temporal domain can be achieved
by transmitting only the state of nodes that have changed
from the previousround. (2) Secondly, the snapshot service
can be specialized to transmit information only to a subset
of nodes. With knowledge of future pursuer locations, the
algorithm can be tuned at run-time to supply only aggregated
information in specific directions and thereby realize savings
in communication cost. In this paper, we have ignored errors
in the underlying object detection service with respect to
object localization, track association, false alarms and missed
detections. Consideration of these errors for reliable pursuit
control is feasible and is an interesting avenue for further
research.
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