
Distance Sensitive Snapshots in Wireless Sensor Networks

Vinodkrishnan Kulathumani and Anish Arora

Department of Computer Science and Engineering, The Ohio State University
(vinodkri, anish)@cse.ohio-state.edu

Abstract. Global state snapshots are a fundamental primitive for wire-
less networks that sense and control real environments. Consistent and
timely snapshots are potentially costly. Cost reduction is often realized
by gathering only a “delta” from previous snapshots. In this paper, we
explore an alternative form of efficiency by generalizing the notion of a
snapshot to satisfy distance sensitivity properties, wherein the state of
nearby nodes is available with greater resolution, speed, and frequency
than that of farther away nodes. Our algorithms are memory efficient
and do not require global time synchronization or localization.
For pedagogical reasons, we describe our solutions for the case of per-
fect 2-d grid topologies first, and then show how to extend them for
higher dimensions, for network with irregular density, arbitrary sized
holes, networks and non unit disk radios. We also discuss how different
control applications can exploit these generalized snapshots.

1 Introduction

Sensor networks have found significant adoption in continuous observation ap-
plications and are now progressively being incorporated in distributed control
applications, for instance, pursuer evader tracking [1,2] and control of distributed
parameter systems such as flexible structures [3,4]. These applications often re-
quire information from network nodes to be periodically delivered to one or
more observer/controller nodes in the network in a consistent and timely man-
ner. For example, in pursuer evader tracking, pursuer objects require ongoing
knowledge of other pursuer/evader locations in order to maintain an optimum as-
signment. In distributed vibration control of flexible structures, controllers need
to (re)estimate the modes of vibration using samples from across the network
in order to optimally assign controllers for each mode and to use the optimal
control parameters. Thus global state snapshots are fundamental for wireless
networks that sense and control real environments.
Although consistency, timeliness, and reliability have traditionally been the main
design considerations for periodic snapshots, their efficiency becomes essential
when considering resource constrained wireless sensor networks. The standard
way to realize efficiency is to communicate the “delta” from previous readings or
from model-driven predictions, possibly in compressed form. In this paper, we
explore a complementary form of efficiency based on the observation that many
applications can accommodate generalized forms of snapshots, wherein the in-
formation delivered across the network is not necessarily consistent but satisfies
certain distance sensitive properties: The state of nearby nodes has greater reso-
lution (distance sensitive resolution), arrives faster (distance sensitive rate) and

2 Vinodkrishnan Kulathumani and Anish Arora

with higher speed (distance sensitive latency). By way of example, consider: (1)
In pursuer evader tracking, information about nearer objects are required at a
faster rate and lower latency that that of farther objects for guaranteeing optimal
pursuit [1, 5]. (2) In scale based control [6] used for vibration control of flexible
structures, different controllers are assigned to different modes (frequencies) of
vibration; in this case, estimating characteristics of lower frequencies requires
information from a wider area but that can be sampled at a slower rate and
coarser resolution than that for nearer areas.

While collecting snapshots at a central base station has been a common pat-
tern in sensor networks, delivering snapshots to nodes in-network is desirable
from an efficiency and correctness perspective in large scale networks used for
applications such as object tracking [5] and distributed control and is also an
emerging pattern in applications involving mobile users. In this paper we focus
on in-network delivery of snapshots.

Informal problem statement: Given is a connected wireless sensor network
with N nodes embedded in an f dimensional space. Each node periodically
generates m bits of information, can communicate at W bits per second, and is
memory constrained.

Design efficient snapshots of the network state that are distance sensitive
in resolution, latency, and rate for periodic delivery at (some or all)
nodes.

Contributions: In this paper, we systematically design wireless sensor network
algorithms that periodically deliver distance sensitive snapshots to all nodes in
the network. Our algorithms are easily adapted to allow snapshots to be delivered
only to a subset of nodes as opposed to all nodes. They are memory efficient,

requiring only O(3f ∗ log(N
1

f) ∗ m) bits per node. They are readily realized in
networks with irregular density, networks with arbitrary sized holes, imperfect
clustering, and non unit disk radios. We quantify the maximum rate at which
information can be generated at each node so that snapshots are periodically
delivered across the network, the algorithms can of course be operated at lower
rates than these. For our services, global time synchronization is not required; a
local notion of time however is needed to ensure fair scheduling of transmission
of nodes.
Overview of algorithms and main results: Consider an ideal network where
nodes are embedded in a virtual 2-d grid such that there is exactly one node
at each grid location and that each grid node can reliably reach each of its
neighbors in the grid and no others. Snapshots with distance sensitive latency
may be realized in these grids, firstly, by scheduling each node to transmit its
local view of the network so as to not interfere with its neighbors and, secondly,
by ensuring that the schedules all nodes to transmit at the same rate. In order to
ensure uniform latency, we introduce a single level of clustering to regulate the
flow of information in all directions by proceeding in rounds. Intuitively, a round
is a unit of time when information is exchanged between any level 1 cluster and
all its neighboring clusters. Our scheduling and other protocol actions at each
step are such that information is propagated across the network in a pipelined

Distance Sensitive Snapshots in WSNs 3

manner; by this, new information can be generated at a node as soon as previous
information has been dispersed only to its local neighborhood as opposed to the
entire network.

In this first algorithm, in a snapshot S of the network delivered to all
nodes the staleness of the state of a node i in S is O(3f ∗ N ∗ m ∗ d),
where d = dist(i, j), and the average network communication cost is as
high as O(N2 ∗ m) for N samples (one from each node).

To add distance sensitive resolution, instead of dispersing the individual state of
each node, we map the state of nodes into aggregate values of non-overlapping
regions. We then deliver snapshots across the network such in a snapshot deliv-
ered to a node j, the size of a region into which a node i is mapped increases
as dist(i, j) increases. Thus, the resolution with which i is represented in the
snapshot decreases as dis(i, j) increases. To achieve this kind of snapshot deliv-
ery, we refine the clustering of nodes into a hierarchical one with a logarithmic
number of levels as the network size. The basic idea is that a clusterhead at each
level compresses data from all nodes in that level into m bits. Thus, the data
aggregated at each level is represented by the same number of bits. At higher
levels, the data is summarized with a coarser resolution as these levels contain
more nodes.

In this second algorithm, in a snapshot S of the network delivered to
node j the resolution of the state of a node i in S decreases as O(df),
the staleness of the state of a node i in S is O(32f ∗ m ∗ log(n) ∗ d) and
the average network communication cost for N samples is O(3f ∗ log(n)∗
N ∗ m).

To achieve distance sensitive rate, we schedule the delivery of aggregated infor-
mation at each level such that information of higher levels is delivered over a
larger interval as opposed to lower levels. We do this in two ways. In the first
solution, we allocate an exponentially increasing number of bits per message to
lower level aggregates so that they are delivered at a faster rate. In the second
solution, we allocate more time for aggregation and dispersion of lower level
data.

In the first of these two algorithms, the average communication cost per
N samples (one from each node) is O(3f ∗ N ∗ (m + log(n/m))). In the
second, the average communication cost per N samples (one from each
node) in the second algorithm is O(N ∗ m), but the staleness of the
received states grows as O(df).

Our algorithms allow for a user-pluggable aggregation function. We require only
that the function, say f, be idempotent and satisfy the following decomposability
property: ∀a, b, f(a∪b) = f(f(a)∪f(b)). Examples of such functions are average,
max, min, count and wavelet functions.
We then relax our regularity assumptions and describe how our algorithms han-
dle the cases of non uniform density, non uniform radio range and holes of
arbitrary sizes in the network. The case of over density is modeled as certain
virtual grid locations containing more than 1 node. In the case of holes in the

4 Vinodkrishnan Kulathumani and Anish Arora

network, we show that our algorithms achieve distance sensitivity in terms of the
shortest communication path between any two nodes as opposed to the physical
distance.
Outline of the paper: In Section 2, we present the system model. In Section 3,
we design a snapshot service that has the property of distance sensitive latency.
In Section 4, we design a snapshot service that has the additional property of
distance sensitive resolution. In Section 5, we refine our snapshot service so that
snapshots are delivered with a distance sensitive rate property. In Section 6,
we consider irregular networks. We discuss related work in Section 7 and make
concluding remarks in Section 8.

2 Model and specification

In this section, we present the system model and a generalization of the concept
of snapshots based on distance sensitive properties.
Network model: A sensor network consists of N nodes that are embedded in
an f -dimensional space. We let n abbreviate N

1

f . The nodes induce a connected
network where each communicate at W bits per second. Nodes are synchro-
nized in time. Each node j periodically generates m bits of (sensor) information,
and maintains a data structure comprising the most recent state of nodes (or
partitions of nodes) and a timestamp associated with that state.
In the next three sections (3-5), for ease of exposition, we restrict our attention
to sensor networks that form a 2 dimensional grid with a node at every grid
location. We further assume that node communication follows an idealized disk
model: specifically, each node can communicate reliably with all its neighbors in
the grid and with no others. We define the neighbors of node j to be the ones to
its north, east, west, and south and also to its northeast, northwest, southeast,
or southwest that exist in the grid; we denote these (up to 8) neighbors as j.n,
j.e, j.w, j, s, j.ne, j.nw, j.se and j.sw respectively. In Section 6, we remove each
of these restrictive assumptions.

Definition 1 (Snapshot S). A snapshot S is a mapping from each node in the
network to a state value and a timestamp associated with that state value.

A consistent snapshot is one where the timestamps associated with each state
value are all the same. The staleness of a state value in S is the time elapsed
between its timestamp and the current time. We now consider a generalization
where state values do not necessarily correspond to the same instant of time but
their staleness enjoys a distance sensitive property.

Definition 2 (Snapshots with distance sensitive latency). A snapshot S
received by a node j has distance sensitive latency if the staleness in the state of
each node i in S decreases as dist(i, j) decreases.

We now further generalize the notion of snapshots so that state is associated
with partitions p of the network as opposed to individual nodes. Let P be a
partitioning of the network.

Definition 3 (Snapshot S of P). A snapshot S of P is a mapping from each
partition p in P to a state value and a timestamp associated with that state value.

Distance Sensitive Snapshots in WSNs 5

The generalized definition is useful even if P is not a total but a partial partition,
i.e., not all nodes are represented in the snapshot. The state and timestamp of
each p in S intuitively represent the aggregate state of all nodes in the partition
and the aggregate timestamp. We assume that the timestamp of recording the
state of all nodes in any partition p is the same, and refer to this common value
as the aggregate timestamp. Note that the aggregate timestamp of different
partitions may be different.
As there may not exist a mapping from the aggregate state of a partition to the
exact state of individual nodes that was recorded for the purpose of computing
the aggregate, the latter may be estimated using some function of the state of
the partition. The resolution of the state of a node in a snapshot is an inverse
measure of the error between the state of the node that was recorded and the
aggregate state of the partition p that it belongs to.
We are interested in snapshots where the increase in the error in the state of a
node is bounded by the size of the partition p to which it belongs. This leads us
to consider a generalization where the resolution of the state of a node increases
as distance decreases.

Definition 4 (Snapshots with distance sensitive resolution). A snapshot
S of P received by a node j has distance sensitive resolution if the resolution of
the state of each node i covered by P increases as dist(i, j) decreases.

Informally speaking, the size of the partition to which the state of node i is
mapped into in a snapshot received at j increases as dist(i, j) increases. Therefore
the resolution with which i is represented in S decreases with distance.
Finally, we consider a generalization where the rate at which state of the nodes
is reported to a node decreases as the distance of the nodes increase.

Definition 5 (Snapshots with distance sensitive rate). A node j receives
snapshots of P with distance sensitive rate if the rate at which the state of each
node i covered by P is updated in snapshots received by j increases as dist(i, j)
decreases.

3 Distance sensitive latency snapshots

In this section, we describe a snapshot service that has distance sensitive latency.
Moreover, by introducing a single level of clustering, we also achieve information
flow with uniform latency in all directions. Uniformity is a desirable property
especially when aggregation needs to be performed.
Clustering: In order to achieve uniform latency, we create a single level of
clustering. The grid is partitioned in 3 by 3 sub-grids of nodes, with the center
node in each sub-grid cluster being its clusterhead. We call the clusterhead a
level 1 node and the rest of the nodes in the cluster as level 0 nodes. This kind
of clustering is illustrated in Fig. 1.
Schedule: We schedule the nodes to transmit in rounds. A round is a unit of
time in which information is exchanged between a level 1 clusterhead and all
of its 8 neighboring level 1 clusterheads. Each round is divided into multiple
slots. In the first slot, all level 1 clusterheads transmit. In the remaining slots,

6 Vinodkrishnan Kulathumani and Anish Arora

all level 0 nodes in each cluster transmit twice. The second transmission by a
node within a round takes place after all its 8 neighbors have transmitted at
least once. Intuitively speaking, during the first turn for a node, information
is communicated outwards from the clusterhead. In the next turn for the node,
information is communicated to the level 1 clusterhead that the node belongs to.
A simple non-interference schedule that satisfies these constraints is one where
all level 0 nodes take turns in a round robin manner. Each round thus consists
of 17 slots.

Fig. 1. 1 level clustering

Algorithm S1: In slot 0 of every round,
the level 1 nodes update their own state in
the local data structure and transmit the
entire data structure. The level 0 nodes in
each cluster update their local data struc-
ture as follows: wlog, node j.ne copies the
state of all nodes in its own cluster and
the state of nodes in all level 1 clusters
that are not north east of j.
To explain the actions in other slots, with-
out loss of generality, consider level 1

nodes j and k and level 0 nodes j.ne and k.sw, as shown in Fig. 1.
– In the first slot for node j.ne, j.ne transmits its local data structure which

contains the updates that were heard from j. Node k.sw updates the state
of all nodes in clusters that are southwest of k.

– In the second slot for node j.ne, j.ne transmits its local data structure which
contains the updates sent from k and k.sw, heard via k.sw. Node j updates
the state of all nodes in clusters that are north east of j. ut

In the remaining slots, the states are exchanged along the other axes around j. In
algorithm S1, information flows between any 2 nodes through paths defined by
level 1 clusters. Moreover, by the rules of updating a unique path is maintained
for communicating state from a node to any other node [7]. Within a round,
information is fully exchanged in a level 1 neighborhood. Thus, the latency
involved in moving information between a pair of nodes depends on the number
of level 1 clusters in their path, and this is uniform in all directions. Note also
that between a pair of level 1 nodes, information is exchanged in 17 slots and
the length of the path through level 1 nodes is proportional to d. We now state
the following lemmas, the proofs of which have been relegated to the technical
report for reasons of space.

Lemma 1. In S1, the maximum staleness in the state of a node i received by a
snapshot at node j is O(N ∗ m ∗ d) where d = dist(i, j). ut

Lemma 2. In S1, the average communication cost to deliver a global snapshot
to all nodes per sample from each node is O(N2 ∗ m). ut

4 Distance sensitive resolution snapshots

To incorporate the property of distance sensitive resolution, we refine the par-
titioning of the network into a hierarchical one with a logarithmic number of

Distance Sensitive Snapshots in WSNs 7

levels, which are numbered 0..(log3n). A 3 by 3 set of 9 level r clusters form a
cluster at level r + 1, as illustrated in Fig. 2. Each node belongs to one cluster
at each level, and each cluster has a clusterhead which is the center node of that
cluster. A clusterhead at level r is also a clusterhead at levels 0..r − 1.

Fig. 2. Hierarchical clustering

Overview of algorithm S2: The basic idea
is that a clusterhead at each level compresses
data from all nodes in that level into m bits.
Thus, aggregated data at each level is repre-
sented by the same number of bits. At higher
levels, data is summarized into a coarser res-
olution as the levels contain more nodes. The
aggregated data is then dispersed to all nodes
at that level. This solution suffers from a
multi-level boundary problem however: two
nodes could be neighbors but belong to a
common cluster only at level r � 1. Thus
despite being neighbors, both nodes get a summary of the other at a much
coarser resolution than desired. The multi-level boundary problem is illustrated
in Fig. 2, where nodes j and k are neighbors at level 0 but belong to a common
cluster only at level 3. To avoid this problem, we disperse a summary computed
at level r not only to nodes in level r cluster, but also to nodes in all neighboring
level r clusters. We now describe a pipelined implementation of this algorithm.
Notations: Let j.L be the highest level for which j is clusterhead. Note that
there are at most 8 neighbors at each level for each node in the grid topology.
We implement virtual trees along the structure at each level. To describe these
trees, we will need the following definitions.

Definition 6 (tree(k, j)). tree(k, j), where j is a level k clusterhead, is a level
k tree formed with j as root and spanning all nodes in the level k cluster of j
and all level k clusters that are its neighbors.

Definition 7 (j.in(k, y)). For each tree(k, y) that j belongs to, j.in(k, y) is j’s
parent towards root y.

Definition 8 (j.out(k, y)). For each tree(k, y) that j belongs to, j.out(k, y) is
the set of j’s descendants on the tree.

Definition 9 (M(k, y)). M(k, y) is the level k summary computed by a level k
clusterhead y.

In Fig. 3, a level 1 tree rooted at j is shown as an illustration. The level 1 tree
extends up to all level 0 nodes in its own cluster and level 0 nodes in the 8
neighboring level 1 clusters. The trees represent the distance up to which an
aggregate at any level is propagated.
Schedule: In the first slot of a round, level 1 clusterheads transmit. In the re-
maining slots, all the level 0 nodes per cluster take turns and transmit twice such
that the second transmission occurs after all its 8 neighbors have transmitted at
least once, as described in algorithm S1.

8 Vinodkrishnan Kulathumani and Anish Arora

Fig. 3. Illustrating level 1 tree rooted at j

Local storage: Each node i stores
the most recent value of M(x, y)
received by i for each tree(x, y)
that i belongs to. The state of any
node j is obtained as a function
of M(x′, y′) where x′ is the small-
est level that contains information
about j. Recall that the resolution
of the state of j decreases as the
number of nodes in the aggregate

M(x′, y′) increases.
Algorithm S2: We describe the actions executed by the nodes.

– In slot 0 of each round nodes with j.L > 0 compute the summary M(r, j) for
each level 1 ≤ r ≤ j.L that they are a clusterhead of based on the correspond-
ing lower level information received in the previous round. The computed
summary at each level is transmitted to the children on the respective tree
rooted at j. Thus M(r, j) is sent to j.out(r, j) for 1 ≤ r ≤ j.L.

– To explain the actions of level 0 nodes, without loss of generality, consider
level 1 nodes j and k and level 0 nodes j.ne and k.sw as shown in Fig. 1.

• In first slot for j.ne, for each tree(x, y) that j.ne belongs to but is not a
leaf of, transmit M(x, y) as heard in slot 0 from j.in(x, y) to j.out(x, y).
Also, transmit its own information M(0, j.ne) to children in the level 0
tree rooted at j.ne.

• In second slot for j.ne, for each tree(x, y) that j.ne belongs to but not
a leaf of, transmit M(x, y) as heard in slots 2 to 8 from j.in(x, y) to
j.out(x, y).

– The action at any node j upon receiving a message from i is as follows: for
each tree(x, y) that j belongs to, store M(x, y) if i = j.in(x, y). ut

In summary, aggregates computed at each level are copied only going downwards
along a tree. This is sufficient for a level r node to compute aggregates from
level r − 1 nodes, because a tree at level r − 1 extends up to all level 0 nodes in
neighboring level r− 1 clusters. And one of the neighboring level r− 1 node is a
level r node. Thus, when a computed aggregate by any node is being dispersed
to nodes in its own cluster and the neighboring clusters, it is also being sent
in to a higher level node to compute an aggregate. In Fig. 3, nodes p and q
are level 2 clusterheads. Note that the level 1 tree rooted at j reaches the level
2 clusterhead q that j belongs to. Since a level r node is equidistant from all
level r − 1 nodes and because of the uniform latency property, the computed
summaries are synchronous.

Lemma 3. In S2, the slot width sW needed is (9∗log(n)−7)∗m

W
bits per second.

Proof. Note that, at most 9 trees at levels 1..log(n) − 1 can pass through each
node. There is only one level logn tree. Also j belongs to only one level 0 tree
for which it is not a leaf. Hence the maximum message length needed per slot is
(9 ∗ log(n) − 7) ∗ m bits [7]. The result follows. ut

Distance Sensitive Snapshots in WSNs 9

Lemma 4. In S2, the maximum staleness in the state of a node i received by a
snapshot at node j is O(log(n) ∗ m ∗ d) where d = dist(i, j).

Proof. Consider a node p at level r. To compute a summary at level r, level r−1
summaries are needed. dist(p, q) = 3r−1, where q is any node in the set p.nbr(r).
A level r − 1 summary is computed based a level r − 2 summary, and so on
until level 0. Upon summation, the staleness of a level 0 (individual node) state
information in a level r summary is equal to (17/2)∗3r−1∗sw [7]. The maximum
distance traveled by a level r summary is (3/2) ∗ 3r with latency bounded by
(17/2) ∗ 3r ∗ sw. The minimum distance between j and i for which a level r
summary is the smallest level that contains information about j is 3r−1. The
result follows. ut

Lemma 5. In S2, the resolution of state of a node i in a snapshot received at
node j is Ω(1

d2) where d = dist(i, j).

Proof. In a level r summary, the state of 9r nodes is compressed into m bits. We
thus regard the error in the state of each node in that summary to be O(9r).
The minimum distance between i and j at which j gets a level r summary of i
but not a level r − 1 summary of i is 3r−1. Thus, the error in the state of i in
a snapshot received at j is O(d2) and the resolution of state of i in a snapshot
received at j is Ω(1

d2), where d = dist(i, j).

Lemma 6. In S2, the average communication cost in the network to deliver a
snapshot of one sample from each node to all nodes is O(N ∗ log(n) ∗ m).

Proof. To deliver a snapshot with a sample from each node, every node commu-
nicates O(m ∗ log(n)) bits n times. And to deliver a snapshot with y samples
from each node, every node communicates O((n + y) ∗ (m ∗ log(n))) bits, since
all the y samples are pipelined. Hence, if y is large and y = Ω(n), the average
communication cost at each node to deliver a snapshot of a sample from each
node to all nodes is O(m ∗ log(n)). The average communication cost over N
nodes is O(N ∗ (m ∗ log(n)). ut

Lemma 7. In S2, the memory requirement per node is O(log(n) ∗ m) bits.

Proof. Recall that the data structure maintained at each node is the most recent
value of M(x, y) received by i for each tree(x, y) that i belongs to. Nodes do not
buffer information to be forwarded over multiple rounds. The maximum number
of trees through any node is O(log(n)), with m bits of information flowing along
each tree. The result follows.

Extending to other dimensions: In an f dimensional structure, nodes are
divided into clusters with 3f nodes per cluster. Thus there are 3f − 1 level 0
nodes per cluster. Each round consists of 2 ∗ 3f − 1 slots and thus the number
of slots per round increases proportional to 3f . Further, there can be at most
3f − 1 neighbors at each level. Thus, there can be O(3f ∗ log(n)) trees passing
through each node. Using these, we can generalize Lemmas for performance of
S2 [7]. We summarize our results for all algorithms in Fig. 4 in Section 5.

10 Vinodkrishnan Kulathumani and Anish Arora

5 Distance sensitive rate snapshots
In this section, we describe two algorithms in which nodes receive snapshots that
are distance sensitive in latency, resolution and also distance sensitive in rate.

5.1 Distance sensitive rate by data division

We partition the network hierarchically into clusters and schedule nodes to trans-
mit in rounds exactly as we did in algorithm S2. However, instead of transmit-
ting m bits for each level of data in every round, we allocate the number of
bits hierarchically. Accordingly, a message transmitted by a node in any given
round consists of m bits for each level 0 information, m/3 bits for each level 1
information, and 1 bit for each level from log(m) to log(n).
Algorithm S3a: By way of refining algorithm S2, consider a level 0 node
with j.L = r. A level r summary is computed by this node once every 3r rounds
based on the most recent level r−1 summaries it receives. This summary M(r, j),
which consists of m bits, is transmitted in slot 0 of each round with max(1, m

3r)
bits per round. Thus, a level r summary is sent over min(3r, m) rounds. The
actions for forwarding nodes remain the same except for the change that each
node now only receives a fraction of M(x, y) in every round for each tree(x, y)
that it belongs to, and it forwards only that fraction in the next round. We now
state the latency and communication cost of algorithm S3a.

Lemma 8. In S3a, the maximum message length needed per slot in algorithm
is 11 ∗ m

2 + 9 ∗ log(n
m

) bits. ut

Lemma 9. In S3a, the maximum interval between when a node j receives the
state of node i is O((m + log(n/m) ∗ d), where d = dist(i, j). ut

Lemma 10. In S3a, the maximum staleness in the state of a node i received by
a snapshot at node j is O((m + log(n/m)) ∗ d) where d = dist(i, j). ut

Lemma 11. In S3a, the average communication cost to deliver a snapshot of
one sample from each node to all nodes is O(N ∗ (m + log(n/m)). ut

5.2 Distance sensitive rate by time division

Again, we hierarchically partition the network into clusters and schedule nodes
to transmit in rounds exactly as in algorithm S2.However, instead of allocating
exponentially increasing number of bits per level in each round, we allocate each
round to a particular level and the information corresponding to that level is
propagated only in that round. The frequency at which a round is allocated to
a particular level increases exponentially as level decreases.
Algorithm S3b: Consider level r > 0. Let the rounds be numbered starting
from 1. All rounds enumerated by 2r−1 + i× 2r for i > 0 are allocated to round
r, where r > 0. A level 0 information is carried in all rounds. Consider a round
s that belongs to level rs > 0. A node j with level j.L ≥ rs computes the
summary only corresponding to level rs. The computed summary at each level
is transmitted to the children on the respective tree rooted at j. Level 0 nodes
forward information only pertaining to level rs in round s.

Distance Sensitive Snapshots in WSNs 11

Lemma 12. In S3b, the maximum message length needed per slot is 10∗m bits.

Lemma 13. In S3b, the maximum staleness in the state of a node i received by
a snapshot at node j is O(m ∗ d2) where d = dist(i, j). ut

Lemma 14. In S3b, the maximum interval between when a node j receives the
state of node i is O(m ∗ d). ut

Lemma 15. In S3b, the average communication cost to deliver a snapshot of
one sample from each node to all nodes is O(N ∗ m). ut

Lemma 16. In S3a and S3b, the memory requirement per node is O(log(n)∗m).

Both algorithms S3a and S3b can be generalized to f dimensions just as algo-
rithm S2 is [7]. We summarize all our results in Fig. 4.

Algorithm Staleness Communication cost Resolution Interval Memory

S1 O(3f ∗ N ∗ m ∗ d) O(N2 ∗ m) full independent of d N ∗ m
S2 O(32f ∗ log(n) ∗ m ∗ d O(3f ∗ N ∗ m ∗ log(n)) Ω(1

df) independent of d 3f ∗ log(n) ∗ m
S3a O(32f ∗ (m + log(n/m)) ∗ d) O(3f ∗ N ∗ (m + log(n/m))) Ω(1

df) O(3f ∗ (m + log(n/m)) ∗ d) 3f ∗ log(n) ∗ m
S3b O(32f ∗ m ∗ d2) O(3f ∗ N ∗ m) Ω(1

df) O(m ∗ d ∗ 3f) 3f ∗ log(n) ∗ m

Fig. 4. Summary of results for snapshot algorithms

6 Irregular networks

In this section, we show how our algorithms continue to yield distance sensitive
snapshots in the following cases: non uniform density, holes of arbitrary sizes
within the connected network, non unit disk radios and imperfect clustering.
Clustering Model CM : We assume the existence of a clustering layer that
partitions the general but connected network, as modeled in Section 2, into
hierarchical clusters such that every network node belongs to one cluster at
each level. As perfect (i.e., regular and symmetric) clustering may no longer be
possible, we weaken that assumption to: each level 1 cluster includes all nodes
that are 1 hop away but may also include nodes that are up to some bounded
number of hops, z, from it. Likewise, all higher level clusterheads also have the
same radius range as opposed to a uniform radius.
More formally, our clustering assumption is stated as follows. For simplicity we
specify the model for a 2 dimensional network that can be generalized to f
dimensions. In this model, we refer to distance in terms of communication hop
distances.
– (C1) All nodes within hop distance 3k

−1
2 from a level k clusterhead belong

to that cluster.
– (C2) The maximum hop distance of a node from its level k clusterhead is

zk × 3k
−1
2 .

– (C3) There exists a path from each clusterhead to all nodes in that cluster
containing only nodes belonging to that cluster.

– (C4) At all levels k > 0, there is at least one and at most 8 neighboring level
k clusters for each level k clusterhead and there exists a path between any
two neighboring clusterheads.

We note that the existence of such clustering solutions has been validated in
previous research [8] and also been used in the context of object tracking.

12 Vinodkrishnan Kulathumani and Anish Arora

Fig. 5. Virtual grid

Once the network has been partitioned into clus-
ters, we impose a virtual grid on the network, as
shown in Fig. 5. Each level 0 node belongs to
some cell, but now each cell in the virtual grid
may contain any number of nodes. In particular,
cells may be empty and empty cells may be con-
tiguous; we call sets of contiguous empty cells
the holes of the network.
Over density cells: In the virtual grid, each

cell gets a slot to transmit as described in algorithm S2. When a cell has more
than one node, each node in the cell gets a turn over multiple rounds to send its
data, resulting in time sharing between nodes of a cell to transmit its own data.
However, once data is sent out from the source, the forwarding of the data does
not incur this extra delay despite going through denser cells. This is because any
node in the dense cell that gets a turn in a given round can forward the data
heard in the previous round from neighboring cells.
Under density cells, holes, and imperfect clustering: We first describe
the changes needed in the scheduling to handle clusters of non uniform size. We
then describe how distance sensitivity is preserved.
Scheduling scheme (FS): Recall that a round is a unit of time in which infor-
mation is exchanged between a level 1 clusterhead and all its neighboring level
1 clusterheads. In the general model, a level 1 cluster can cover up to a z hop
neighborhood. Accordingly, the basic round scheduling introduced in Section 3
is adapted to have O(3z) level 0 slots that fulfill the function of a round. Some
slots may not be utilized because the cells may be empty.
Distance sensitivity: Recalling the clustering specifications stated above, con-
sider any two nodes i and j in the network. Let the shortest path between these
two nodes in the presence of holes be hop distance p.

Lemma 17. Under clustering model CM , if k is the smallest level at which i
and j are neighbors then p > 3k−1.

Proof. Note that i and j are not neighbors at level k − 1. And if p ≤ 3k−1, then
a level k−1 cluster cannot exist between i and j since from property C1, a level

k − 1 cluster has a minimum radius of 3k−1
−1

2 . ut

Theorem 1. Under model CM , algorithms S2, S3a and S3b yield snapshots
that retain their distance sensitive properties.

Proof. From the previous lemma, the minimum distance between two nodes i
and j for which level k is the smallest level at which i and j are neighbors is
3k−1.
Despite the fact the trees are not formed along the regular grid pattern, it still
holds that not more than 9 trees per level pass through any node. This is because
there at most 8 neighboring level k clusters for any level k cluster. Moreover,
the maximum degree of any node in all trees is still 8, by imposing the virtual
grid for level 0. Therefore, the slot width allocations in algorithms S2, S3a and
S3b are sufficient to transmit all information. ut

Distance Sensitive Snapshots in WSNs 13

Fig. 6. Handling holes in dense networks

Fig. 6 illustrates how snapshots are
communicated in irregular networks.
The figure shows a level 1 cluster with
a clusterhead A that has 7 neighboring
level 1 clusters. The small unfilled cir-
cles represent cells of the virtual grid;
these may contain one or more level 0
nodes. The level 1 clusters cover up to
a 2 hop neighborhood. The figure also
shows a level 1 tree rooted at A and
extending up to clusters B and C.
Non-uniform radio range If com-
munication range were relaxed to radio
interference range varying from 1 to s

hops, the basic scheduling for each round would need to take into account this
additional interference. This would result in longer round lengths proportional
to the size of interference region.
Implementation considerations: We now highlight considerations for imple-
menting our snapshot services in wireless sensor networks. The snapshot services
that we consider in this paper are high density operations and TDMA [9] is nat-
urally suited for such scenarios as interference can be avoided. But we do not
need global time synchronization in the network. Nodes in their network can
learn their TDMA slots by knowing their relative position to that of a cluster-
head and locally scheduling in a non interference manner. Note that our snapshot
services are continuous and we do not recover a lost message. On the other hand
we avoid message losses by interference free scheduling.
Another issue to consider is that of localization. For our snapshot services, infor-
mation is communicated only along a tree structure that is rooted at clusterheads
of different levels. Knowledge of location is not needed in the protocol actions;
only knowledge of which trees a node belongs to is sufficient. Also it is sufficient
for the nodes to be scheduled in a non interference manner, not particularly in
any order. Thus localization is not required for our snapshot services.

7 Related work

Communicating periodic global state snapshots is a well studied problem in
distributed systems [10] and consistency, timeliness and reliability have been
the main design considerations in those studies. But efficiency becomes essential
when considering periodic snapshots for resource constrained wireless sensor net-
works. To the best of our knowledge algorithms for delivering periodic snapshots
across a wireless sensor network have not been studied before.
A common approach to achieving compression for efficiency is to exploit the
temporal and spatial correlation of data being shared. For example, in [11],
the authors propose a framework for a one time all-to-all broadcast of sensor
data assuming the data is spatially correlated. Instead, in this paper we do not
require data to be correlated. At the same time, our algorithms can be used in
conjunction with other forms of compression.

14 Vinodkrishnan Kulathumani and Anish Arora

Fractionally cascaded information [12] is a form of distance sensitive resolution
that is widely used in computational geometry community for speeding up data
structures. Recently, fractional cascading has been used for sensor networks as an
efficient storage mechanism [13, 14]. Data is first stored at multiple resolutions
across the network, which is then used to efficiently answer aggregate queries
about a range of locations without exploring the entire area. In contrast, we have
considered a model where information is generated and consumed on an ongoing
basis. At the same time these services can be used in range based querying as
well as in several other control applications.
An algorithm for creating the multi-resolution data structure based on proba-
bilistic gossip mechanism has been discussed in [14]. In [14], the algorithm de-
scribed is for a one shot dispersion and proceeds in stages while our services are
for a model where information is consumed on an ongoing basis and accordingly
we describe a pipelined implementation that is based on scheduling. In [14], the
aggregation oprations are duplicate insensitive and global time synchronization
is assumed while we do not require either of these properties. Our comunication
costs and latency are lower than those in [14] and we also describe services that
additionally have distance sensitive rate properties. But we note that while we
assume hierarchical clustering in our solutions, the algorithm in [14] does not.
The idea of distance sensitive rate has also arisen in other contexts. Fisheye
state routing is a proactive routing protocol [15] that reduces the frequency of
topology updates to distant parts of the network.
Recently algorithms for bulk data collection in sensor networks have been pro-
posed. In [16] data is collected from one node at a time, while [17] performs con-
current, pipelined exfiltration of data using TDMA schedules. Our algorithms
can be specialized for the case of bulk convergecast and we additionally empha-
size on efficiency using distance sensitive properties.

8 Conclusion

We have generalized the basic notion of snapshots using distance sensitive no-
tions and accordingly designed efficient wireless sensor network algorithms that
periodically deliver them. We achieve compression by forming hierarchical clus-
ters and aggregating information at clusterheads. To communicate the snapshots,
we embed logical trees rooted at clusterheads that extend up to all neighboring
clusters at the corresponding level. Aggregate information at each level is then
propagated downwards along the respective tree and this is sufficient for higher
level clusterheads to compute respective aggregates. Our algorithm actions are
such that information propagates in a pipelined manner; by this, new informa-
tion can be generated as soon as previous information has been dispersed to a
local neighborhood as opposed to the entire network. We achieve further com-
pression in our algorithms by exponentially decreasing the bandwidth allocated
to aggregates at higher levels.
Our algorithms are memory efficient and realizable in networks with irregular
density, with arbitrary sized holes, and imperfect clustering. We have quantified
the maximum rate at which information can be generated at each node so that
snapshots are periodically delivered across the network; the algorithms can be

Distance Sensitive Snapshots in WSNs 15

operated at lower rates. We have specified the allowable aggregation functions
in abstract terms, allowable functions include average, max, min and wavelet
functions. Our algorithms neither require global time synchronization nor local-
ization.
We expect to implement our snapshot algorithms in the context of applications
such as pursuer evader tracking and vibration control, and study their perfor-
mance and tradeoffs more exhaustively in the future.

References

1. H. Cao, E. Ertin, V. Kulathumani, M. Sridharan, and A. Arora. Differential games
in large scale sensor actuator networks. In IPSN, pages 77–84. ACM, 2006.

2. B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, and S. Sastry. Distributed control
applications within sensor networks. In Proceedings of the IEEE, volume 91, pages
1235–46, Aug 2003.

3. Challenge problem description for network embedded software technology (nest).
Boeing Tech Report, The Boeing Company, St. Louis, MO 63166, April 2002.

4. Y. M. Kim, A. Arora, and V. Kulathumani. On Effect of Faults in Vibration
Control of Fairing Structures. In Fifth International Conference on Multibody
Systems, Nonlinear Dynamics and Controls (MSNDC), 2005.

5. V. Kulathumani, M. Demirbas, and A. Arora. Trail: A Distance Sensitive WSN
Service for Distributed Object Tracking. In European Conference on Wireless
Sensor Networks, 2007.

6. K. Chou, D. Flamm, and G. Guthart. Multiscale Approach to the Control of Smart
Structures. In SPIE, volume 2721, pages 94–105, 1996.

7. V. Kulathumani and A. Arora. Distance Sensitive Snapshots in Wireless Sensor
Networks. Technical Report OSU-CISRC-7/07-TR51, The Ohio State University,
2007.

8. V. Mittal, M. Demirbas, and A. Arora. Loci: Local clustering service for large
scale wireless sensor networks. Technical Report OSU-CISRC-2/03-TR07, The
Ohio State University, 2003.

9. S. Kulkarni and U. Arumugam. TDMA service for Sensor Networks. In ICDCS,
volume 4, pages 604–609, 2004.

10. M. Chandy and L. Lamport. Distributed snapshots: determining global states of
distributed systems. ACM Transacttions on Computer Systems, 3(5):63–75, 1985.

11. S. Servetto. Sensing LENA - Massively Distributed Compression of Sensor Images.
In IEEE ICIP, 2003.

12. F. Dehne, A. Ferreira, and A. Rau-Chaplin. Parallel fractional cascading on hyper-
cube multiprocessors. In Computational Geometry Theory Applications, volume 2,
pages 144–167, 1992.

13. J. Gao, L.J. Guibas, J. Hershberger, and L. Zhang. Fractionally cascaded infor-
mation in a sensor network. In IPSN, pages 311–319, 2004.

14. Rik Sarkar, Xianjin Zhu, and Jie Gao. Hierarchical Spatial Gossip for MultiReso-
lution Representations in Sensor Networks. In IPSN, pages 311–319, 2007.

15. G. Pei, M. Gerla, and T.-W. Chen. Fisheye State Routing in Mobile Adhoc Net-
works. In ICDCS Workshop on Wireless Networks, pages 71–78, 2000.

16. S. Kim. Sensor networks for structural health monitoring. Master’s thesis, Uni-
versity of California, Berkeley, 2005.

17. V. Naik and A.Arora. Harvest: A reliable bulk data collection service for large
scale wireless sensor networks. Technical Report OSU-CISRC-4/06-TR37, The
Ohio State University, 2006.

