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ABSTRACT

We present a portable wireless multi-camera network based system that quickly recognizes face of human subjects.
The system uses low-power embedded cameras to acquire video frames of subjects in an uncontrolled environment
and opportunistically extracts frontal face images in real time. The extracted images may have heavy motion blur,
small resolution and large pose variability. A quality based selection process is first employed to discard some of
the images that are not suitable for recognition. Then, the face images are geometrically normalized according
to a pool of four standard resolutions, by using coordinates of detected eyes. The images are transmitted to a
fusion center which has a multi-resolution templates gallery set. An optimized double-stage recognition algorithm
based on Gabor filters and simplified Weber local descriptor is implemented to extract features from normalized
probe face images. At the fusion center the comparison between gallery images and probe images acquired by a
wireless network of seven embedded cameras is performed. A score fusion strategy is adopted to produce a single
matching score. The performance of the proposed algorithm is compared to the commercial face recognition
engine Faceit G8 by L1 and other well known methods based on local descriptors. The experiments show that
the overall system is able to provide similar or better recognition performance of the commercial engine with
a shorter computational time, especially with low resolution face images. In conclusion, the designed system is
able to detect and recognize individuals in near real time.

Keywords: Camera network, collaborative face detection, face recognition, score fusion, near real-time pro-
cessing.

1. INTRODUCTION

Face recognition systems have traditionally been applied for identification from previously acquired photographs
and videos. But it is now becoming increasingly important to apply these systems for human identification
in real-time environments. In this paper, we describe the design and implementation of a distributed face
recognition system using a network of embedded cameras that is able to acquire and process face images of
human subjects in near real-time. We have specifically considered a choke-point scenario where a network of
cameras are deployed over small critical access regions such as entrances, lobbies, walkways etc. in public places
for human identification. Potential applications for such a system include raising an alert when criminals are
detected entering critical places such as airports and shopping malls, raising an alert when lost individuals are
detected and automatic recognition and registration of individuals at international port of entry.

Distributed camera networks can potentially improve the accuracy of human identification by offering multiple
views of a scene and being tolerant to occlusions. However, in order to be scalable and to be applicable in real-
time identification, multi-camera networks pose a design challenge in terms of the trade-off required between
local processing and centralized computation. On the one hand local processing is needed prior to transmitting
all the acquired data to a fusion center so that the network and the fusion center are not overloaded with too
much data. On the other hand, it is also crucial to acquire as many images as possible at the individual cameras
so as to improve the chances of accurate recognition. This is because a subject could be constantly moving his
or her head and there could be a small duration when the face pose with respect to a camera is favorable for
identification and it is desirable to capture this frame. Therefore, it is important to keep computational overhead
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low at the distributed cameras so that the data can be processed at a high frame rate. Our approach in this
paper is to use the distributed cameras to perform face detection and transmit only the region containing faces
detected in each frame to the base station.

Contributions: We consider a system comprising a set of embedded cameras deployed along the sides of a
narrow alley or corridor that simulates passages in indoor public spaces such as airports. We use a Logitech 9000
series camera,1 a Beagleboard2 (with an OMAP processor), and a wireless card to assemble an individual embed-
ded camera unit. Each embedded camera performs pre-processing operations such as background subtraction to
detect an individual in a given scene. This is followed by a Haar cascade classifier-based face detection3,4 and a
filtering operation to suppress images that might not be suitable for face recognition due to various reasons (e.g.,
poor resolution, bad pose, motion blur etc.). Only frontal face images likely to yield high recognition accuracy
are transmitted to a fusion center for face recognition. Using this setup, we perform an experiment with 29
individuals walking through a network of 7 embedded cameras. The probe images that are received at the fusion
center are then used for face recognition by matching against a gallery database.

In previous work,5 we have used a commercial software (L1 Identix FaceIt) to verify the achievable recognition
performance using a multi-camera network and showed how multiple cameras improve the chance of acquiring a
suitable face image for recognition. In this paper, we use the same dataset and introduce a new face recognition
method which shows promise in terms of performance and speed when applied to low-resolution images.

Prior to performing recognition, each image is normalized to a standard size and then processed with a bank
of Gabor filters. Filtered images are encoded using a simplified Weber descriptor. The number of standard
resolutions, of Gabor filters and the scale parameter of the local descriptor are tuned to guarantee near real time
classification of subjects. The operator can be applied to encode and match images for both single spectrum and
for performing cross spectral matching (visible light vs. SWIR).

Related work: Multiple cameras have been used for face recognition in an active control mode in which
a combination of a fixed camera and a PTZ camera are used for close-up tracking of humans and subsequent
identification.6–8 In our approach instead of continuously tracking an individual at close quarters to eventually
get a good view that is suitable for recognition, we rely on redundancy offered by multiple camera views to
opportunistically acquire a suitable face image for identification.5,9

In the paper by D. Kisku et al.,10 Gabor filters are used to encode face at multi-views (frontal and non-
frontal) and the filtered data is further encoded with PCA and a generalization of LDA (Linear Discriminant
Analysis). The obtained feature vectors are linearly combined with weights estimated on a training set. The
classification is performed with three different classifiers, namely, K-Nearest Neighbor, SVM with linear kernel
and SVM with RBF. The algorithm is designed to work off-line and it is tested on the UMIST11 dataset having
controlled and good quality images (200 pixels of resolution, no blur). By way of contrast, our recognition
technique encodes Gabor filters responses with a local operator, preserving spatial information and providing a
distinctive representation of facial features.

In the work of E. Kokiopoulou et al.,12 the problem of distributed classification of an object is addressed
based on multiple views of the object that are collected using an ad-hoc camera network. An average consensus
algorithm is implemented for estimating the unknown object class by adopting an objective function. At the
initial stage the objective function is locally estimated based on observation of a single node. As the algorithm
progresses all observations are gradually taken into account in the estimation of the objective function. In our
approach for distributed classification, instead of using observations from all the cameras, we implement a score
fusion strategy that discards images of low quality which generate low matching scores.

Outline of the paper: In Section 2, we present our embedded camera network based face detection and
filtering service and describe our experiments to acquire face images in real-time. In Section 3, we describe our
face recognition technique. In Section 4, we evaluate the performance of our recognition system and conclude in
Section 5.

2. FACE DETECTION

The system that we consider in this paper consists of a long, linear network of embedded cameras deployed along
both sides of a secured passageway (e.g., an aisle or a corridor). This simulates an indoor walkway in a public



Figure 1. Schematics for network based face recognition: 7 embedded cameras are deployed along a rectangular corridor.
The cameras opportunistically capture images of subjects within their field of view, apply pre-selection and filtering
algorithms and transmit to a fusion center for recognition.

space that is subjected to surveillance. The embedded cameras are connected wirelessly to a base station via
a single hop. Multiple cameras capture images of the subject(s) walking through the network. The acquired
images may contain variations in pose, resolution and even illumination, depending on the external conditions.
The requirement is for the subject to be recognized with high confidence using the set of images captured within
the camera network.

2.1 Assembly of embedded camera network

For the experiments described in this paper, we use the OMAP3 processor based BeagleBoard2 as our embedded
camera processor. The processor supports Linux operating system and can be integrated with off-the-shelf USB
enabled cameras generating medium or high resolution images. For our experiments, we use the Logitech 9000
camera. While currently we use an 802.11 based wireless card, we can easily replace this with a low power wireless
network using IEEE 802.15.4 enabled transceiver. Thus, the assembled system provides us with flexibility with
respect to the camera as well as the radio platforms. The assembled platform can be powered by a 5V battery
or external AC power.

Next, we assemble a camera network using the above platform. Individual units are portable and are config-
ured into a programmable network that is attached to a fusion center for recognition. Fig. 1 shows a schematic
of the camera network for face recognition as described in this paper. Seven cameras are placed at a height of
6.5 feet from the ground with a 9 feet spacing along a length of 40 feet. In this work, we focus on the case where
the cameras are placed at the specified height to acquire frontal or partially frontal face images. Using overhead
or ceiling-placed cameras for face recognition is beyond the scope of this work. We do not use camera calibration
information for face recognition. Therefore, the cameras do not have to be tightly calibrated which simplifies
the logistics of deployment. The cameras are deployed facing the region under surveillance but biased toward
the direction of the entrance at an angle of 30 degrees. This allows us to acquire frontal face images when the
subject looks towards the direction of the exit. This is highlighted in Fig. 1. The individual camera units can be
programmed at run time. The cameras form a 1-hop network, but can be extended to form a multi-hop network.

2.2 Distributed processing

We use an OpenCV based implementation of the Haar Cascade detector4 that is tuned to extract face segments
for frontal face detection. Sometimes, the Haar Cascade detector generates false positives for detected faces
by including side views as well as non-facial images. In order to reduce these false positives, we perform an
additional step of eye detection on the output of the face detector. The eye detector algorithm is also a Haar
Cascade based classifier that is trained to detect eyes in an image. The extracted face images are then further
analyzed for size and motion blur. We use Discrete Cosine Transformation (DCT) to estimate and detect motion
blur. DCT detects low and high frequency components, and the degree of motion blur can be estimated from



Figure 2. (Left) Images that did not qualify for transmission to the fusion center due to bad pose (top), motion blur
(middle), poor resolution (bottom); (Right) Example face images that were transmitted to the fusion center.

the number of high frequency components.13 We determine the presence of motion blur by observing the DCT
coefficients of the top 10% of the high frequency components. During the process of filtering images prior to
transmission to the fusion center, we apply a predetermined threshold on the size of a face image and the blur
factor to discard frames. These thresholds are empirically decided, based on an offline analysis of the impact of
different quality images on the match scores. We empirically determine a size of 22× 22 pixels as the minimum
resolution for a detected face to be transmitted to the fusion center. If blurred and poor resolution images were
to be transmitted, it will result in excess processing time at the fusion center without adding value to the fusion.
Fig. 2 (left) shows example face images that were filtered (i.e., dropped) due to poor pose, blur and resolution,
respectively. Fig. 2 (right) shows example face images that were transmitted to the fusion center.

At the end of this phase, a total of 223 face images are obtained for all the 29 subjects with a minimum of 5
and a maximum of 12 images per subject. These face images are used to test the performance of our recognition
technique and compare with other algorithms. We save approximately 90% of the bandwidth on each transmitted
frame by extracting only the face portion of the image. Furthermore, by transmitting only a small subset of
frames, we significantly reduce the required network bandwidth.

3. FACE RECOGNITION

3.1 Preprocessing and normalization

The detected face images are brought to a canonical form prior to being encoded. A similarity transformation
(scaling, rotation, translation) is employed to project eye locations to two fixed points in the image space. The
selected points correspond to the eye coordinates of a single face image taken as a reference. The positions of
the eyes are detected with Haar features and an AdaBoost classifier3 using the OpenCV libraries.4 To reduce
the number of false alarms we enforce few geometrical constraints: detection areas for left and right eyes,
maximum vertical distance and minimum horizontal distance between candidate landmarks. In a surveillance
scenario, images are usually captured in unconstrained environments. The distance to the camera is unknown,
and various distortions are observed in the images. In particular, the acquired face images may have variable
resolution (the number of pixels representing the face in the image). Hence, before we detect the eye coordinates
we downsample high resolution face images and upsample low resolution face images to deal with face images at
variable scale. This strategy is adopted only for the purpose of eye detection.

At the stage of feature extraction during the enrollment, instead of defining a standard resolution for re-
sampling the normalized images, we create feature templates at different image resolutions (a predefined set).
This solution avoids excessive upsampling to a given resolution when captured images are extremely small (e.g.
28 × 28 pixels). The adopted strategy increases the processing time at the enrollment stage, which is usually
done off-line, but has the advantage of being able to decrease the average processing time at the testing stage.
Particularly, low resolution images will be processed much faster compared to high resolution images. A detailed
summary is provided in Sec. 4.1 and Sec. 4.4.



3.2 Feature extraction

The proposed feature extraction method is based on a double encoding mechanism that adopts a bank of 32
Gabor filters as the first step and a Simplified Weber Local Operator (SWLD) as the second step.14 The Weber
Local Descriptor was introduced by Chen et al.15 It consists of two joint descriptors: a differential excitation
operator and a gradient orientation descriptor. In this work we adopt only the differential excitation operator,
and we employ it to encode the magnitude response of the Gabor filters. The SWLD is a robust edge detector
that preserves the intensity values along the edges. We compare the performance of SWLD with that of the
following alternate approaches: (1) commercial software FaceIt G8 by L1, (2) the method of Zhang et al.16 by
using the magnitude responses of a bank of Gabor filters and (3) the method of Ahonen et al.17 that employs a
8-bits LBP operator directly on raw images. We show that our approach achieves better verification performance
than Gabor-LBP,16 LBP,17 and comparable or better verification performance to the Faceit G8 software. We
also demonstrate that our method can be extremely fast when applied to low resolution images compared to
FaceIt G8 that has a processing time almost independent of the resolution.

To extract face features, firstly, the normalized images are convolved with a bank of 32 Gabor Kernels given
by:

Gα,β(z) =
∥kα,β∥
σ2

exp

[
∥kα,β∥2∥z∥2

2σ2

]
[eikα,βz − e−σ2/2], (1)

where σ2 is the variance of the Gaussian kernel, kα,β is the wave vector and z = (x, y). We adopt a Gabor kernel
parameterized by the following wave vector:

kα,β = kβe
iϕα , (2)

where kβ = (2−β/2)π with β = 1, 2, 3, 4 and ϕα = π
α × 8 with α = 1, 2, .., 8. The Gaussian kernel has standard

deviation σ = π.

Secondly, each Gabor magnitude response is further encoded with the SWLD descriptor defined as:

SWLDl,r,8(x) = Ql

{
tan−1

[
7∑

i=0

(
xi − x

x

)]}
, (3)

where xi are the neighbors of x at radius r = 1 and Ql is a uniform quantizer with l quantization levels. In the
following experiments we adopt l = 64 levels to discretize the output of the tan−1 function.

Finally, all obtained patterns are partitioned into non-overlapping regions of 8 × 8 pixels, and a 64 bin
histogram of feature values is assembled for each block. Individual histogram sequences are concatenated resulting
in a template vector. We note that the overall feature extraction process does not require any kind of training.

To compare two images A and B we adopt the symmetric I-divergence distance as a matching score:

d(A,B) =

K∑
k=1

(HA(k)−HB(k)) log
HA(k)

HB(k)
, (4)

where K is the length of the feature vectors HA(k) and HB(k) extracted from images A and B. The feature
vectors are normalized such that matching pairs at different resolutions produce distance scores within the same
range.

4. PERFORMANCE EVALUATION

4.1 Dataset and Preprocessing

During enrollment 5 images per subject are collected at close distance from a single camera to obtain a total
145 gallery images. Also recall from Section 2, that we obtain 223 probe images with an average of about 7
images per face class using our multi-camera network based face detection experiments. The captured probe
images have an out-of-plane rotation up to +

−20 degree with respect to the frontal view. They also have variable



resolution and different amount of blur involved due to the limited capture volume of cameras in the network.
The eye detector is applied to the gallery images (at the enrollment stage) obtaining a total of 136 detected
gallery images and to probe images (at the testing stage) resulting in a total of 216 probe images. The eye
detection rate can be improved by adding an eye-glasses detector. However, to keep the processing time low
we adopt a single Haar cascade trading off complexity versus performance. The normalized probe images are
partitioned into 7 resolutions: 28× 28, 38× 38, 47× 47, 56× 56, 75× 75, 103× 103, and 122× 122 pixels. The
distribution of probe images grouped by their original resolution is shown in Fig. 3. Note that most of the probe
images have low resolution.

Figure 3. Probe images grouped by resolution.

As explained in Sec. 3.1, we predefine a set of resolutions to rescale the probe images prior to encoding and
matching them. All high resolution probe images (6% of all probe images) are scaled down to 64 pixels; instead,
images with resolution 47, 38, and 28 pixels are mapped to 48, 40, and 32 pixels by using a bicubic interpolation.
In general, once the sets of standard resolutions have been defined, the incoming probe images can be rescaled
to the closest one in this set.

In the following two subsections, we analyze the performance of our recognition system. We first evaluate the
performance by considering all the probe images that are collected for the 29 subjects in computing the receiver
operating characteristics. Next, we evaluate the performance after employing a score fusion strategy by which
for each subject, the probe image that yields the best score with respect to each gallery image is selected and
the receiver operating characteristics are computed based on these selected probe images.

4.2 Recognition Performance based on scores from all probe images

In this section we evaluate verification performance (Receiver Operating Characteristic curves) of the proposed
encoding and matching method. The performance of the method is compared to the performance of the commer-
cial software FaceIt G8, of the Gabor-LBP approach and of the LBP matcher. FaceIt G8 employs a similarity
measure as matching score while Gabor-SWLD (64 levels), Gabor-LBP (8 bits), LBP (8 bits) employ a sym-
metric I-divergence distance. Other measures of distance such as Chi-Square17 or Histogram Intersection,16 can
be adopted. Based on our experiments, the I-divergence distance performs reliably compared to other metrics.
In the following experiments the set P of 216 probe images is matched against the gallery set G composed
of 136 images. Each probe image is individually submitted for verification. The resulting Receiver Operating
Characteristic (ROC) curves from this experiments are shown in Fig.4

The results show that LBP matcher provides very poor performance. The performance of the Gabor-LBP
approach is lower compared to the performance of the Gabor-SWLD (our approach). The FaceIt G8 software
provides best performance for the operational points in the range 0.05 to 1 of False Accept Rate (FAR). Its
performance is similar to the performance of the Gabor-SWLD matcher for the operational points in the range
10−4 to 0.05 of FAR. The cumulative results show that all four matchers provide low verification rates (< 50%)
at FAR below 10−2.
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Figure 4. Verification performances for FaceIt G8, our method (Gabor-SWLD), Gabor-LBP, LBP matchers for a single
camera.

4.3 Recognition performance after selecting probe images based on score-fusion

Prior to performing experiments, we group the set P of 216 probe images (see its description in Sec. 4.1) into 29
groups (the number of groups is equal to the number of walking subjects i = 1, 2, . . . , 29). Let Qi, i = 1, . . . , 29
be the i-th subset with the images of the i-th class. At the fusion center, we compare each group Qi of probe
images against all images in the gallery G. Each group Qi contains a different number of probe images (the
minimum number is 4 and the maximum number is 10 images) having different resolutions, pose and motion blur
level. Since the image collection process was repeated a number of times for each subject walking in the field of
view of the network to obtain a larger number of testing images, in the following experiments, we assume that
any group of images Qi is a set of images acquired from an equivalent larger camera network (10 cameras) where
not always all cameras were able (e.g. because of pose or occlusion) to detect the face of the subject walking in
the network.

To compare each group Qi of probe images against the images in the gallery G, we employ a score fusion
strategy. In particular, we adopt the max or min rule18 depending on the tested matcher. At the fusion center
ki images of the current group Qi are compared against the first image of the gallery G and the lowest matching
score among the ki is selected. This strategy is applied to Gabor-SWLD, Gabor-LBP, LBP matchers, since the
output of these matchers is a distance score. When FaceIt G8 is employed, the adopted fusion rule selects the
maximum of the scores, since the output of FaceIt G8 is a similarity score. This normalization process is applied
to all comparisons performed against remaining gallery images. The ROC curves characterizing the verification
performance of the multiview face recognition method are shown in Fig. 5.
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Figure 5. Verification performance for FaceIt G8, our method (Gabor-SWLD), Gabor-LBP, and LBP matchers using a
camera network detecting an average of 7 probe images per walking subject.



The results demonstrate that the use of a multi-camera network for acquiring data and the use of a score fusion
strategy leads to considerable performance improvement compared to the results in Fig. 4. This is especially
noticeable for Gabor-SWLD approach and FaceIt G8 matcher. Note that our matcher performs best in the FAR
range between 10−3 and 10−2, while FaceIt G8 outperforms our method in the range of FAR between 10−1 and
1.

MATCHER d-prime EER GAR GAR
for FAR for FAR
at 10−2 at 10−3

Gabor-SWLD 3.054 7.35% 86.03 % 80.51%
Faceit G8 2.097 5.19% 83.82 % 76.46%
Gabor-LBP 2.719 8.09% 73.53 % 44.12%

LBP 1.942 15.51% 43.38 % 18.12%

Table 1. d-prime, Equal Error Rate (EER), Genuine Accept Rate (GAR) evaluated at FAR 10−2 and FAR 10−3 for FaceIt
G8, our method (Gabor-SWLD), Gabor-LBP, LBP matchers.

Table 1 presents a comparison of the four matching methods based on few operating points. The table shows
that the Equal Error Rate (EER) of FaceIt G8 is the lowest, however, our approach provides the best separability
index (d-prime) and verification rates (Genuine Accept Rate) at FAR 10−2 and at FAR 10−3.

4.4 Processing time

In this section we compare the processing time of the proposed face recognition method against the processing
time of FaceIt G8. Broadly speaking, the processing time can be divided into two parts: (1) creation of a
probe template from the detected face image which we denote as operation CT and (2) matching the probe
template against gallery templates which we denote as operation Match. In our approach, the operation CT is
composed of eye detection, normalization of face image into a canonical form using eye positions, selection of
appropriate resolution s from a predefined set S, rescaling the face image to resolution s and finally the extraction
of features from the face image. For the FaceIt software the corresponding operations are performed by function
CreateTemplate.

In our approach, the operation CT for a probe image of resolution of 64 pixels (the largest resolution supported
by the set S) requires only 92.6% of the processing time employed by FaceIt G8 and the Match function at such
resolution takes 80% of the matching time of FaceIt G8, when performed on the same machine. Furthermore,
the processing time of our method reduces dramatically as the resolution decreases. Conversely, the processing
time of FaceIt G8 remains constant and is independent of the resolution of probe images. In particular, at the
lowest resolution of 32 pixels the operation CT for our approach is approximately 4 times faster compared to
FaceIt G8, and the Match function at such resolution for our method is 5 times faster than FaceIt G8. We
summarize the processing time employed by our approach and Faceit G8 in Table 2. The obtained processing
times are evaluated on a PC with an Intel Pentium R⃝ 4 (2004) single-core CPU at 3.20 GHz and 1GB of RAM.

Resolution CT Match
Faceit G8 Gabor-SWLD Faceit G8 Gabor-SWLD
(msec) (msec) (msec) (msec)

64×64 730 676 100 80
48×48 730 246 100 46
40×40 730 195 100 29
32×32 730 177 100 19

Table 2. The table indicates processing time (in milliseconds) for CT and Match operations. The computational times
for the Faceit G8 and Gabor-SWLD matchers are reported as functions of image size and resolution.



5. CONCLUSIONS

In this paper, we demonstrated the use of a wireless camera network to perform near real-time face recognition
that yields high accuracy and robustness. We assembled a portable camera network using off-the-shelf compo-
nents in which individual cameras perform background subtraction and face detection, and transmit only relevant
face images to a fusion center for recognition. Our technique relies on opportunistically acquiring suitable face
images as a subject walks through the multi-camera network. By only transferring the face images and further
filtering them based on suitability for recognition, we are able to significantly reduce the required network band-
width. We developed a new robust face recognition algorithm and optimized it to process distributed data in
near real time. We evaluated the performance of this system for face recognition using a dataset of 29 subjects
collected using the portable camera network. Our networked face recognition system is able to achieve com-
parable recognition performance to the commercial L1 FaceIt software while reducing the required processing
time.

In this paper, we have only considered front face images for recognition. In recent work,9 we have described
our design of a collaborative technique for extraction of multi-view face images in real-time by exploiting the
geometry of the network. Integrating our face recognition software with this real-time face detection service and
investigating the ability of our face recognition software to perform human identification based on multi-view
face images is a subject of our current research. The design of our own face recognition algorithm offers us the
flexibility to tune design parameters which in turn contribute to optimizing the performance (e.g. decreasing
the processing time for low resolution images). It also gives us the flexibility to adapt the design for non-frontal
face images which is important for our future work.
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